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Abstract

In the context of Smart Monitoring and Fault Detection and Isolation in in-
dustrial systems, the aim of Predictive Maintenance technologies is to predict the
happening of process or equipment faults. In order for a Predictive Maintenance
technology to be effective, its predictions have to be both accurate and timely
for taking strategic decisions on maintenance scheduling, in a cost-minimization
perspective. A number of Predictive Maintenance technologies are based on the
use of ”health factors”, quantitative indicators associated with the equipment
wear that exhibit a monotone evolution. In real industrial environment, such
indicators are usually affected by measurement noise and non-uniform sampling
time. In this work we present a methodology, formulated as a stochastic filter-
ing problem, to optimally predict the evolution of the aforementioned health
factors based on noisy and irregularly sampled observations. In particular, a
hidden Gamma process model is proposed to capture the nonnegativity and
nonnegativity of the derivative of the health factor. As such filtering problem
is not amenable to a closed form solution, a numerical Monte Carlo approach
based on particle filtering is here employed. An adaptive parameter identifica-
tion procedure is proposed to achieve the best trade-off between promptness and
low noise sensitivity. Furthermore, a methodology to identify the risk function
associated to the observed equipment based on previous maintenance data is
proposed. The present study is motivated and tested on a real industrial Pre-
dictive Maintenance problem in semiconductor manufacturing, with reference
to a dry etching equipment.
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1. Introduction

Advanced monitoring is a fundamental activity in the Industry 4.0 sce-
nario to implement control, maintenance, quality, reliability, and safety policies
[1, 2, 3]. In particular, Fault Detection and Isolation (FDI) [3] and Predictive
Maintenance (PdM) [4] technologies have proliferated in the past recent years for
diagnosis and prognosis of process/tool failures [5]. While the aim of such tech-
nologies is similar and partly overlapped, PdM technologies are more focused on
prognosis. Prognosis can be defined as the capability to provide early detection
of the precursor and/or incipient fault condition of a component, and to design
tools for managing and predicting the progression of such fault condition to
component failure [6]. Given their goal, PdM technologies are typically applied
to failures that are associated with wear and usage of the system/process [7], or,
more generally, to failures that can be predicted in advance [8, 9]. Examples of
such type of faults are the breaking of the source in ion-implantation processes
in semiconductor manufacturing [7], the flute wear in cutting tool equipment
[10], and the lifespan of lithium-ion batteries [11].

In this work we focus on the so-called ’Health Factors’ (HFs), an important
concept in prognostic1. HFs are quantitative indexes used to define the current
status of a tool/process and to assess the future statuses of the system under
exam (or of one of its components/sub-systems), and its Remaining Useful Life
(RUL) [14, 16, 17], so that strategic decisions regarding maintenance scheduling
and dynamic sampling plans can be taken [4]. Being in direct relationship with
wear, usage or stress of an equipment/component or system, HFs generally have
a monotone evolution. A HF can be of very different nature: in its simplest form,
HFs can be observable parameters that, thanks to specific domain expertise,
can be associated with equipment/process health status. Example of health
factors as quantities that are directly related to system health, such as the
thermal index of a polymeric material [18], the scar width in sliding metal wear
[19], and the temperature difference in semiconductor manufacturing epitaxy
processes [20]. HFs can also be the output of Soft Sensor modules [21, 22],
where the status health is impossible/costly to be monitored. Moreover, HFs
can be the residual of first principle FDI models [23]. In fact, in many practical
examples [1, 17, 23, 24], residuals have a monotonic behaviour and threshold-
based policies to maintenance management are implemented on such quantities.
HFs are therefore relevant quantities in both model-based [24, 25, 26] and model-
free [1, 3, 27, 28] prognostic approaches.

1Health Factors are also indicated as ’Component Health’ [5], ’State of Health’/’Health
State’ [12, 13] or as ’Health Indicators’ [10, 14] by different authors and they are closely in
relation with the concept of ’degradation data’ [15].

