

## **VILLAS4ERIGrid**

Geographically Distributed Real-time Simulation and PHIL between TU Delft, DTU Risø, Lyngby and RWTH Aachen

Steffen Vogel\*, Vetrivel Subramaniam Rajkumar<sup>†</sup>, Ha Thi Nguyen<sup>‡</sup>, Marija Stevic\*, Rishabh Bhandia<sup>†</sup>, Kai Heussen<sup>‡</sup>, Peter Palensky<sup>†</sup> and Antonello Monti\*

\*Institute for Automation of Complex Power Systems RWTH Aachen University Aachen, Germany {stvogel, mstevic, amonti}@eonerc.rwth-aachen.de †Department of Electrical Sustainable Energy
Delft University of Technology
Delft, The Netherlands
v.subramaniamrajkumar@student.tudelft.nl
{r.bhandia, p.palensky}@tudelft.nl

<sup>‡</sup>Department of Electrical Engineering Technical University of Denmark 2800 Kgs Lyngby, Denmark {thangu, kh}@elektro.dtu.dk





## Speaker / User Group



## ■ Guests:

- **■** Steffen Vogel (RWTH)
- Marija Stevic (RWTH)

#### ■ Hosts:

- Kai Heussen (DTU)
- Ha Thi Ngyuen (DTU)
- Vetrivel Subramaniam Rajkuma (TUD)
- Rishabh Bhandia (TUD)







## **Transnational Access Exchanges**

- ERIGrid Transnational Access Exchange(s)
  - May 2019: TU Delft
    - = Improvements to the Co-simulation Interface for Geographically Distributed Real-time Simulation, IECON 2019





- October 2019: DTU Denmark
  - = Distributed PHIL with Quasi Stationary Back-to-Back Converter
  - = Energy Based Metric (EBM) for error quantification



#### Inbetween

- MariNet2 Transnational Access Exchange
  - **=** August 2019

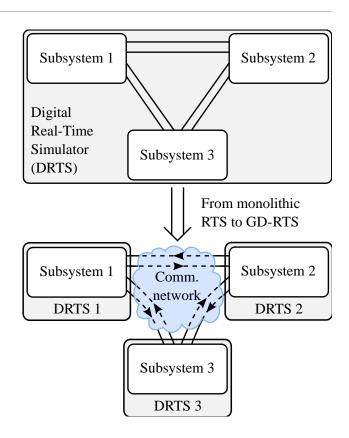








# 1/ TU Delft


Improvements to the Co-simulation Interface for Geographically Distributed Real-time Simulation

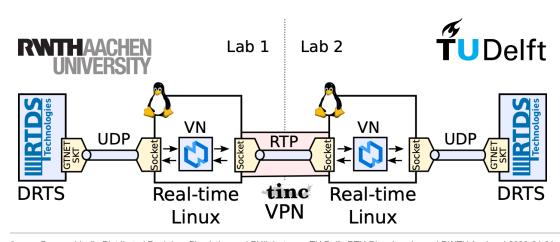




## **Geographically Distributed Real-time Simulation (GD-RTS)**

- A single digital real-time simulation spanning multiple laboratories
  - Globally or
  - **=** on Campus
- Motivation
  - **Large-scale** system-level simulations
  - Exchange of Knowledge, Human- and Hardware Resources
  - Overcome constraints caused by data confidentiality








# **System Architecture**

### ■2 Labs:

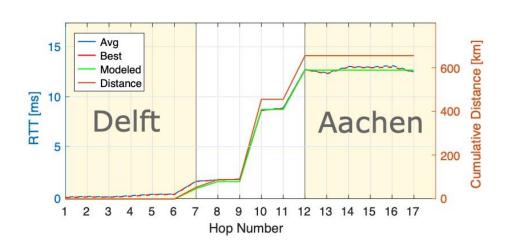
- **=** 2 RTDS Simulators
- **=** 2 VILLASnode Gateways
- Decentral / Fully-meshed VPN for optimal point-to-point connection with lowest latency

