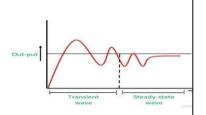


Joint Research Activity 2: Co-Simulation Based Assessment Methods

1st April 2020 Peter Palensky, TU Delft ERIGrid Final General Assembly Vienna, Austria


Contents

- Motivation
- Vision & Challenges
- JRA 2 Approach
- Co-simulation assessment for continuous-time RMS studies (TC 1)
- Combined Hardware and Software Simulation (TC 2)
- Signal-based Synchronization between Simulators (TC 3)
- Major Achievements
- Deliverables & Dissemination

Motivation

Physics

continuous process

energy generation, transport, distribution, consumption, etc.

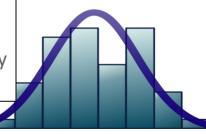
behavioral process

agents, game theory, market players, etc.

yber-physical

energy system

Information Technology


discrete process

controllers, communication infrastructure, software, etc.

Stochastics

statistical process

weather, aggregate of many individual elements, etc.

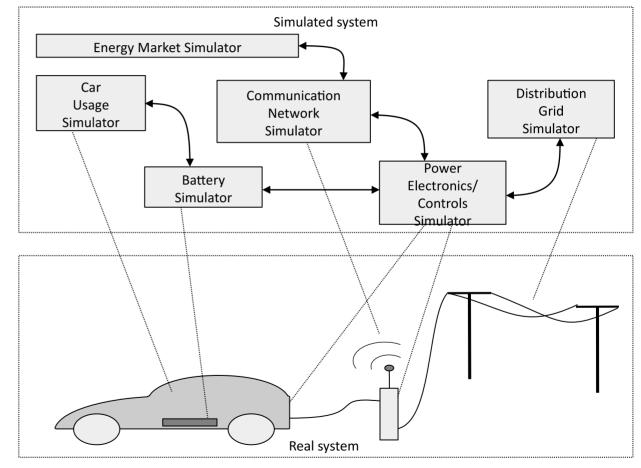
Chapter 3.1 of European guide to power system testing

Analysis options for CPES

Analytical → too complex

Real component testing → live patient

Laboratory testing → System under Test limited size

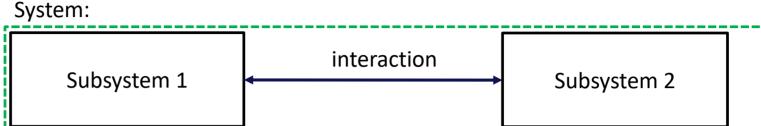


(Real-Time-)Simulation, maybe with Hardware-in-the-loop → which software?

Multi-disciplinary simulation

Coupling Simulators for a connected world

"The" solution: co-simulations


Use specialised tools
Standardised interfaces
Good accuracy
Good performance

Implementation Scalability aaS

© The ERIGrid Consortium

EU H2020 Programme GA No. 654113

Monolithic simulation:

general purpose simulator (Matlab / Modelica implementations)

Co-simulation:

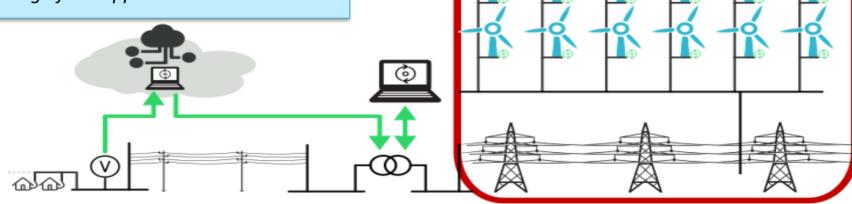
JRA2 Approach

Development of 3 test cases to assess the different smart grid behavioral phenomena by means of **co-simulation**:

- Test Case 1 (TC1): to investigate the *cyclic dependencies* between continuous simulators
- Test Case 2 (TC 2): to investigate combined hardware and software simulation
- Test Case 3 (TC 3): to investigate signal-based synchronisation between simulators

To supplement the co-simulation framework, further research was conducted for:

- Development of relevant coupling tools and interfaces for different simulation platforms
- Development of model libraries to cover the state-of-the-art of smart grid technology

