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Abstract MALDIquant and associated R packages provide a versatile and completely
free open-source platform for analyzing 2D mass spectrometry data as generated for
instance by MALDI and SELDI instruments. We first describe the various methods
and algorithms available in MALDIquant. Subsequently, we illustrate a typical
analysis workflow using MALDIquant by investigating an experimental cancer data
set, starting from raw mass spectrometry measurements and ending at multivariate
classification.

11.1 Introduction
Mass Spectrometry (MS), a high-throughput technology commonly used in pro-
teomics, enables the measurement of the abundance of proteins, metabolites, peptides
and amino acids in biological samples. The study of changes in protein expression
across subgroups of samples and through time provides valuable insights into cellular
mechanisms and offers a means to identify relevant biomarkers, e.g, to distinguish
among tissue types, or for predicting health status. In practice, however, there still
remain many analytic and computational challenges to be addressed, especially in
clinical diagnostics (Leichtle et al., 2013). Among these challenges the availability
of open and easy-to-extent processing and analysis software is highly important
(Aebersold and Mann, 2003; Lilley et al., 2011).

Here, we present MALDIquant (Gibb and Strimmer, 2012), a complete open-
source analysis pipeline for the R platform (R Core Team, 2015). In the first half of
this chapter we describe the methodology implemented and available in MALDIquant.
In the second half we illustrate the versatility of MALDIquant by application to an
experimental data set, showing, how raw intensity measurements are preprocessed
and how peaks relevant for a specific outcome can be identified.

1Please cite as: Gibb, S. and Strimmer, K. 2016. Mass spectrometry analysis using MALDIquant.
Chapter 11 in: Datta, S., and Mertens, B. (eds). 2016. Statistical Analysis of Proteomics, Metabolomics,
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Springer, New York.
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Current documentation of specific version of MALDIquant can be found on
its homepage at http://strimmerlab.org/software/maldiquant/ where we
also provide instructions for installing the software. In addition, we provide a
number of example R scripts on the MALDIquant homepage. Direct download of
the MALDIquant software is also possible from the CRAN server at http://cran.
r-project.org/package=MALDIquant.

11.2 Methodology Available in MALDIquant

11.2.1 General Workflow

The purpose of MALDIquant is to provide a complete workflow to facilitate the
complex preprocessing tasks needed to convert raw two-dimensional MS data, as
generated for example by MALDI or SELDI instruments, into a matrix of feature
intensities required for high-level analysis. A typical workflow is depicted in fig-
ure 11.1.

Each analysis with MALDIquant consists of all or some of the following steps
(see also Norris et al. (2007); Morris et al. (2010) for related analysis pipelines):
First, the raw data is imported into the R environment. Subsequently, the data are
smoothed to remove noise and also transformed for variance stabilization. Next, to
remove chemical background noise a baseline correction is applied. This is followed
by a calibration step to allow comparison of intensity values across different baseline-
corrected spectra. As a next step a peak detection algorithm is employed to identify
potential features and also to reduce the dimensionality of the data. After peaks
have been identified a peak alignment procedure is applied as the mass-to-charge
ratios (m/zs) typically differ across different measurements and need to be adjusted
accordingly. Finally, after feature binning an intensity matrix is produced that can
be used as starting point for further statistical analysis, for example for variable
selection or classification.

In the following subsections we discuss each of these steps in more detail.

11.2.2 Import of Raw Data

A prerequisite of any analysis is to import the raw data into the R environment. Un-
fortunately, nearly every vendor of mass spectrometry machinery has its own native
and often proprietary data format. This complicates the exchange of experimental
data between laboratories, the use of analysis software and the comparison of results.
Fortunately, there is now much effort to create generic and open formats, such as
mzXML (Pedrioli et al., 2004) and its successor mzML (Martens et al., 2011) or
imzML (Schramm et al., 2012) for Mass Spectrometry Imaging (MSI) data. Never-
theless, the support of these formats is still limited and often conversion is needed to
get the data into a suitable format for subsequent analysis (Chambers et al., 2012).

http://strimmerlab.org/software/maldiquant/
http://cran.r-project.org/package=MALDIquant
http://cran.r-project.org/package=MALDIquant
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Figure 11.1: Preprocessing workflow for MS data using MALDIquantForeign and
MALDIquant.