2



In the present paper, the problem of designing a HF for Predictive Main-
tenance (PdM) purposes is considered [7, 29, 30]. In particular, the issue of
assessing the probability distribution of the HF future values given its past
measurements is addressed, under the following assumptions: (i) the HF is
monotonically increasing; (ii) its measurements are subject to random noise
that may conceal its monotonic nature; (iii) measurements are non-uniformly
sampled over time. The aforementioned features are typical traits of HF sig-
nals [17, 20, 31, 32, 33], but they are generally not simultaneously accounted
for in the related literature. Non-stochastic models (see [12] for a broad re-
view on RUL estimation) for HFs have been presented in literature, as well as
inspection and intervention approaches for increasing maintenance actions effec-
tiveness and decreasing the associated costs. However, such methodologies are
well suited for noise-free scenarios and, given the aforementioned assumptions on
the HF signals, it is here proposed to adopt a stochastic filtering paradigm [34].
With the proposed approach, the HF is treated as a stochastic process, with the
possibility to combine prior knowledge on the HF with statistical information
regarding the observed noisy data. A simple approach to deal with the problem
at hand is provided by the Wiener and Kalman predictors [20, 35, 36, 37], which
are statistically optimal for linear Gaussian models. However, such classical ap-
proaches may be considered suboptimal for signals with the characteristics given
in assumptions (i)-(iii). As a matter of fact, far from being Gaussian, the HF
derivative is in this work considered to be a nonnegative random variable.

Given such premises, a framework for HF filtering and prediction based on
the Gamma distribution is here proposed. PdM applications employing Gamma
distributions has been developed since the 1970s [38], especially in mechanical
and civil engineering applications [39, 40, 41] and, recently, in industrial envi-
ronments [42]. Indeed, if the HF is modeled as the sum of Gamma distributed
random variables, such sum is still Gamma distributed, with the advantage that
convenient estimation and prediction algorithms can be derived. Given that
in real-world industrial applications HFs are usually observed with noise, the
approach proposed in this work considers the HF as a monotonic Gamma pro-
cess (with time-varying shape parameter) corrupted by Gaussian noise (hidden-
Gamma model). Such assumptions lead to the lack of closed-form solutions for
the estimation of model parameters in the proposed approach. However, it will
be shown that the prediction problem can be efficiently solved by resorting to
particle filtering methods [43, 44, 45], employing Monte Carlo (MC) simulations
to derive the target posterior distributions. Finally, a recursive procedure to es-
timate the time-varying shape parameter is proposed. Such procedure allows
to optimize a trade-off between the need for promptness and noise insensitiv-
ity/outlier rejection.

The paper is organized as follows. In Section 2 the hidden-Gamma model
is presented. In Section 3.1 the principles of Particle Filtering (PF) are briefly
summarized and adapted to Gamma processes. In Section 4 an adaptive recur-
sive scheme for estimation of monotone HFs is presented. Section 5 is dedicated
to the definition and estimation of an appropriate Risk Function for the pro-
posed model. In Section 6 some experimental results on synthetic datasets are
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Figure 1: Gamma probability distributions for different values of a and θ.

reported, whereas in Section 7 a real PdM semiconductor manufacturing prob-
lem related to dry etching is tackled. 2

2. The Hidden Gamma Process

2.1. Gamma Probability Distribution

The most notable property of Gamma distributions is their non-negative
support. We consider a random variable x with Gamma distribution Γ(a, θ),
where a is the shape parameter and θ is the scale factor. The first two statistical
moments of x are E[x] = aθ and V ar[x] = aθ2 and the probability density

function (PDF) is p(x) = xa−1e−
x
θ

Γ(a)θa . Gamma distributed random variables enjoy

the following property:
Property 1 (Infinite Divisibility): if x1 ∼ Γ(a1, θ) and x2 ∼ Γ(a2, θ), then

the sum x = x1 + x2 has a Gamma distribution with shape a1 + a2 and scale
factor θ.

The shape of the Gamma probability distribution for different values of a
and θ is shown in Figure 1.

2The present work is an extended version of [46]. Additional material concerns implemen-
tation details, the derivation of a risk function associated with the maintenance operation,
and the use of synthetic data to better assess performance of the algorithms.
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2.2. The Hidden-Gamma Model

In the following, the HF is denoted by x(·). Measurements x(t1), x(t2), . . . , x(tk)
are available for time instants t1 ≤ t2 ≤ . . . ≤ tk. We indicate with t0 ≤ t1 the
initial time instant, and with tk+1 ≥ tk the instant points in which predictions
of the HF are desired.