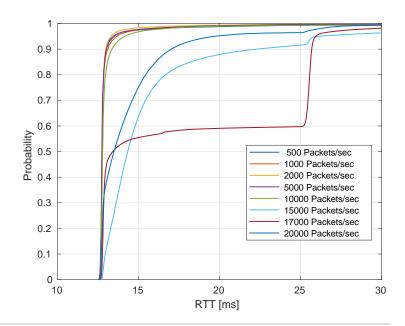









## **Network Connectivity**

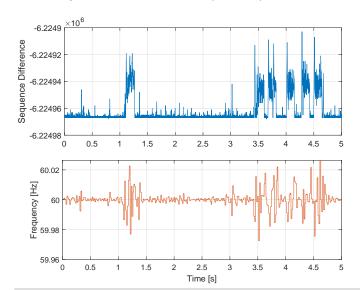

- National Research and Education Networks (NRENs)
  - **■** DFN, SURFnet, GÉANT

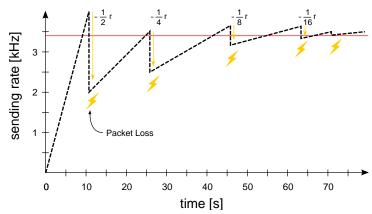
■ Mean Round-trip time: 12 ms

■ Routing hops: 13

■ Sending rate:  $\leq 10 \ kPkt/s$ 





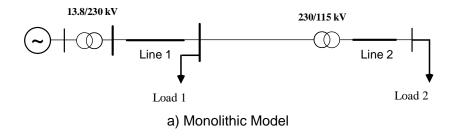


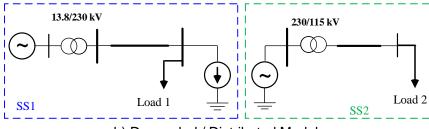

## Real-time Transport Protocol (RTP)

- Different co-sim links vary significantly in quality of serivce (QoS)
- Adaptive adjustment of communication parameters is helpful
- Additive Increase –Multiplicate Decrease (AIMD)






- Discontinuties in sending rate cause frequency disturbances in simulation
- Only useful for initial estimation, not during live simulation



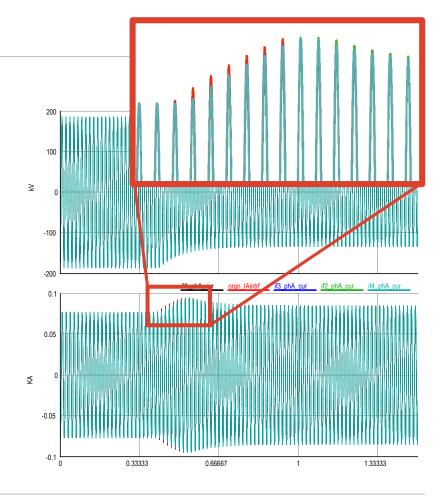



## **Test Scenario & Methodology**

- Simple scenario helped debugging and understanding
- 3 Stages: monolithic, decoupled, distributed





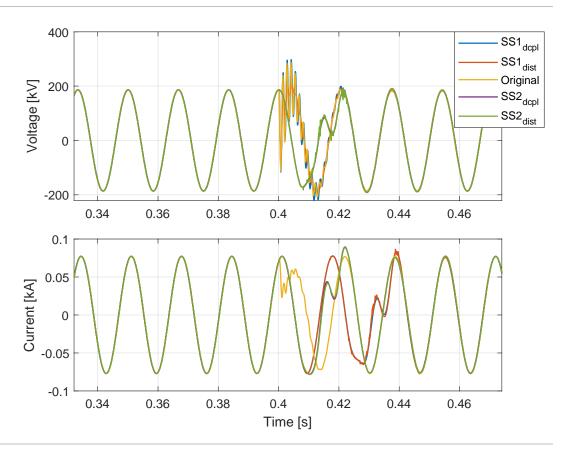

b) Decoupled / Distributed Model





### Simulation Results: Instantaneous V/I

- Test cases:
  - Voltage Source in SS1 (left)
  - Change of magnitude, freuquency, phase
- No error in steady-state
- Delayed update of
  - Voltage magnitude SS1 (1/2 RTT)
  - Current magnitude on left side (1 RTT)

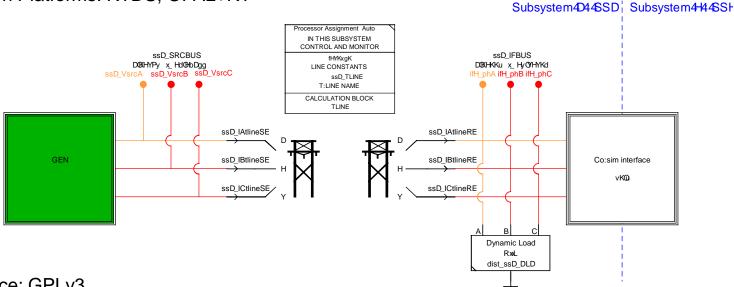







### **Limits of GD-RTS**

■ Phase jump of  $\pi$  of  $V_{src}$ 








# Co-Simulation Interface Library: "CoSiF

- Re-usable library blocks for different:
  - $\equiv$  Interface Algorithms: Dynamic Phasors, PQ +  $V_{rms}$ , f,  $\phi$
  - Simulation Platforms: RTDS, OPAL+RT