Importing of raw data in MALDIquant is performed by its sister R package
MALDIquantForeign. It offers import routines for numerous native and public data
formats. In addition to the open XML formats (mzXML, mzML) it supports Ciphergen
XML, ASCII, CSV, NetCDF, and Bruker Daltonics *flex Series files. It can also read
MSI formats like imzML and ANALYZE 7.5 (Robb et al., 1989).

A very useful feature of MALDIquantForeign is that it reads and traverses whole
directory trees containing supported file formats so that simultaneous import of many
spectra is straightforward. Furthermore, MALDIquantForeign allows to import data
from remote resources so the spectral data can be read over an Internet connection
from a website or database.

After importing the raw spectra an important step is quality control. This includes
checking the mass range, the length of each spectra and also visual exploration
of spectra to find and remove potentially defective measurements. MALDIquant
provides functions to facilitate this often neglected task.

11.2.3 Intensity Transformation and Smoothing

The raw data obtained from mass spectrometry experiments are counts of ionized
molecules, with intensity values approximately following a Poisson distribution
(Sköld et al., 2007; Du et al., 2008). Consequently, the variance depends on the mean,
as mean and variance are identical for a Poisson distribution. However, by applying a
square root transformation ( f (x) =

√
x) we can convert the Poisson distributed data

to approximately normal data, with constant variance independent of mean, which
is an important requirement for many statistical tests (Purohit and Rocke, 2003). In
the preprocessing noise models other than the Poisson may be also assumed, which
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lead to different variance-stabilizing functions such as the logarithmic transformation
(Tibshirani et al., 2004; Coombes et al., 2005). These can be easily applied in
MALDIquant as well.

Subsequently, the transformed spectral data is smoothed to reduce small and
high-frequent variations and noise. For this purpose MALDIquant offers the moving
average smoother and the Savitzky-Golay-filter (Savitzky and Golay, 1964). The
latter is based on polynomial regressions in a moving window. In contrast to the
moving average, the Savitzky-Golay filter preserves the shape of the local maxima.

Note that both algorithms require the specification of window size, which accord-
ing to Bromba and Ziegler (1981) should be chosen to be smaller than twice the Full
Width at Half Maximum (FWHM) of the peaks.

11.2.4 Baseline Correction
The elevation of the intensity values in a typical Matrix-Assisted Laser Desorp-
tion/Ionization – Time-Of-Flight Mass Spectrometer (MALDI-TOF) spectrum is
called baseline and is caused by chemical noise such as matrix-effects and pollution.
It is recommended to remove these background effects to reduce their influence in
quantification of the peak intensities.

In the last few years many algorithms to adjust for the baseline have been
developed, ranging from simple methods like the subtraction of the absolute minimum
(Gammerman et al., 2008) or the moving minimum or median (Liu et al., 2010) to
more elaborate methods such as fitting a LOWESS curve, a spline or an exponential
function against the moving minima respectively median values (Tibshirani et al.,
2004; Williams et al., 2005; Li, 2005; Liu et al., 2009; He et al., 2011; House et al.,
2011). Other authors prefer morphological filters such as TopHat (Sauve and Speed,
2004), iterative methods as the Statistics-sensitive Non-linear Iterative Peak-clipping
algorithm (SNIP) (Ryan et al., 1988) or the convex hull approach (Liu et al., 2003).

Unfortunately, there is no automatic way to select among the available procedures
to find the baseline correction method that is most suitable for a given spectrum at
hand. Instead, it is recommended to investigate multiple baseline estimations by
visual inspection (Williams et al., 2005). As shown in Fig. 11.2 the algorithms can
indeed differ substantially.