In the following, we adopt a Bayesian paradigm by assigning to {xj , j =
1, . . . , k + 1} a joint prior distribution. As stated in Section 1, the HF is asso-
ciated with equipment/process degradation, therefore the prior information on
the HF can be formalized as follows:

• HF takes non negative values: xj ≥ 0,∀ 0 ≤ j ≤ k + 1;

• HF has non negative increments: ∆xj ≥ 0, ∀ k, 1 ≤ j ≤ k + 1, where
∆xj := xj − xj−1;

• ∆xj is positively correlated with the length of tj − tj−1.

The previous characteristics for the HF are captured by the following stochastic
model:

Assumption 1. The HF evolution is governed by the following equation

xj+1 = xj + wj+1, j = 1, . . . , k (1)

where x0 ∼ Γ(a0, θ) and wj ∼ Γ(α(tj − tj−1), θ). It is supposed that wj are
mutually independent random variables, also independent from x0. �

It is straightforward to see from Eq. (1) that both the HF and its increments
are non negative. Moreover, thanks to Property 1, it can be seen that E[x(tj)] =
(a0 + αtj)θ, which means that it is expected that the HF is linearly increasing
with time.

Remark 1: the discrete-time model described in (1) can be obtained by
sampling the continuous-time Gamma process x(t) that satisfies

dx(t) = x(t)dt+ dw(t), t ≥ t0, (2)

where x(t0) ∼ Γ(a0, θ) and dw(t) is a Wiener process with dw(t) ∼ Γ(αdt, θ).
Equation (2) can be obtained thanks to Property 1. Such formulation allow us
to estimate the HF for the generic time instant t 6= tj . �

If {xj} were noiseless, the estimation of the unknown parameters {a0, α, θ},
that specify the distribution of the future values of the HF, could be performed
for example via maximum likelihood estimation (MLE). In such case, the pos-
terior expectation can be employed as point predictor

x̂k+1 := E[xk+1|xk] = xk + E[wk+1] = xk + αθ(tk+1 − tk).

Moreover, the knowledge of the distribution of wk+1 allows to define confidence
intervals for the HF. Such confidence intervals could be exploited in a PdM
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perspective, by computing the probability of exceeding predefined thresholds
associated with a maintenance action.

Unfortunately, in real world scenario, HFs are usually affected by measure-
ment noise. For this reason, a measurement equation is added to the model
(1):

Assumption 2. The HF is observed through the noisy measures

yj = xj + vj , j = 1, . . . , k (3)

where vj ∼ N (0, σ2) (Gaussian distribution with 0 mean and standard deviation
σ) is independent from the initial value x0 and {wj}.

The stochastic process yk is named here a hidden Gamma process (HGP). Given
the presence of the measurement noise vj in (3), there is no guarantee that
the sequence {yj} is monotonic. In the following, it is assumed that a0, α, θ
are known, as they can be estimated by MLE even in presence of noise. The
formulation of the filtering problem is then the following:

Problem 1. Given the available measures Yk = {yj , j = 1, . . . , k} and Assump-
tions 1-2, compute the posterior PDF p(xk+1|Yk).

Since p(xk+1|xk, xk−1, . . .) = p(xk+1|xk), the HGP defined in (1) is a first-
order Markov process. Then, Problem 1 can be approached by looking for a
recursive solution where p(xk+1|Yk) is computed by updating p(xk|Yk−1), once
the measure yk is available. In the noisy conditions we are considering in this
work, such solution must be derived with numerical MC techniques like PF.