Open Source: GPLv3

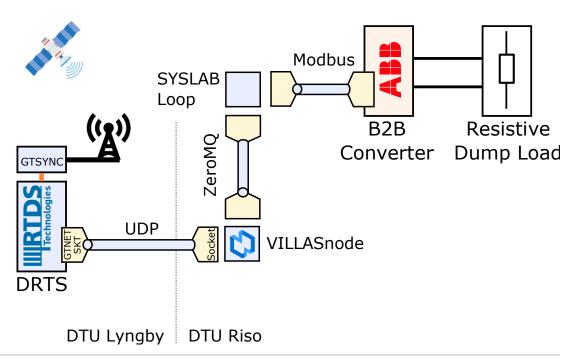
https://fein-aachen.org/projects/cosif/







# 2/ DTU Denmark


Distributed PHIL with Quasi Stationary B2B Converter

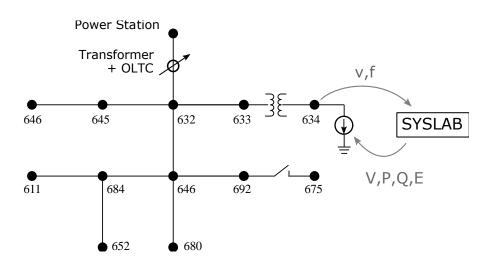




## Setup

- Distributed across DTU Lyngby and Riso Campus
- Time-stamped measurements via GTSYNC (GPS) and NTP
- Separate SYSLAB Loop for interfacing Modbus Converter
- Security concerns

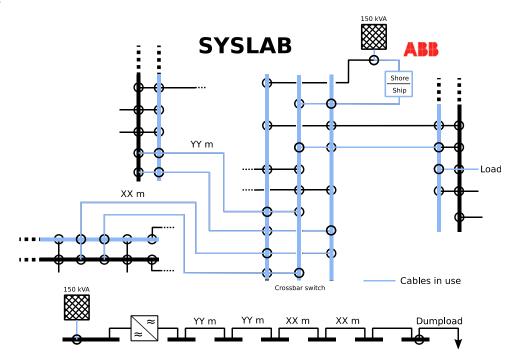







### **DRTS Simulation**

- RTDS with GTNET & GTSYNC
- IEEE 13-bus Distribution Grid Benchmark
  - **■** Balanced Loads
- SYSLAB PCC at Node 634


- Voltage Control via OLTC
  - Triggered via change of setpoint of dump load



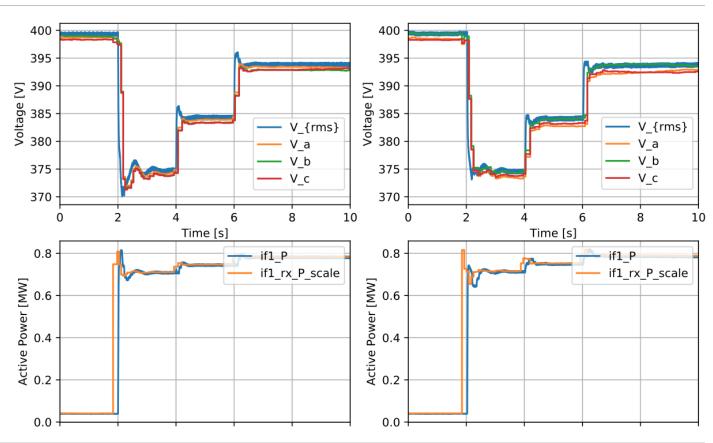


## **SYSLAB Configuration**

- Simplet setup with ABB Ship-to-Shore converter
- All Lines of SYSLAB are connected in series
- Resistive Dump Load
- Scaling of current injections into simulation





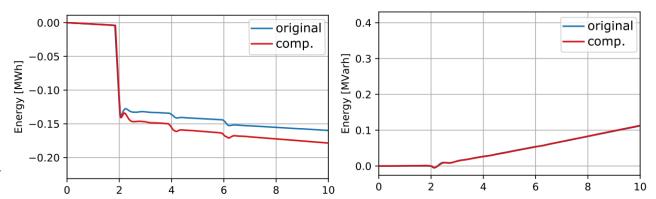



### Results /1

■ Tap-Changer Operatio

■ Left: Original

■ Right: Compensated








## Results /2: Energy Balance

- Energy (Im-) Balance between both ports of the interface
- Compensated case shows even larger error
  - Caused by unsynchronized measurements, random factor...







