ICLR spotlight talk

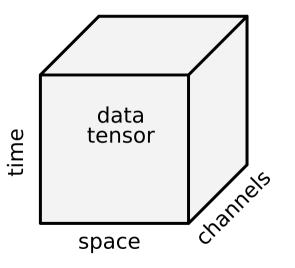
Addis Ababa virtual, 2020-04-30

DeepSphere: a graph-based spherical CNN

Michaël Defferrard

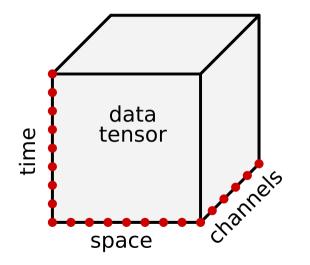
Joint work with Martino Milani, Frédérick Gusset, Nathanaël Perraudin.

Structured data



data is multi-dimensional

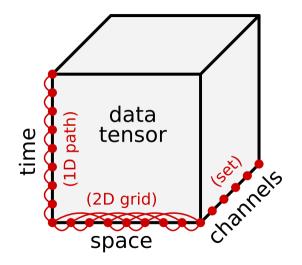
Structured data



data is multi-dimensional

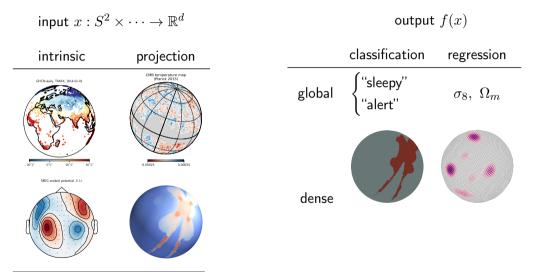
measurements are discrete

Structured data



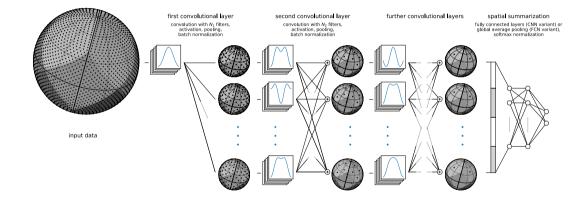
- data is multi-dimensional
- measurements are discrete
- dimensions are structured

Problem: learning from spherical data

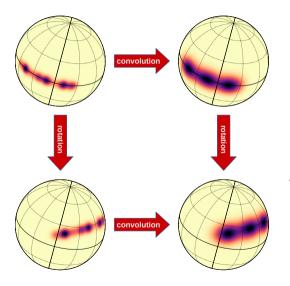


Acoustic field from Simeoni et al. 2019. 3D shape from Esteves et al. 2018.

Solution: spherical neural networks



Desideratum 1: equivariant to rotations



- Equivariance for dense tasks: $f(Rx) = Rf(x) \ \forall R \in SO(3)$
- Invariance for global tasks: $f(Rx) = f(x) \ \forall R \in SO(3)$

Why exploit symmetries?

- reduced sample complexity
- generalization guarantee
- \Rightarrow principled convolution (weight sharing)

Desideratum 2: scalable

Many inferences needed for training.

Increasingly larger maps.

 $(n = 10^7 \text{ pixels is customary in cosmology.})$

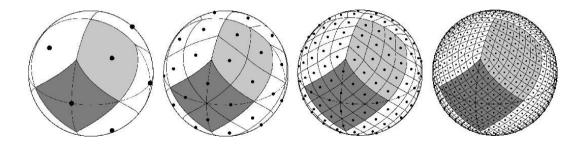
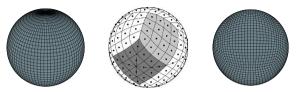
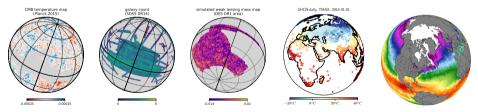


Figure from https://healpix.sourceforge.io.

Desideratum 3: flexible sampling



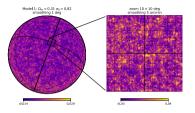
Sampling schemes: equiangular, HEALPix, cubed-sphere, icosahedral, Gauss-Legendre, etc.

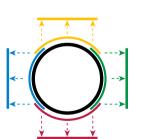


Partial and irregular sampling.

Some figures from Boomsma and Frellsen 2017 and https://climatereanalyzer.org.

Method 1: 2D projections





Manifold is locally Euclidean! Project on 2D tangent planes.

Desiderata

- ⊖ Rotation equivariance: hard to properly glue planes together.
- ⊕ Scalability: well developed NN architectures and implementations. Some wastes at boundaries.
- \ominus Flexibility: only handle compact subspaces.

Charting figure from https://en.wikipedia.org/wiki/manifold.

Method 2: discretization of continuous domain

Spectral decomposition.

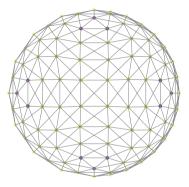
Discretize the continuous problem! Compute the spherical harmonic transform (SHT), filter in the spectrum.

Desiderata

- \oplus Rotation equivariance: well understood theory.
- ⊖ SHT is expensive. Fast transforms exist for some samplings.
- \ominus Flexibility: unused pixels are mostly wasted.

Figure from https://rodluger.github.io/starry.