3. Particle Filtering of Gamma Processes

3.1. Basics of Particle Filtering

PFs or Sequential Monte Carlo methods are numerical approaches that al-
low to approximate intractable or complex distributions by employing discrete
distributions whose statistical moments and confidence intervals can be easily
calculated. PFs exploits the generations of N random variables, named par-
ticles, to approximate the unknown stochastic process posterior. A basic PF
algorithm for a hidden state-space system as the one given by (1)-(3) is pro-
vided here3 (a graphical representation of the PF procedure is depicted in Fig.
2):

Beside the selection of the number of particles N , the most important design
choice of the PF procedure is the selection of G. The simplest choice is to set

G(x
(j)
k |x

(j)
k−1) = p(x

(j)
k ;x

(j)
k−1), so that only L is required in (4). Notably, with this

choice, yk has no influence on Step 5 of the procedure, reducing in general the
robustness of the estimates. A possible alternative is to use a G that considers

3We refer the interested readers to [47] or [45] for more details on PF.
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Algorithm 1: Particle Filter (PF) algorithm

1. Set k = 0
2. Particles x

(j)
0 , j = 1, . . . , N are drawn from the initial distribution

p(x0)

3. Weights w
(j)
0 = p(x0 = x

(j)
0 ), j = 1, . . . , N are computed

4. Update k = k + 1

5. From a suitable proposal distribution G(x
(j)
k |x

(j)
k−1), N particles

x
(j)
k , j = 1, . . . , N are sampled

6. The weights

w
(j)
k = w

(j)
k−1

L(yk;x
(j)
k )p(x

(j)
k ;x

(j)
k−1)

G(x
(j)
k |x

(j)
k−1)

(4)

are adjusted, where L is a likelihood function defined by the
measurement model (3) and the known statistics of vj , while the

state-transition probability p(x
(j)
k ;x

(j)
k−1) is specified by the state-space

model (1)
7. The weights are normalized in order to sum to 1
8. p(xk|Yk) is approximated by

p(xk|Yk) ≈
N∑
j=1

w
(j)
k δ(xk − xjk), (5)

a discrete distribution with support points x
(j)
k , j = 1, . . . , N , where

δ(·) is the Dirac delta measure. 9. Go to Step 4.
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Figure 2: A graphical representation of the PF procedure. At time instant k, the prior state
distribution, represented by the blue solid curve, is approximated by the N particles (black
dots). The posterior distribution arises from the interplay between the prior distribution
and the observation likelihood, represented by the red dashed curve, generated by the noisy
observation (the red circle).

a preliminary approximation of p(xk|Yk−1); this can be achieved, for example,
by means of a Kalman Filter (KF) approach [48].

A second critical design issue in the PF procedure is the resampling step [49].
If a large number of particles have their respective weights with very small values

w
(j)
k �

1
N , it is necessary that such particles are discarded and re-sampled from

the distribution p(xk|Yk−1). This is done in order to allow the uninformative
particles to contribute again to the estimation. Many resampling strategies
have computational cost O(N), however less resource-demanding approaches
for resampling can be implemented [50].

3.2. Adaptation to Gamma Processes

A possible issue affecting the PF problem for system (1)-(3) is related to
the nonnegativity of quantities wj . Such issue is related to the fact that an
overestimation of the lower limit of the distribution of xk will propagate to all
estimates xi with i > k. In such case, lower limits of xi will be overestimated
as well, leading to the accumulation of one-sided errors. This issue is formally
described in the following proposition.

Proposition 1. If, for some k, the posterior distribution p(xk|Yk−1) is approx-
imated by a representation with discrete support, the lower limit of the support
of p(xk+1|Yk) is greater or equal to that of p(xk|Yk−1).
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Figure 3: HGP-based predictions (represented by the shaded areas) in three different future
time instants for a synthetic HF. Thanks to the monotonic nature of the HGP model, the
prediction uncertainty grows with time only in one direction. By computing the integral of
the red shaded areas it is possible, for fixed thresholds, to estimate the threshold-crossing
probability at different future time instants.

For a proof of Proposition 1, we refer the interested readers to [46]. A
possible way to mitigate the aforementioned propagation error is to employ a
fixed-lag smoother [47], where p(xk+1|Yk+W ) is taken as the basis for future
updates instead of p(xk+1|Yk), p(xk+1|Yk+W ) (the integer W denotes a fixed
window size). With this approach, the smoothed p(xk+1|Yk+W ) is generally
more accurate and prone to overestimating the lower limit of the distribution,
thanks to the increased availability of information.