MALDIquant provides three complex baseline correction algorithms that have
been selected for inclusion in MALDIquant because of their favorable properties,
such as respecting peak form and non-negativity of intensity values:

1. The convex hull algorithm (Andrew, 1979) doesn’t need a tuning parameter
and is often very effective to find the baseline. Unfortunately, for concave
matrix effects as common in MALDI-TOF spectra this algorithm cannot be
applied — see Fig. 11.2B (m/z≈ 1500Da).

2. TopHat (van Herk, 1992; Gil and Kimmel, 2002) is a morphological filter
combining a moving minimum (erosion filter) followed by a moving maximum
(dilation filter). In contrast to the convex hull approach it has an additional
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Figure 11.2: Estimated baselines for an raw MALDI-TOF spectrum from Fiedler
et al. (2009). The following algorithms were applied: (A) moving median, (B) convex
hull, (C) TopHat, (D) SNIP.

tuning parameter, the window size of the moving window, that controls the
smoothness of the estimated baseline. The narrower the window the more of
the baseline is removed but also of the peak heights. A wider window will
preserve the peak intensities and produce a smoother baseline but will also
cause some local background variation to remain (Fig. 11.2C).

3. The default baseline correction algorithm in MALDIquant is SNIP (Ryan et al.,
1988). Essentially, this is a local window-based algorithm in which a baseline
is reconstructed by replacing the intensities in a window by the mean of the
surrounding points, if the mean is smaller than the local intensity, with window
size decreasing iteratively starting from a specified upper limit (Morhác, 2009).

In addition to the above MALDIquant also supports the moving-median algorithm
(Fig. 11.2A) which is commonly used in the literature but may lead to negative
intensity values after baseline subtraction.

11.2.5 Intensity Calibration
The intensity values in mass spectrometry data represent the relative amount of
analytes, such as peptides. The measured intensity strongly depends on preanalytical
and environmental factors like sample collection, sample storing, room temperature,
air humidity, crystallization etc. (Baggerly et al., 2004; Leek et al., 2010; Leichtle
et al., 2013).
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Further confounders are introduced by so-called batch effects. These are system-
atical differences that hide the true biological effect and that are caused by different
experimental conditions, for instance a different preanalytical processing, measure-
ments on different days by different operators in different laboratories on different
devices (Hu et al., 2005; Leek et al., 2010; Gregori et al., 2012).

The systematic errors can be stronger than the real biological effect, and are
best minimized already at the stage of data acquisition by strictly adhering to a
standardized preanalytical and experimental protocol (Baggerly et al., 2004).

Note that unlike in other omics data, such as gene expression data, batch effects
and other systematic errors can be the source of shifts both on the x-axis (m/z
values) and on the y-axis (intensity values). Hence, to ensure the validity of any
subsequent statistical analysis, great care must be taken to address both of these shift
in preprocessing, by intensity calibration (often called normalization) and by peak
alignment/warping (see also 11.2.7).

Methods to calibrate peak intensities can be divided into local and global ap-
proaches (Meuleman et al., 2008). In a local calibration each single spectrum is
calibrated on its own, by matching a specified characteristic such as the median,
the mean or the Total Ion Current (TIC) (Callister et al., 2006; Meuleman et al.,
2008; Borgaonkar et al., 2010). In contrast, global approaches use information
across multiple spectra, e.g. employing linear regression normalization (Callister
et al., 2006), quantile normalization (Bolstad et al., 2003), or Probabilistic Quotient
Normalization (PQN) (Dieterle et al., 2006).

MALDIquant supports two local and one global method. Specifically, it im-
plements the TIC and median calibration as well as PQN. In PQN all spectra are
calibrated using the TIC calibration first. Subsequently, a median reference spectrum
is created and the intensities in all spectra are standardized using the reference spec-
trum and a spectrum-specific median is calculated for each spectrum. Finally, each
spectrum is rescaled by the median of the ratios of its intensity values and that of the
reference spectrum (Dieterle et al., 2006).