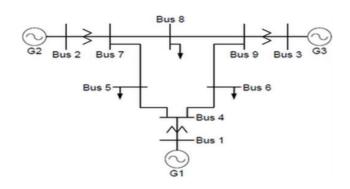

Co-simulation assessment for continuous-time power system studies (TC1)

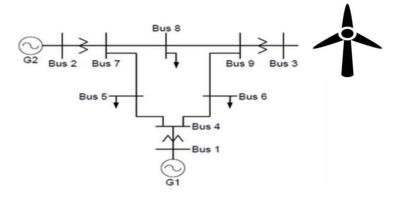
Chapter 3.5 of European guide to power system testing

Grid+wind park & FRT

- Strong mutual (fast dynamics) coupling between grid simulators / cyclic dependency
- Re-use of validated models
- Scaling of the approach studied

FRT: Fault-Ride-Through




Models and test system rationale

grid model that exhibits the tight coupling between its subsystems and allows rapid prototyping

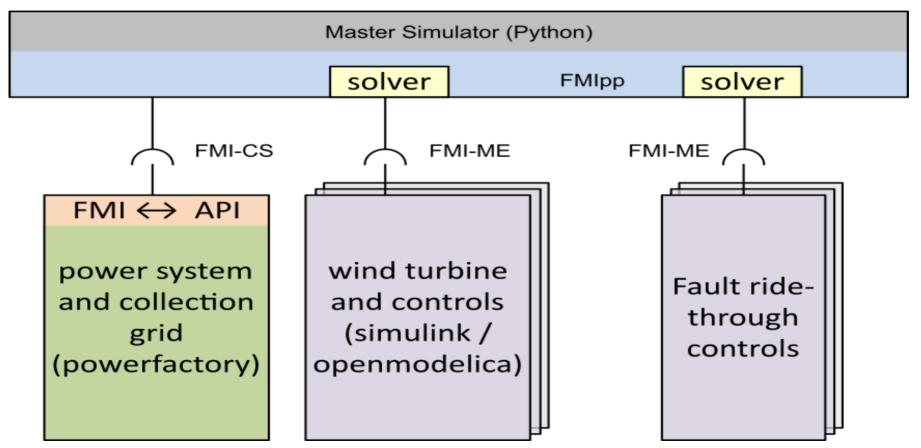
- IEEE 9-bus system
- Commonly used for systematic analysis of transient stability concepts
- G3 replaced by a type IV wind turbine

- Wind turbine model according to IEC 61400-27-1
 - Type 4 wind turbines: grid interaction dictated by control scheme
 - dc-side, aerodynamic part, mechanical part abstracted away
 - Simplified representation for stability studies

System under Test

Small At, Simulink RMS, PowerFactory FRT controller Kp,limits Bus 8 Normal Bus 9 Bus 7 operation controls Bus 5-Bus 6 ld, lq Bus 4 Bus 1 Static generator model Wind turbine: FRT and vector controllers **IEEE 9-bus**

= co-simulation



■ FRT fault ride-trough

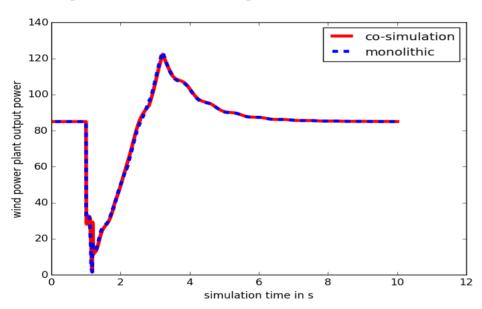
= monolithic

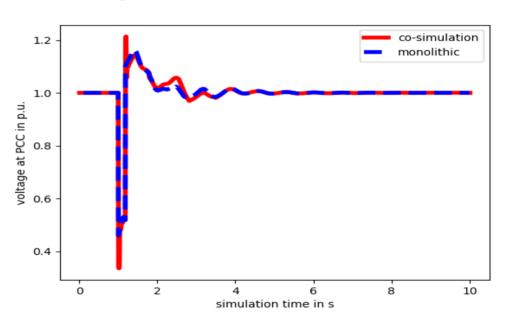
Co-simulation experiment setup

Co-simulation Testing

Test Name	Platform	Purpose	Modifications
Monolithic	PowerFactory	Reference simulation	Gen. G3 in IEEE 9 Bus replaced by WPP
Small Scale Co- Simulation	PF & Matlab & FMI++	Simple co-sim for assessment	No model modifications
Large Scale Co- Simulation	PF & Matlab & FMI++	Co-sim performance check for complex situations and numerically bigger systems	WPP divided in 32 smaller WTGs to have realistic representation. Similarly 32 added converter and FRT controllers. PF: powerfactory