The fixed-lag smoother can be derived as follows. The augmented state
vector x̃j := [xj xj+1 . . . xj+W ]′ is introduced and, similarly, w̃j , ṽj , ỹj . By
exploiting (1)-(3) it is possible to obtain

x̃j+1 = x̃j + w̃j (6)

ỹj = x̃j + ṽj (7)

The augmented-state model described by equations (6)-(7) allows more ro-
bustness in the PF approach. In Fig. 4 an example with a synthetic HF is
illustrated. It can be observed that larger lag sizes allow enhanced estimation
stability (even in presence of outliers) and prevent systematic bias.

A final design guideline for the Hidden Gamma Process-PF regards resam-
pling. Conditional resampling has been here implemented to make less likely
for a particle to be sampled depending on its distance from the critical edge.
While this procedure can lead to the creation of zones where particles are rarely
resampled, a mitigated risk of error propagation is achieved.

9



Filtering result: comparison between no smoothing (W=1) and smoothing with W=5

 

 

Noisy signal

Filtering result (W=1)

Filtering result (W=5)

Figure 4: State estimations with different lag values. It can be appreciated how larger values
of lag are associated with higher stability in presence of outliers.
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Figure 5: Expected value (red line) and confidence limits (blue lines) corresponding with
different choices of α(t) (from top-left, in clockwise order) constant, linear increasing, linear
decreasing and periodic.

4. Regularized Adaptive Filtering

The a-priori knowledge on the HF increment from tj−1 to tj is expressed by
the statistics E[wj ] = α(tj − tj−1)θ and V ar[wj ] = α(tj − tj−1): the higher the
α, the higher the expected size of the increments. In real world industrial cases,
variations in HF may happen quite suddenly with a steep rise of x(t) after flat
steady-state behavior (see the application case discussed in Section 7). For this
reason, a time-varying shape factor α = α(t) is used here (see Fig. 5), that must
be estimated as well by the PF. Considering the discrete-time nature of (1)-(3),
the shape factor can be denoted as αj = α(tj), and the following hypothesis can
be made:

Assumption 3. The shape factor αj evolves according to

αj+1 = αj + δj , j = 1, . . . , k (8)

where δj ∼ N (0, λ2) is independent of x0, {wj} and {vj}.

In this perspective, the hyper-parameter λ2 can be tuned to modify the
variability of αj . Indeed, large values of λ2 lead to quickly varying αj and
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promptly reactive adapting PF. On the other hand, small values of λ2 can
improve the noise sensitivity at the price of a less responsive PF.

A maximum a posteriori (MAP) estimate for αk is adopted based on a
moving window approach. If α̃j := [αjαj+1 . . . αj+W ]′, the MAP estimate ˆ̃αk
is

ˆ̃αk = arg max
α̃k

p(α̃k|ỹk, xk−W , αk−W+1) where

p(α̃k|ỹk, xk−W , αk−W ) ∝ p(ỹk|α̃k, xk−W )p(α̃k|αk−W ) (9)

with xk−W and αk−W set to be equivalent to their point estimates at previous
iteration.

Given that the conditional distributions of ỹk and α̃k in (9) are Gaussian,
the logposterior L = log(p(α̃k|ỹk, xk−W , αk−W )) is defined (up to a constant)
as

L = SSR+
1

λ2
R (10)

where SSR and R are respectively the sum of squared residuals and the sum
of squares of δj , j = k −W, . . . , k. Equation (10) is typical of regularization
methods [51] where a trade off choice between accuracy in fitting the training
data and complexity of the estimated function has to be made. In regularization
methods, the following family of penalty terms is usually considered:

R =

W−1∑
i=0

|δk−i|q . (11)

For q = 2, the well-known Ridge Regression (RR) [52] is obtain. The advantage
of RR is that it admits a closed-form solution. For q = 1, a LASSO-type
[53, 54] regularization is obtained instead. LASSO provides sparse solutions,
an important property that makes LASSO the first choice in many applications
over RR, even at the price of not admitting a closed-form solution. Values of q
larger than 1 can also be adopted; for instance, q ∈]1, 2[ leads to a penalization
region similar to the Elastic Net [55]. The computational cost of this operation
for k > W is O(W 2k) for q = 1 and O(W 3 + W 2k) for q = 2; optimized
approaches [56] are now available for the less frequent case k < W .