It has been shown that applying intensity calibration is an essential step in
preprocessing (Meuleman et al., 2008). Despite its simplicity TIC is often the best
choice, especially to account for effects between technical replicates (Shin and
Markey, 2006; Meuleman et al., 2008).

11.2.6 Peak Detection
Peak detection is a further step in processing mass spectrometry data, serving both to
identify potential relevant features as well as to reduce the dimensionality of the data.

MALDIquant provides the most commonly used peak detection method based
on finding local maxima (Yasui et al., 2003a; Tibshirani et al., 2004; Li, 2005;
Morris et al., 2005; Smith et al., 2006; Tracy et al., 2008). First a window is moved
across the spectra and local maxima are detected. Subsequently these local maxima
are compared against a noise baseline which is estimated by the Median Absolute
Deviation (MAD) or alternatively Friedman’s SuperSmoother (Friedman, 1984). If
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Figure 11.3: Detail view of a MALDI-TOF spectrum from Fiedler et al. (2009).
Local maxima are marked with points (red: rejected maxima, green: peaks). The
blue line represents the estimated noise baseline as estimated by MAD.

a local maximum is above a given Signal-to-Noise Ratio (SNR) it is considered a
peak, whereas local maxima below the SNR threshold are discarded (Fig 11.3).

Some authors advocate peak detection methods based on on wavelets (Du et al.,
2006; Lange et al., 2006). These methods are implemented in the Bioconductor
R packages MassSpecWavelet and xcms (Smith et al., 2006) and thus are readily
available if needed.

11.2.7 Peak Alignment
As already noted above in Section 11.2.5 not only the intensities but also the m/z
values differ across spectra, as result of the many possible sources of variation in the
acquisition of mass spectrometry data. Methods to recalibrate the m/z values of the
spectra are referred to as peak alignment or warping.

A simple approach is the Correlation Optimized Warping (COW) algorithm
(Veselkov et al., 2009; Morris et al., 2010; Wang et al., 2010). COW is based on
pairwise comparisons of spectra and maximizes the correlation to find an optimal
shift. The advantage of this approach is that correlation is fast to compute and
with the use of a reference spectrum the method is also applicable to simultaneous
alignment of multiple spectra. However, in actual data the location shifts are typically
of a nonlinear nature (He et al., 2011), thus methods based on global linear shifts will
often be ineffective in achieving an optimal alignment. A possible workaround is to
divide the spectrum into several parts and perform local linear alignment instead.
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An alternative, and much more flexible approach, is Dynamic Time Warping
(DTW) which is based on dynamic programming (Torgrip et al., 2003; Toppoo et al.,
2008; Clifford et al., 2009; Kim et al., 2011). DTW is a pairwise alignment approach
that is guaranteed to find the optimal alignment by comparing each point in the first
spectrum to every other point in the second spectrum, and optimizing a distance score.
Dynamic programming techniques are used to substantially shortcut computational
time by means of an underlying decision tree (e.g. Sakoe and Chiba, 1978). Still,
DTW is a computationally very expensive algorithm that also requires substantial
computer memory, especially for multiple alignment.

As a compromise, recently the Parametric Time Warping (PTW) approach has
been suggested (Jeffries, 2005; Lin et al., 2005; Bloemberg et al., 2010; He et al.,
2011; Wehrens et al., 2015) where a polynomial functions is used to stretch or shrink
a spectrum to increase the similarity between them. PTW is a very fast method that
is also able to correct for non-linear shifts. As in all previously mentioned method
a reference spectrum is necessary for multiple alignment. Note that the use of a
reference spectrum requires prior calibration of the intensity values (Smith et al.,
2013).

Finally, another simple strategy to align peaks is based on clustering respectively
creation of bins of similar m/z values (Yasui et al., 2003b; Tibshirani et al., 2004;
Tracy et al., 2008). This is a fast and easy to implement approach, and in contrast
to DTW, COW and PTW it offers the possibility to align all spectra simultaneously.
However, the clustering approach is valid only when there are relatively small shifts
around the true peak position, hence this approach is only applicable if there are only
mild distortions in the m/z values.

