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Structured data

I data is multi-dimensional

I measurements are discrete

I dimensions are structured
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Problem: learning from spherical data

input x : S2 × · · · → Rd
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Solution: spherical neural networks
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Desideratum 1: equivariant to rotations

convolution

convolution
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I Equivariance for dense tasks:
f(Rx) = Rf(x) ∀R ∈ SO(3)

I Invariance for global tasks:
f(Rx) = f(x) ∀R ∈ SO(3)

Why exploit symmetries?
I reduced sample complexity
I generalization guarantee
⇒ principled convolution (weight sharing)

7 / 20



Desideratum 2: scalable

I Many inferences needed for training.
I Increasingly larger maps. (n = 107 pixels is customary in cosmology.)

Figure from https://healpix.sourceforge.io.
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Desideratum 3: flexible sampling

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).
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Sampling schemes: equiangular, HEALPix, cubed-sphere, icosahedral, Gauss-Legendre, etc.
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Partial and irregular sampling.

Some figures from Boomsma and Frellsen 2017 and https://climatereanalyzer.org.
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Method 1: 2D projections

Manifold is locally Euclidean!
Project on 2D tangent planes.

Desiderata

	 Rotation equivariance: hard to properly glue
planes together.

⊕ Scalability: well developed NN architectures and
implementations. Some wastes at boundaries.

	 Flexibility: only handle compact subspaces.

Charting figure from https://en.wikipedia.org/wiki/manifold.
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Method 2: discretization of continuous domain

Spectral decomposition.

Discretize the continuous problem!
Compute the spherical harmonic transform (SHT),
filter in the spectrum.

Desiderata

⊕ Rotation equivariance: well understood theory.
	 SHT is expensive. Fast transforms exist for

some samplings.
	 Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.
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Our proposition: discrete domain

graph G = (V, E , A) with
Aij = exp(−d(zi, zj)/σ)

Domain set of pixels V
topology given by geodesic distances

Data function x : V → R
seen as x ∈ Rn

Method in a nutshell (Defferrard et al. 2016)

1. Model the topology by a graph G = (V, E , A).
2. From it stems a Laplacian, e.g. L = D −A.
3. The Fourier basis diagonalizes the Laplacian.
4. Convolution is a multiplication in Fourier.
5. Spatial implementation for speed,

e.g. gα(L)x =
∑

k αkL
kx.
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Desideratum 1: equivariant to rotations
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Khasanova & Frossard, k= 4

Perraudin et al., k= 8

k-NN graph, k= 8 neighbors
k-NN graph, k= 20 neighbors
k-NN graph, k= 40 neighbors

n∝ 322

n∝ 642

n∝ 1282 I Difficulty: set the edge weights.

I Equivariance error:

ER,x
(
‖RLx− LRx‖

‖Lx‖

)2

I Tradeoff between equivariance and
cost (number of vertices n and
edges kn)!

13 / 20



Desideratum 1: it matters!

accuracy time

Perraudin et al. 2019, 2D CNN baseline 54.2 104ms
Perraudin et al. 2019, CNN variant, k = 8 62.1 185ms
Perraudin et al. 2019, FCN variant, k = 8 83.8 185ms
k = 8 neighbors, optimal t 87.1 185ms
k = 20 neighbors, optimal t 91.3 250ms
k = 40 neighbors, optimal t 92.5 363ms

Lower equivariance error translates to higher performance.
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Tradeoff between cost
and accuracy.
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Desideratum 2: scalable

I Graph convolutions cost O(n).
I Spherical convolutions cost O(n2) in general, O(n3/2) for some samplings.
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Desideratum 2: it matters!

performance size speed

F1 mAP params inference training

Cohen et al. 2018 (b = 128) - 67.6 1400 k 38.0ms 50 h
Cohen et al. 2018 (simplified, b = 64) 78.9 66.5 400 k 12.0ms 32 h
Esteves et al. 2018 (b = 64) 79.4 68.5 500 k 9.8ms 3 h
DeepSphere (equiangular, b = 64) 79.4 66.5 190 k 0.9ms 50m
DeepSphere (HEALPix, Nside = 32) 80.7 68.6 190 k 0.9ms 50m

Classification of 3D shapes (SHREC’17): anisotropy is an unnecessary price to pay.
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Desideratum 3: flexible sampling

GHCN-daily, TMAX, 2014-01-01
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graph of GHCN stations
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Application: discrimination of cosmological models

Classification of convergence maps created
from two sets of cosmological parameters.

(Ωm, σ8) = (0.31, 0.82) or (0.26, 0.91)
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Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

class 1, m = 0.31, 8 = 0.82
class 2, m = 0.26, 8 = 0.91

Ωm, σ8, smoothing chosen to get identical PS. Maps with identical initial conditions.
18 / 20



Application: climate event segmentation

Segment extreme climate events: tropical cy-
clones (TC) and atmospheric rivers (AR).

I >1M spherical maps
I down-sampled to 10k pixels (original 900k)
I 0.1% TC, 2.2% AR, 97.7% background
I 16 channels (e.g., temperature, wind,

humidity, pressure)

CAM5 HAPPI20 run 1, TMQ, 2106-01-01

AR
TC

0 kg/m2 40 kg/m2 80 kg/m2
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DeepSphere, a spherical CNN that strikes a controllable balance between desiderata.

Poster https://iclr.cc/virtual/poster_B1e3OlStPB.html

Slides https://doi.org/10.5281/zenodo.3777976

Papers Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR,
2020.

Defferrard, Perraudin, Kacprzak, Sgier, DeepSphere: towards an equivariant graph-based
spherical CNN, RLGM workshop at ICLR, 2019.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional
Neural Network with HEALPix sampling for cosmological applications, Astronomy and
Computing, 2019.

Code https://github.com/deepsphere
https://github.com/epfl-lts2/pygsp
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