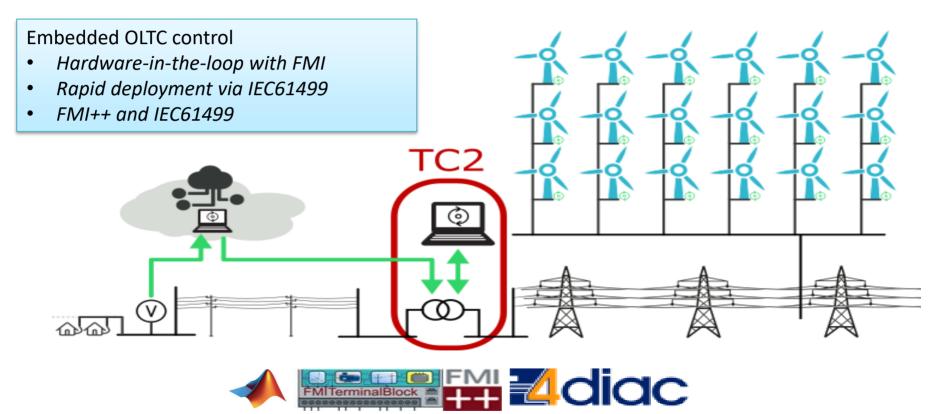
WPP: wind power plant


WTG: wind turbine generator


Results co-simulation vs monolithic

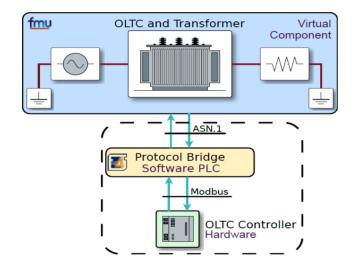
Output Power Comparison at PCC*

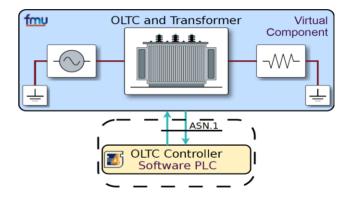
Voltage Comparison at PCC*



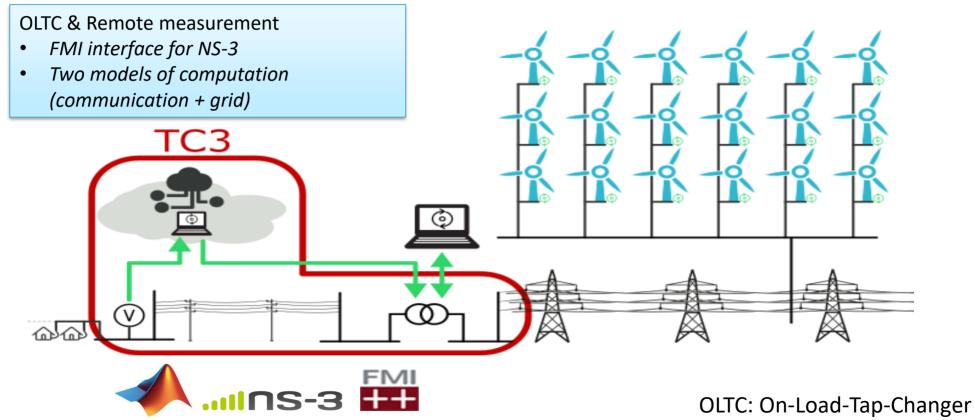
*PCC: Point of Common Coupling Sync step size 10ms

Combined Hardware and Software Simulation (TC-2)





Cases addressed



Controller emulated on an Arduino, Communication through Modbus Controller + communication emulated by 4DIAC

Signal-based Synchronization between Simulators (TC 3)