In MALDIquant we use nonlinear warping of peaks (He et al., 2011; Wehrens
et al., 2015). First we align the m/z values of the peaks using PTW and subsequently
we employ binning to identify common peak positions across spectra. Note that in
contrast to the standard version of PTW we work on peak level rather than on the
whole spectrum.

Our peak alignment algorithm in MALDIquant starts by looking for stable peaks,
which are defined as high peaks in defined, coarse m/z ranges that are present in most
spectra. The m/z of the peaks is averaged and used as reference peak list (also known
as anchor or landmark peaks — see Wang et al. (2010). Next, MALDIquant computes
a LOcally WEighted Scatterplot Smoothing (LOWESS) curve or polynomial-based
function to warp the peaks of each spectra against the reference peaks (Fig. 11.4).
As not all reference peaks are found in each spectrum, the number of matched peaks
out of all reference peaks is reported by MALDIquant for information.

Due to using the peaks instead of the whole spectral data the alignment approach
implemented in MALDIquant is much faster than traditional PTW, still the results
are comparable (Fig. 11.5). Another important advantage of our approach is that
only m/z values are used for calibration, which implies that our approach does not
require perfectly calibrated intensity values as is the case for full spectrum-based
alignment methods.

After performing alignment, peak positions of identical features across spectra
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Figure 11.4: Example warping function for four different peak lists. The x-axis
represents the peak position and the y-axis the difference from the reference peak
list. The red line shows the calculated warping function. The number of matched
peaks out of all reference peaks is also shown for each spectrum.

will become very similar but in general not numerically identical. Thus, as final step
grouping of m/z values into bins is needed. For this purpose MALDIquant uses the
following simple clustering algorithm: The m/z values are sorted in ascending order
and split recursively at the largest gap until all m/z values in the resulting bins are
from different samples and their individual m/z values are in a small user-defined
tolerance range around their mean. The latter becomes the new m/z value for all
corresponding peaks in the associated bin.

11.2.8 Subsequent Statistical Analysis

With peak alignment the task of MALDIquant to transform raw mass spectrometry
data into a matrix containing intensity measurements of potentially useful m/z values
is complete.

Subsequently, the resulting feature intensity matrix can be used with any preferred
univariate or multivariate analysis technique, e.g. to identify peaks that are useful
for predicting a desired outcome, or simply to rank features with regard to group
separation (e.g. Gibb and Strimmer, 2015).

In the following section we will describe in detail how such an analysis may be
conducted. For more examples please see the MALDIquant homepage.
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Figure 11.5: Comparison of two peaks (top row and bottom row) present in four
MALDI-TOF spectra from Fiedler et al. (2009). (A, D) unaligned; (B, E) warped
using the PTW algorithm; (C, F) warped using MALDIquant’s peak based PTW.

11.3 Case Study

11.3.1 Dataset

For illustration how to use MALDIquant in practical data analysis we now show in
detail how to use the software by application to the mass spectromety data published
in Fiedler et al. (2009). The aim of this study was to determine proteomic biomarkers
to discriminate patients with pancreas cancer from healthy persons. As part of their
study the authors collected serum samples of 40 patients with diagnosed pancreas
cancer as well as 40 healthy controls as training dataset. For each sample 4 technical
replicates were obtained. These 320 samples were processed following a standardized
protocol for serum peptidomics and subsequently analyzed in a linear MALDI-TOF
mass spectrometer. For details on the experimental setup we refer to the original
study.

