

Nano-Knowledge Community

FAIR starts with findable: data sets and nanomaterials

Egon Willighagen, orcid:0000-0001-7542-0286, @egonwillighagen NanoCommons Workshop, 2020-04-28, #nanocommons

This project has received funding from the European Union Horizon 2020 Programma (H2020) under grant agreement no. 731032.

CC-BY 4.0 International

Why share your data? Reuse.

Journal of the American Society for Information Science and Technology

Research Article

The citation advantage of open-access articles

Michael Norris ♠, Charles Oppenheim ♠, Fytton Rowland ♠

First published:09 July 2008 | https://doi.org/10.1002/asi.20898 | Citations: 88

Maastricht University find full text

SECTIONS

Abstract

Four subjects—ecology, applied mathematics, sociology, and economics—were selected to assess whether there is a citation advantage between journal articles that have an open-access (OA) version on the Internet compared to those articles that are exclusively toll access (TA). Citations were counted using the Web of Science, and the OA status of articles was determined by searching OAIster, OpenDOAR, Google, and Google Scholar. Of a sample of 4,633 articles examined, 2,280 (49%) were OA and had a mean citation count of 9.04 whereas the mean for TA articles was 5.76. There appears to be a clear citation advantage for those articles that are OA as opposed to those that are TA. This advantage, however, varies between disciplines, with sociology having the highest citation advantage, but the lowest number of OA articles, from the sample taken, and

PeerJ

Data reuse and the open data citation advantage

Heather A. Piwowar^{1,2} and Todd J. Vision^{1,2,3}

- 1 National Evolutionary Synthesis Center, Durham, NC, USA
- ² Department of Biology, Duke University, Durham, NC, USA
- 3 Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA

ABSTRACT

Background. Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets.

Method and Results. Here, we look at citation rates while controlling for many known citation predictors and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued

Submitted 4 April 2013 Accepted 13 September 2013 Published 1 October 2013

Data as primary research output

Room for everyone's talent

towards a new balance in the recognition and rewards of academics

The FAIR data principles

F1: identifiers, F2: rich metadata, F3: registered or indexed, F4: specify identifiers

A1: standard protocols, A2: metadata persistent

I1: common language, I2: FAIR vocabularies, I3:

references other FAIR

R1: clear license, provenance, community standards

SCIENTIFIC DATA

Comment | OPEN | Published: 15 March 2016

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier [...] Barend Mons™

The F is for Findable

- Traditional: central databases
 - Chemical Abstracts
 - o Ensembl/UniProt, NCBI
 - PubChem
 - 0 ...
- Moving to a decentralized world
 - Search.data.enanomapper.net
 - Google Dataset Search
 - DataCite
 - 0 ...

Image: CC-BY 3.0, WikiCommons, File:Duke Humfrey's Library Interior 6, Bodleian Library, Oxford, UK - Diliff.jpg

- Archives versus databases
- Data versus dataset
- Data versus information

Supplementary Information

Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature

Hagar I. Labouta*, Nasimeh Asgarian, Kristina Rinker and David T. Cramb*

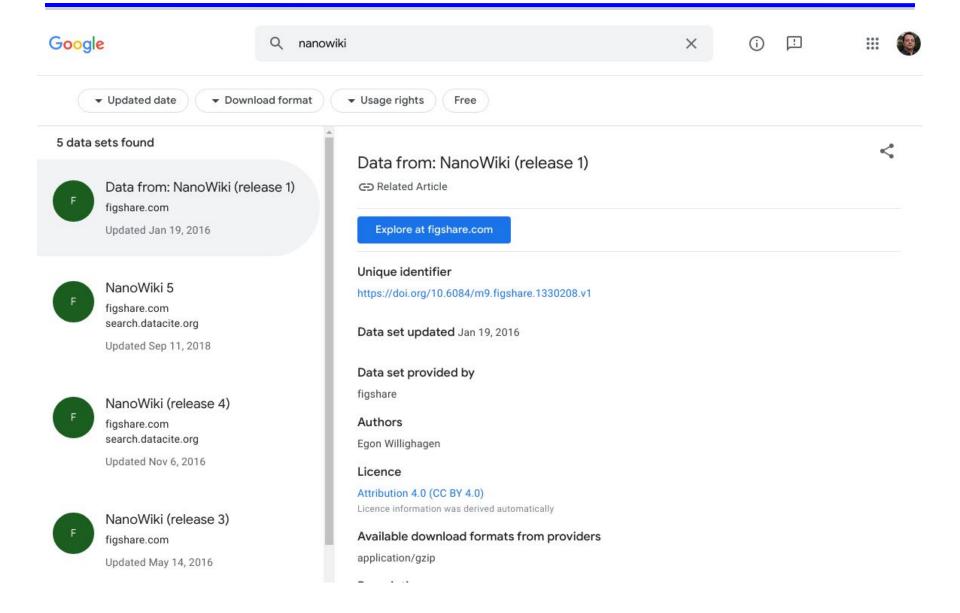
© Cite this: ACS Nano 2019, 13, 2, 1583-1594 Publication Date: January 28, 2019 ~ https://doi.org/10.1021/acsnano.8b07562 Copyright © 2019 American Chemical Society PARTICLE Views Altmetric Citations