#### **Contributions & Conclusion**

#### Contributions

- 1. PoC of IETF Real-Time Transport Protocol (RTP) for streaming simulation data
- 2. CoSiF A reusable library for distributed real-time simulation
  - 1. Improved calculation of Dynamic Phasor Coefficients by moving window average
  - 2. Fidelity Improvements & Bug Fixes
- GD-RTS Simulation Infrastructure for ERIGrid II: DTU, TUD, SINTEF & RWTH

#### Conclusions

- Internet routing is critical for GD-RTS and can often be improved
- Sending rate adapation during a GD-RTS should be avoided
  - But good for tuning parameters upfront
- Time-synchronized measurements are crucial for distributed PHIL
  - = Compensation requires accurate measurements





#### **Lessons Learned**

- DTU's SYSLAB is a great and versatile environment!
- Automation was really useful

- We tried to cover too many topics in a single TA
  - Tri-lateral TAs are nice for collaboration but should target a single objective
  - We actually worked on separate topics
- Future Plans
  - More tests with off-nominal frequencies at the interface
  - FPGA / PCIe-based DRTS interfaces
  - Improved measurements for distributed PHIL





## **Acknowledgements**

- TU Delft
  - Prof. Palensky
  - Rishabh Bhandia
- DTU Denmark
  - Prof. Kai Heussen
- Funding
  - ≡ ERIGrid H2020
  - Urban Energy Lab 4.0 EFRE.NRW
  - RESERVE H2020
- Software Development / Distribution
  - **■** Fein Aachen e.V.





EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung



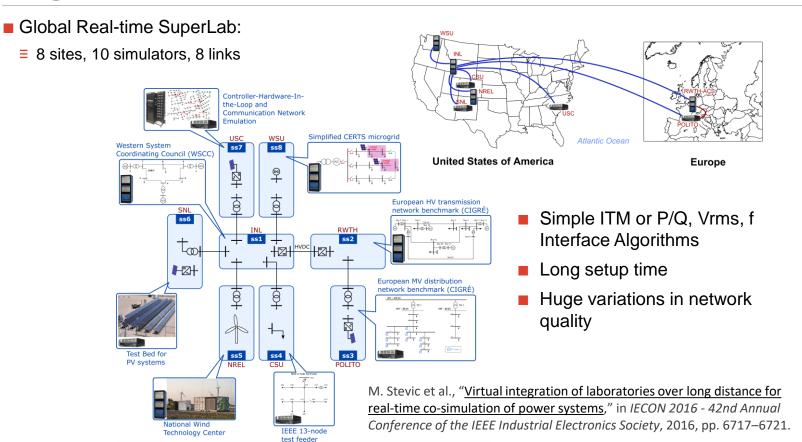










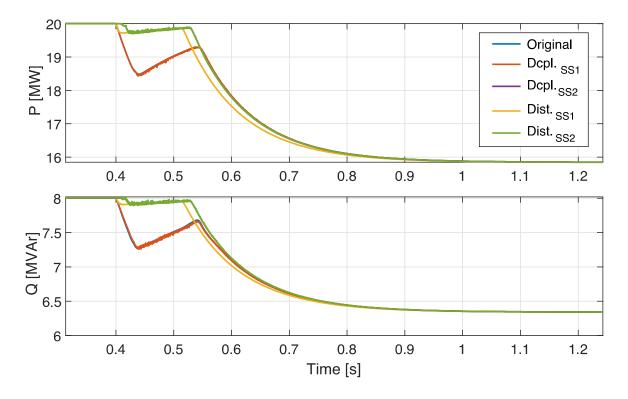

### Contact

E.ON Energy Research Center Mathieustraße 10 52074 Aachen Germany Steffen Vogel T +49 241 80 49577 stvogel@eonerc.rwth-aachen.de https://www.eonerc.rwth-aachen.de





## **Background / Motivation**








#### Simulation Results: P/Q RMS

■ Change of source magnitude in SS1 (left side)