Half of the patients and controls were recruited at the University Hospital Hei-
delberg and the University Hospital Leipzig. Due to the presence of strong batch
effects we restrict ourselves to the samples from Heidelberg, leading to a raw data set
containing 160 spectra for 40 probands, of which 20 were diagnosed with pancreatic
cancer and 20 are healthy controls. Fiedler et al. (2009) found marker peaks at m/z
3884 (double charged) and 7767 (single charged) and correspondingly suggested
Platelet Factor 4 (PF4) as potential marker, arguing that PF4 is down-regulated in
blood serum of patients with pancreatic cancer.
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11.3.2 Preparations
Prior to preprocessing the data we first need to set up our R environment by in-
stall the necessary packages, namely MALDIquant (Gibb and Strimmer, 2012),
MALDIquantForeign, sda and crossval, and also download the data set:

install.packages(c("MALDIquant", "MALDIquantForeign",
"sda", "crossval"))

## load packages
library("MALDIquant")

Loading required package: methods
This is MALDIquant version 1.13

Quantitative Analysis of Mass Spectrometry Data
See ’?MALDIquant’ for more information about this package.

library("MALDIquantForeign")

## download the raw spectra data (approx. 90 MB)
githubUrl <- paste0("https://raw.githubusercontent.com/sgibb/",

"MALDIquantExamples/master/inst/extdata/",
"fiedler2009/")

downloader::download(paste0(githubUrl, "spectra.tar.gz"),
"fiedler2009spectra.tar.gz")

## download metadata
downloader::download(paste0(githubUrl, "spectra_info.csv"),

"fiedler2009info.csv")

11.3.3 Import Raw Data and Quality Control
The first step in the analysis comprises importing the raw data into the R environment.
As the raw data set contains both the samples from Heidelberg and Leipzig we filter
out the samples from Leipzig, so that our final data set only contains the Heidelberg
patients and controls:

## import the spectra
spectra <- import("fiedler2009spectra.tar.gz", verbose=FALSE)

## import metadata
spectra.info <- read.csv("fiedler2009info.csv")

## keep data from Heidelberg
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isHeidelberg <- spectra.info$location == "heidelberg"

spectra <- spectra[isHeidelberg]
spectra.info <- spectra.info[isHeidelberg,]

After importing the raw data it is recommend to perform basic sanity checks
for quality control. Below, we test whether all spectra contain the same number
of data points, are not empty and are regular, i.e. whether the differences between
subsequent m/z values are constant:

table(lengths(spectra))

42388
160

any(sapply(spectra, isEmpty))

[1] FALSE

all(sapply(spectra, isRegular))

[1] TRUE

Next, we ensure that all spectra cover the same m/z range. The ‘trim‘ function
automatically determines a suitable common m/z range if it is called without any
additional arguments:

spectra <- trim(spectra)

Finally, it is advised to inspect the spectra visually to discover any obviously
distorted measurements. Here, for reasons of space we only plot a single spectrum:

plot(spectra[[47]], sub="")

11.3.4 Transformation and Smoothing
Next, we perform variance stabilization by applying the square root transformation
to the raw data, and subsequently use a 41 point Savitzky-Golay-Filter (Savitzky and
Golay, 1964) to smooth the spectra:

spectra <- transformIntensity(spectra, method="sqrt")

spectra <- smoothIntensity(spectra, method="SavitzkyGolay",
halfWindowSize=20)
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Figure 11.6: Example of a raw, uncalibrated mass spectrum.

11.3.5 Baseline Correction
In the next step we address the problem of matrix-effects and chemical noise that
result in an elevated baseline. In our analysis we use the SNIP algorithm (Ryan
et al., 1988) to estimate the baseline for each spectrum. Subsequently, the estimated
baseline is subtracted to yield baseline-adjusted spectra:

baseline <- estimateBaseline(spectra[[1]], method="SNIP",
iterations=150)

plot(spectra[[1]], sub="")
lines(baseline, col="red", lwd=2)

spectra <- removeBaseline(spectra, method="SNIP",
iterations=150)

plot(spectra[[1]], sub="")

11.3.6 Intensity Calibration and Alignment
After baseline correction we calibrate each spectrum by equalizing the TIC across
spectra. After normalizing the intensities we also need to adjust the mass values.
This is done by the peak based warping algorithm implemented in MALDIquant. In
the example code the function alignSpectra acts as a simple wrapper around more
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Figure 11.7: Baseline estimated using the SNIP method (red line).
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Figure 11.8: Mass spectrum after baseline correction.
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complicated procedures. For a finer control of the underlying procedures the function
determineWarpingFunctions may be used alternatively:

spectra <- calibrateIntensity(spectra, method="TIC")
spectra <- alignSpectra(spectra)