4
3

LEARN ABOUT THESE METRICS

RIGHTS & PERMISSIONS

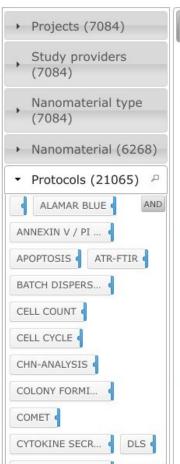
More Access Options

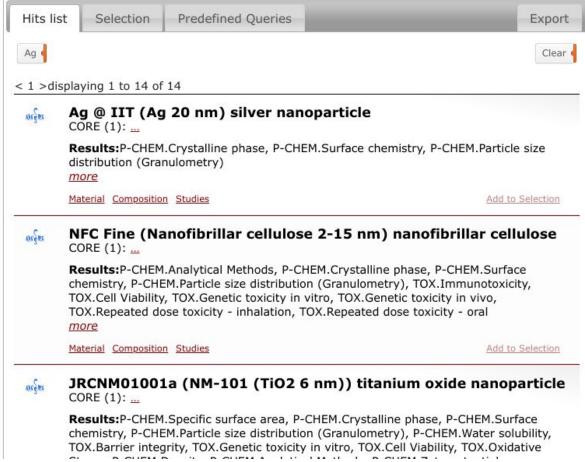

SUBJECTS: Coating materials, Assays, Toxicity Nanoparticles

Abstract

Developing predictive modeling frameworks of potential cytotoxicity of engineered nanoparticles is critical for environmental and health risk analysis. The complexity and the heterogeneity of available data on potential risks of nanoparticles, in addition to interdependency of relevant influential attributes, makes it challenging to develop a generalization of nanoparticle toxicity behavior. Lack of

Google Dataset Search

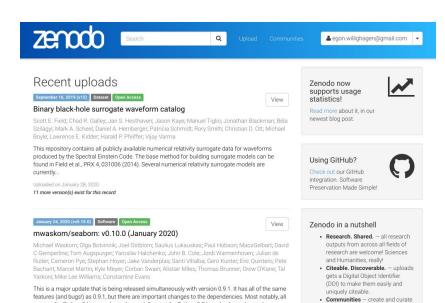




Home Search ▼ Summary Data collections ▼ Data templates ▼ Help ▼

NANOREG - eNanoMapper database

NANOREG specific license information | About



Easy way: Figshare, Zenodo

your own community for a workshop, project, department, journal, into which you can accept

support for Python 2 has now been dropped. Support for Python 3.5 has also been dropped...

9 more version(s) exist for this record

store, share, discover research
get more citations for all of the outputs of your academic research
over 5000 citations of figshare content to date

ALSO FOR INSTITUTIONS & PUBLISHERS

Advertising your data (#nanocommons)

Home

Overview

NSC Projects

International Cooperation

Outputs

Activities

Contact

O Search

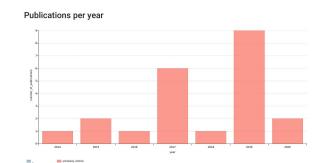
Public deliverables & publications

Sharing Knowledge

Home / Outputs / Public Deliverables & Publications

Overview

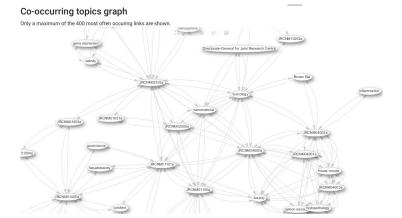
Wikidata / Scholia



JRC representative nanomaterial (Q47461491)


Recently published works on the topic same

Date	Work	Topics
2020-02-26	Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo	toxicology // JRCNM10202a // JRCNM10200a
2020-02-08	Assessment of strategies for the formation of stable suspensions of titanium dioxide nanoparticles in aqueous media suitable for the analysis of biological fluids	suspension // JRCNM10200a
2019-11-21	Applicability and Limitations in the Characterization of Poly-Dispersed Engineered Nanomaterials in Cell Media by Dynamic Light Scattering (DLS)	JRCNM01001a // JRCNM02102a // JRCNM02000a
2019-11-19	Assessment of nanomaterial-induced hepatotoxicity using a 3D human primary multi-cellular microtissue exposed repeatedly over 21 days - the suitability of the in vitro system as an in vivo surrogate	hepatotoxicity // JRCNM01005a // JRCNM01101a
2019-10-18	Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish	Danio rerio // cortisol // glucose metabolic process ,



Co-author graph

The 25 most prolific authors and some of their key co-authors.

器 生 章 計 量

DataCite

DOI Citation Formatter

Paste your DOI:		
10.6084/m9.figshare	e.7075214	
For example 10.1145/	2783446.2783605	
Select Formatting St	tyle:	
ара		-
Begin typing (e.g. Chi	cago or IEEE.) or use the drop down menu.	
Select Language and	d Country:	
en-US		-
	Format	
E. (2018). NanoWiki 5	[Data set]. https://doi.org/10.6084/M9.FIGSHARE.707	5214
	Copy to clipboard	
Do y	you want to integrate this service? Check the Documen	ntation

DOI Registration Agencies

Willighagen,

BioSchemas 4 custom databases

Examples 🖟

Property	Expected Type	Description	CD	Controlled Vocabulary	Example
Marginality: Minimum.					
description	Text	Schema: A description of the item. Bioschemas: A short summary describing a dataset.	ONE		43
identifier	PropertyValue Text URL	Schema: The identifier property represents any kind of identifier for any kind of Thing, such as ISBNs, GTIN codes, UUIDs etc. Schema.org provides dedicated properties for representing many of these, either as textual strings or as URL (URI) links. See background notes for more details.	MANY		d)
keywords	Text	Schema: Keywords or tags used to describe this content. Multiple entries in a keywords list are typically delimited by commas. Bioschemas: These keywords provide a summary of the dataset.	MANY		d)
name	Text	Schema: The name of the item.	ONE		45

Conclusion

- Data is an essential research output
- Sharing your data increases the impact of your work
- Making data available is easy
 - If using Figshare or Zenodo (or similar)
- Metadata can be indexed
- Data can be indexed