Challenges of FMI-based co-simulation of communication network models

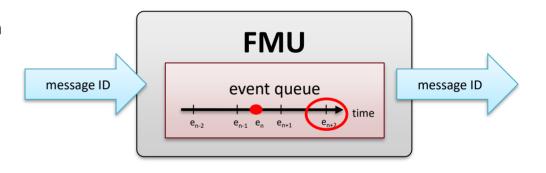
- co-simulation of physical systems:
 - exchange of information that corresponds directly to physical properties (voltages levels, temperatures, etc.)
 - send values of associated model variables from one simulator to another
- communication systems:
 - do not just exchange values, but messages
 - transmission with the help of protocols (metadata, data formats)
 - communication network simulators provide dedicated functionality to handle the details of data transmission protocols
- challenges regarding FMI
 - provide no functionality regarding message transmission
 - → details have to be hidden behind FMI-compliant co-simulation interface of the simulator
 - limited support for event-based co-simulation
 - → no support for event detection or event prediction

Proposed FMI-compliant approach: Data exchange with message-based simulators

Details of data transmission protocols must be *hidden behind the FMI-compliant interface*:

- message IDs
 - transmitted data is associated with a unique message ID
 - message ID is being forwarded to the simulator
- mock-up messages
 - simulator generates an internal mock-up message associated with the message ID
 - network model is executed with the mock-up message as stand-in replacement for the original data
 - no need to consider the translation of the original data into a proper format for transmission
 - once the mock-up message has propagated through the network model, its message ID is passed back to the co-simulation framework
- absence of messages
 - based on the concept of unique message IDs, a special value represents the absence of input

Proposed FMI-compliant approach: Event handling for FMUs for Co-Simulation (1/2)

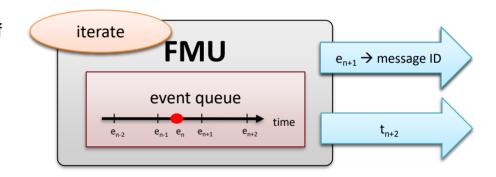

two types of events are of special interest:

input events

- mark the arrival of new messages at an input of the simulated communication network
- value of an associated FMU input variable changes from 0 to the corresponding message ID

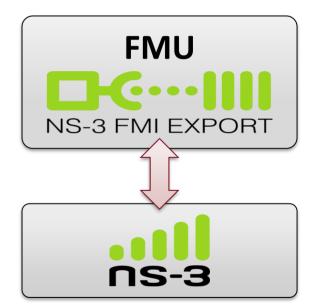
output events

- marks the arrival of a message at an end node in the communication network simulator
- corresponding output message ID as the value of an associated FMU output


FMU: Functional Mock-up Unit

Proposed FMI-compliant approach: Event handling for FMUs for Co-Simulation (2/2)

- FMI specification does not (yet) support the handling of (internal) events for FMUs for Co-Simulation
- "quick-and-dirty" solution → demonstrate feasibility of approach, but do not put too much focus on specific proposal for FMI extension
 - internal event prediction
 - FMUs have to define a dedicated output variable for event prediction
 - value always corresponds to the time of the next internal event
 - event processing
 - use iterations (simulation steps with step size equal to zero) to trigger the FMU to process events


FMI-support for the ns-3 network simulator

- ns-3 module fmi-export
 - creates an FMU for Co-Simulation from a user-defined ns-3 script
 - implements a tool coupling mechanism
 - control the execution of the ns-3 simulator
 - establish a connection for data exchange during run-time
 - interaction with ns-3 is limited to the repeated execution of the same ns-3 script
 - call the FMU's step method → ns-3 executes the same model
 - use different random seeds each time → produce different outputs
- user has to implement a dedicated class → class SimpleEventQueueFMUBase
 - provides functions for declaring input and output variables
 - provides functions for adding events to internal event queue

Main achievements

- Major steps towards standardised co-simulation
- Further development of FMI++ library and its Python wrapper
- FMI++ adapters for
 - Powerfactory
 - ns-3
 - PSCAD
 - Matlab
- Scalability of co-simulations demonstrated using
 - Holistic testing approach

Chapter 3 of European guide to power system testing

Conclusions and lessons learned

- Co-simulation aids in assessing smart grid behaviour in a multi-disciplinary setting
- JRA2 showcased the capabilities of standardised co-simulation for smart grids:
 - Functional mock-up interface
 - Mosaik
 - FMI++
- FMI adapters developed for PowerFactory, Matlab, ns-3
- Programming skills needed running co-simulations as in ERIGrid: applicability shall be improved by automation and FMU coupling as a service.