Next, we average the technical replicates before we search for peaks and update
our meta information accordingly:

avgSpectra <-
averageMassSpectra(spectra, labels=spectra.info$patientID)

avgSpectra.info <-
spectra.info[!duplicated(spectra.info$patientID), ]

11.3.7 Peak Detection and Computation of Intensity Matrix
Peak detection is the crucial step to identify features and to reduce the dimensionality
of the data. Before performing peak detection we first estimate the noise of selected
spectra to investigate suitable settings for the signal-to-noise ratio (SNR):

noise <- estimateNoise(avgSpectra[[1]])
plot(avgSpectra[[1]], xlim=c(4000, 5000), ylim=c(0, 0.002))
lines(noise, col="red") # SNR == 1
lines(noise[, 1], 2*noise[, 2], col="blue") # SNR == 2

In this case we decide to set a SNR of 2 (blue line) and then run the peak detection
algorithm:

peaks <- detectPeaks(avgSpectra, SNR=2, halfWindowSize=20)

plot(avgSpectra[[1]], xlim=c(4000, 5000), ylim=c(0, 0.002))
points(peaks[[1]], col="red", pch=4)

After the alignment the peak positions (mass) are very similar but not numerically
identical. Consequently, binning is required to achieve identity:

peaks <- binPeaks(peaks)

In peak detection we choose a very low signal-to-noise ratio to keep as many
features as possible. Using the information about class labels we can now filter out
false positive peaks, by removing peaks that appear in less than 50 % of all spectra
in each group:
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Figure 11.9: Thresholds based on signal to noise ratio (SNR): SNR=1 (red line) and
SNR=2 (blue line).
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Figure 11.10: Peaks indentified above SNR=2 threshold.



11.3. CASE STUDY 17

peaks <- filterPeaks(peaks, minFrequency=c(0.5, 0.5),
labels=avgSpectra.info$health,
mergeWhitelists=TRUE)

As final step in MALDIquant we create the feature intensity matrix, and for
convenience label the rows with the corresponding patient ID:

featureMatrix <- intensityMatrix(peaks, avgSpectra)
rownames(featureMatrix) <- avgSpectra.info$patientID
dim(featureMatrix)

[1] 40 166

This matrix is the final output of MALDIquant and contains the calibrated inten-
sity values for identified features across all spectra. It forms the basis for higher-level
statistical analysis.

11.3.8 Feature Ranking and Classification
The Fiedler et al. (2009) data set contains class labels for each spectrum (healthy
versus cancer), hence it is natural to perform a standard classification and feature
ranking analysis. A commonly used approach is Fisher’s linear discriminant analysis
(LDA), see Mertens et al. (2006) for details and applications to mass spectrometry
analysis. Many other classification approaches may also be applied, such as based on
Random Forests (Breiman, 2001) or peak discretization (Gibb and Strimmer, 2015).

Here, we use a variant of LDA implemented in the R package sda (Ahdesmäki
and Strimmer, 2010). In particular, we use diagonal discriminant analysis (DDA),
a special case of LDA with the assumption that the correlation among features
(peaks) is negligible. Despite this simplification this approach to classification is very
effective, especially in high dimensions (Tibshirani et al., 2003). In order to identify
the most important class discriminating peaks we use standard t-scores, which are
the natural variable importance measure in DDA.