Our proposition: discrete domain



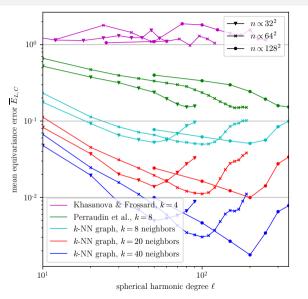
graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ with $A_{ij} = \exp(-d(z_i, z_j)/\sigma)$

Domain set of pixels \mathcal{V} topology given by geodesic distances Data function $x: \mathcal{V} \to \mathbb{R}$ seen as $x \in \mathbb{R}^n$

Method in a nutshell (Defferrard et al. 2016)

- 1. Model the topology by a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$.
- 2. From it stems a Laplacian, e.g. L = D A.
- 3. The Fourier basis diagonalizes the Laplacian.
- 4. Convolution is a multiplication in Fourier.
- 5. Spatial implementation for speed, e.g. $q_{\alpha}(L)x = \sum_{k} \alpha_{k}L^{k}x$.

Desideratum 1: equivariant to rotations



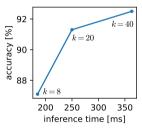
- ► Difficulty: set the edge weights.
- Equivariance error:

$$\mathbb{E}_{R,x}\left(\frac{\|RLx - LRx\|}{\|Lx\|}\right)^2$$

Tradeoff between equivariance and cost (number of vertices n and edges kn)!

Desideratum 1: it matters!

	accuracy	time
Perraudin et al. 2019, 2D CNN baseline	54.2	104 ms
Perraudin et al. 2019, CNN variant, $k=8$	62.1	185 ms
Perraudin et al. 2019, FCN variant, $k=8$	83.8	185 ms
k=8 neighbors, optimal t	87.1	185 ms
k=20 neighbors, optimal t	91.3	250 ms
k = 40 neighbors, optimal t	92.5	363 ms



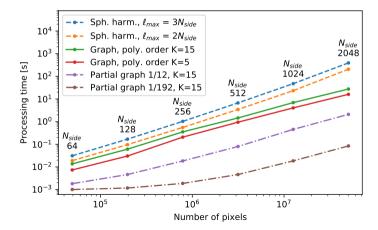
Lower equivariance error translates to higher performance.

Tradeoff between cost and accuracy.

Desideratum 2: scalable

• Graph convolutions cost $\mathcal{O}(n)$.

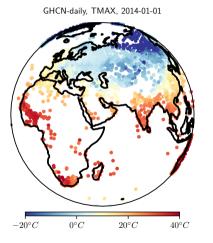
▶ Spherical convolutions cost $O(n^2)$ in general, $O(n^{3/2})$ for some samplings.

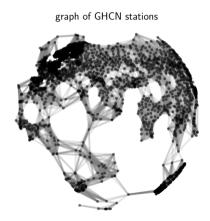


	performance		size	speed	
	F1	mAP	params	inference	training
Cohen et al. 2018 ($b = 128$)	-	67.6	1400 k	38.0 ms	50 h
Cohen et al. 2018 (simplified, $b = 64$)	78.9	66.5	400 k	12.0 ms	32 h
Esteves et al. 2018 ($b = 64$)	79.4	68.5	500 k	9.8 ms	3 h
DeepSphere (equiangular, $b = 64$)	79.4	66.5	190 k	0.9 ms	50 m
DeepSphere (HEALPix, $N_{side}=32$)	80.7	68.6	190 k	0.9 ms	50 m

Classification of 3D shapes (SHREC'17): anisotropy is an unnecessary price to pay.

Desideratum 3: flexible sampling

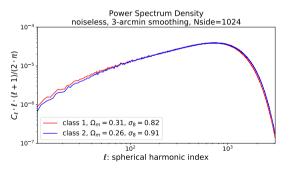




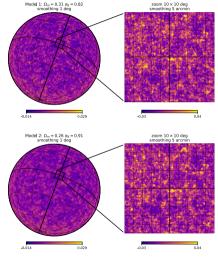
Application: discrimination of cosmological models

Classification of convergence maps created from two sets of cosmological parameters.

 $(\Omega_m, \sigma_8) = (0.31, 0.82) \text{ or } (0.26, 0.91)$



 Ω_m, σ_8 , smoothing chosen to get identical PS.



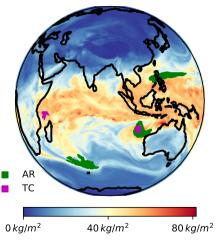
Maps with identical initial conditions.

Application: climate event segmentation

Segment extreme climate events: tropical cyclones (TC) and atmospheric rivers (AR).

- ► >1M spherical maps
- down-sampled to 10k pixels (original 900k)
- ▶ 0.1% TC, 2.2% AR, 97.7% background
- 16 channels (e.g., temperature, wind, humidity, pressure)

CAM5 HAPPI20 run 1, TMQ, 2106-01-01



DeepSphere, a spherical CNN that strikes a controllable balance between desiderata.

Poster https://iclr.cc/virtual/poster_B1e30lStPB.html

Slides https://doi.org/10.5281/zenodo.3777976

Papers Defferrard, Milani, Gusset, Perraudin, DeepSphere: a graph-based spherical CNN, ICLR, 2020.

Defferrard, Perraudin, Kacprzak, Sgier, DeepSphere: towards an equivariant graph-based spherical CNN, RLGM workshop at ICLR, 2019.

Perraudin, Defferrard, Kacprzak, Sgier, DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications, Astronomy and Computing, 2019.

Code https://github.com/deepsphere https://github.com/epfl-lts2/pygsp