

HOLISTICA

Application of OLTC Transformer and Distributed Generation for Voltage Control on Low Voltage Distribution Networks

Alena Ulasenka (Ormazabal Cooperate Technology)

Project Overview

Topic: Holistic Optimization of Losses using an Improved Synergy of Technologies under an Innovative Coordination

Algorithm

Hosting facility: SYSLAB of the Technical University of Denmark (DTU)

Duration: 09.09.2019 – 20.09.2019

Project Motivation

Over-/ Under voltages

Virtual ERIGrid Final Conference

Theoretical approach

Key Performance Indicators:

Reduce Power Losses

Increase Hosting Capacity

Improve Grid Stability by reducing the number of OLTC operations

DTU's SYSLAB facilities

Laboratory setup: Back-to-Back connection

Laboratory scenarios and validation test:

- Rural
- Urban
- Flexible

Control strategies:

- No Control
- T-control
- Q-control
- QT-control

Single line diagram: RURAL

Single line diagram: URBAN

Single line diagram: FLEXIBLE

Virtual ERIGrid Final Conference

Load-Generation cases

P gen [kW] / σ	0 1.5
BAT	12
DIESEL	24
B2B	26
Total	50

Load [kW] /σ	0 1.5
Dumpload	18
Mobile load	15
Total	33

Q gen [kVar] / σ	0 1.5
PV 319	10
PV 117	10
PV 715	10
BAT	10
Total	40

Validation test: real-time measurements

Results of validation test

Control strategy	HC (%)	Losses reduction (%)
NC	0.00	0.00
Т	61.65	2.56
Q	63.27	6.31
QT	61.07	9.35

- The efficiency of the electrical grid can be improved by 9.35 %.
- By an application of the OLTC transformer the **Hosting Capacity** can be **increased up to 61.65%.**
- Decrease of voltage excursions.

Benefits from the exchange/lessons learned

TA provided us with a great the **opportunity to speed-up the time-to-market of the innovative equipment and solutions** by testing new developments in the field:

- The technical viability of smart distribution transformer with OLTC with implemented advanced control algorithms was successfully assessed in close-to-real environment.
- The proposed solution contributes to **increase grid flexibility** and **reliability**, particularly when integrating high share of renewables
- An insightful information about unexpected secondary benefits for DSOs that it can provide.

Thank you for attention!

Contact information:

Alena Ulasenka Research Engineer Ormazabal Corporate Technology aul@ormazabal.com