As a first step in our analysis we therefore compute the ranking of features by
t-scores, and list the 10 top-ranking features in Table 11.1:

library("sda")
colnames(featureMatrix) <-

round(as.double(colnames(featureMatrix)),2)
Ytrain <- avgSpectra.info$health
ddar <- sda.ranking(Xtrain=featureMatrix, L=Ytrain, fdr=FALSE,

diagonal=TRUE, verbose=FALSE)

To illustrate that feature selection based on the above feature ranking is indeed
beneficial for subsequent analysis we apply hierarchical cluster analysis based on the
euclidean distance first to the data set containing all features:
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idx score t.cancer t.control
8936.97 158.00 90.69 9.52 -9.52
4468.07 116.00 80.80 8.99 -8.99
8868.27 157.00 80.06 8.95 -8.95

4494.8 117.00 67.00 8.19 -8.19
8989.2 159.00 66.19 8.14 -8.14

5864.49 135.00 37.56 -6.13 6.13
5906.17 136.00 34.43 -5.87 5.87
2022.94 49.00 33.30 5.77 -5.77
5945.57 137.00 32.66 -5.71 5.71
1866.17 44.00 32.12 5.67 -5.67

Table 11.1: The ten top-ranking peaks as identified in the analysis.

distanceMatrix <- dist(featureMatrix, method="euclidean")

hClust <- hclust(distanceMatrix, method="complete")

plot(hClust, hang=-1)

Next, we repeat the above clustering on the data set containing only the best two
top-ranking peaks:

top <- ddar[1:2, "idx"]

distanceMatrixTop <- dist(featureMatrix[, top],
method="euclidean")

hClustTop <- hclust(distanceMatrixTop, method="complete")

plot(hClustTop, hang=-1)

As can be seen by comparison of the two trees, as a result of the feature selection
we obtain a nearly perfect split between the Heidelberg pancreas cancer samples
(labeled "HP") and the Heidelberg control group (labeled "HC").

The strong predictive capabilities of the first two discovered peaks can be further
quantified by conducting a cross-validation analysis to estimate the prediction error.
We use the crossval (Strimmer, 2014) package to perform a 10-fold cross validation
using the predictor containing only the two selected peaks:

library("crossval")
# create a prediction function for the cross validation
predfun.dda <- function(Xtrain, Ytrain, Xtest, Ytest,
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Figure 11.11: Hierarchical clustering of patient samples using all features.
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Figure 11.12: Hierarchical clustering of patient samples using only the best two
top-ranking peaks.
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negative) {
dda.fit <- sda(Xtrain, Ytrain, diagonal=TRUE, verbose=FALSE)
ynew <- predict(dda.fit, Xtest, verbose=FALSE)$class
return(confusionMatrix(Ytest, ynew, negative=negative))

}

# set seed to get reproducible results
set.seed(1234)

cv.out <- crossval(predfun.dda,
X=featureMatrix[, top],
Y=avgSpectra.info$health,
K=10, B=20,
negative="control",
verbose=FALSE)

diagnosticErrors(cv.out$stat)

acc sens spec ppv npv lor
0.9500000 0.9000000 1.0000000 1.0000000 0.9090909 Inf

As a result of the above analysis, we conclude that the identified peaks with mass
m/z 8937 and 4467 allow for the construction of a very low-dimensional predictor
function that is highly effective in separating cancer and control group with both
high accuracy as well as high sensitivity.

11.4 Conclusion
The large-scale acquisition of mass spectrometry data is becoming routine in many
experimental settings. In MALDIquant we have put together a robust R pipeline
for preprocessing these data to allow subsequent high-level statistical analysis. All
methods implemented in MALDIquant have been selected both for computational
efficiency and for biological validity. In this chapter we have given an overview over
the most commonly used procedures of MALDIquant as well as demonstrated their
application in detail.

A topic that has not been covered here is Mass Spectrometry Imaging (MSI),
which combines spectral measurements with spatial information (Cornett et al., 2007).
MALDIquant also enables some simple MSI analysis, for practical examples in R we
refer to the homepage of MALDIquant at http://strimmerlab.org/software/
maldiquant/ as well as the associated web page https://github.com/sgibb/
MALDIquantExamples/.

http://strimmerlab.org/software/maldiquant/
http://strimmerlab.org/software/maldiquant/
https://github.com/sgibb/MALDIquantExamples/
https://github.com/sgibb/MALDIquantExamples/
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