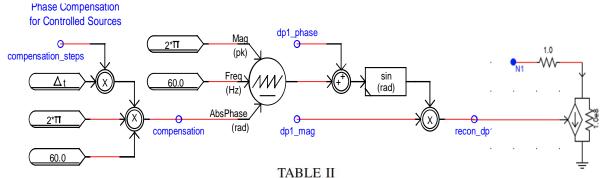


## **Fidelity Improvements I**

- Mismatch in DFT window length for 60 Hz systems
- Fundamental period of 60 Hz is not evenly dividable by a  $T_s = 50 \,\mu s$  time-step
- Optimal Simulation Timestep:  $T_s = (1/f_0)/334 \approx 49,9 \; \mu s$

TABLE I IMPACT OF THE DFT WINDOW LENGTH ON INTERFACE QUANTITIES.

|            | DET w | indow       | Interface quantity |       |                 |       |
|------------|-------|-------------|--------------------|-------|-----------------|-------|
| DFT window |       |             | $V_{A,rms}$ [kV]   |       | $I_{A,rms}$ [A] |       |
| $T_s$ [µs] | N     | length [ms] | SS1                | SS2   | SS1             | SS2   |
| 50         | 333   | 16.65       | 136.7              | 136.0 | 51.64           | 51.9  |
| 50         | 334   | 16.7        | 136.6              | 137.9 | 52.56           | 52.05 |
| 49.9       | 334   | 16.6666     | 136.6              | 136.6 | 52.56           | 52.56 |


■ Uneven time-steps might cause other issues in relation to synchronization of simulators

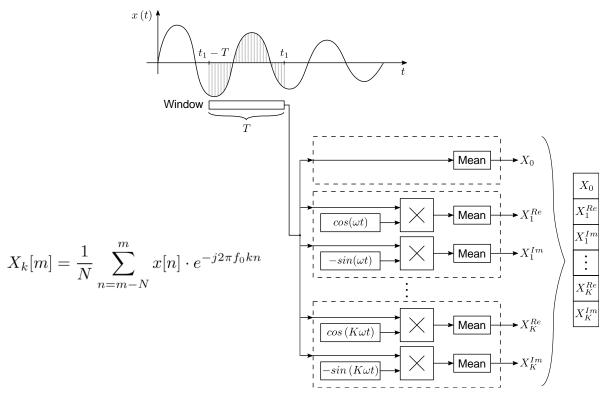




## Fidelity Improvements II

- Mismatch in active / reactive power due to internal time-step delays between network solution and control systems of DRTS
- Phase compensation for controlled sources required




IMPACT OF PHASE COMPENSATION OF SOURCE SIGNALS ON STEADY-STATE POWER BALANCE AT THE CO-SIMULATION INTERFACE

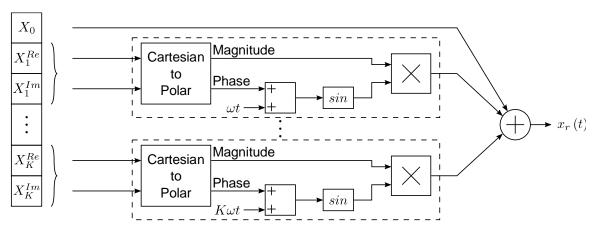
| $n_{SS1}$ | $n_{SS2}$ | $P_{SS1}$ | $Q_{SS1}$ | $P_{SS2}$ | $Q_{SS2}$ | S     | Vrms  |
|-----------|-----------|-----------|-----------|-----------|-----------|-------|-------|
| $[T_s]$   | $[T_s]$   | [MW]      | [MVar]    | [MW]      | [MVar]    | [MVA] | [kV]  |
| 0         | 0         | 19.16     | 9.846     | 20.0      | 8.003     | 21.54 | 227.7 |
| 1         | 1         | 19.52     | 9.118     | 20.0      | 8.003     | 21.54 | 227.9 |
| 2         | 1         | 19.69     | 8.749     | 20.0      | 8.003     | 21.54 | 227.9 |
| 3         | 2         | 20.0      | 8.003     | 20.0      | 8.003     | 21.54 | 228.1 |





## **Dynamic Phasor Interface Algorithm (DP-IA)**




Calculation of Dynamic Phasor Coefficients from Time-domain Signals.





# **Dynamic Phasor Interface Algorithm (DP-IA)**

$$x[n] = \sum_{k=0}^{K} X_k[n] \cdot e^{j(2\pi f_0 k n + \varphi_c)}$$



Reconstruction of Time-domain Signals from Dynamic Phasor coefficients.