Remark 2: The discrete-time model with time-varying αk can still be in-
terpreted as the sampled-data version of the continuous time model with time-
varying α(t). In fact, p(x(tj+1)|x(tj)) in (2) depends on the mean value of α(t)
in the interval [tj , tj+1], and not on its evolution inside the interval. From Pro-
perty 1, wj = x(tj+1)−x(tj) is Gamma distributed, that is, wj ∼ Γ(ᾱj , θ) where

ᾱj :=
∫ tj+1

tj
α(t)dt. Then, by setting αj := 1

tj+1−tj

∫ tj+1

tj
α(t)dt it follows that

wj ∼ Γ(αj(tj+1 − tj), θ) and the discrete-time increment model is obtained. �

4.1. Implementation notes

The HGP-PF approach proposed in this work can be summarized (for the
sequences {tj , yj}, j = 1, . . . , k) as:
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1. Initial parameter are selected: the process noise-related quantities θ and
α0, initial state distribution P (x0), measurements noise variance σ2, the
PF design parameters N , W and λ2.

2. For j = 1, . . . , k:

(a) If (j ≥ W ), α̃j is updated by solving the regularization problem
(Section 4);

(b) p(x̃j |Yj) is approximated;

3. Predictions and confidence intervals are computed using the newest esti-
mation;

It can be shown, given that p(xk+1|xk) is Gamma distributed [46], that p(xk+1|Yk)
is a continuous mixture of Gamma distributions. Therefore p(xk+1|Yk) will be
approximated by a finite mixture of Gamma distributions since the PF provides
an approximation of p(xk|Yk) with discrete support (see Eq. 5).

5. Risk Function Evaluation

Once a prediction of the future probability distribution of an observed HF
is available, it can be compared with a maintenance threshold to compute and
evaluate a risk function (RF) [57] associated with the maintenance operation
(Figure 6). Such a maintenance threshold may be given from process/equipment
operating conditions, or inferred from historical, noisy HF data, and it can be
time/usage-dependent. In the following, a RF is formally defined and moti-
vated in a maintenance optimization perspective. Furthermore, resorting to
supervised classification theory, a method to estimate the maintenance thresh-
old from historical maintenance data is also presented.

5.1. RF definition

Let ptkτ := p(x(tk+τ)|Yk), τ > 0 be the predicted distribution of the observed
health factor at time instant tk + τ . According to the paradigm established in
the previous sections, pτ is a mixture of Gamma distributions such that

ptkτ (x) =

N∑
i=1

wiωi(x, τ) (12)

ωi(x, τ) =

{
(x− xi)ταk e−(x−xi)/θ

Γ(ταk)θταk x ≥ xi
0 x < xi

where
∑N
i=1 wi = 1 and Γ(·) is the gamma function. Furthermore, let H(t) be

a continuous real function with nonnegative codomain representing the time-
dependent threshold for the analyzed HF. It follows that the probability of
exceeding the threshold H at time instant tk + τ is

13
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Figure 6: Representation of a risk function: thanks to the properties of the proposed method-
ology, it is possible to assess the risk of crossing the threshold H(t) at a generic future time
instant.
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p(x(tk + τ) > H(tk + τ)|Yk) = 1−
∫ H(tk+τ)

0

pτ (x)dx

= 1−
N∑
i=1

wi

∫ H(tk+τ)

0

ωi(x, τ)dx

By observing that∫ H(tk+τ)

0

ωi(x, τ)dx =
γ(ταk, (H(tk + τ)− xi)/θ)

Γ(ταk)

where γ(·, ·) is the incomplete lower Gamma function, it is possible to compute
the risk function

Rtk(τ) := 1−
N∑
i=1

wi
γ(ταk, (H(tk + τ)− xi)/θ)

Γ(ταk)
(13)

The risk function R(t) depends on the choice of the threshold function H(t).
Such choice can be done either by exploiting experts knowledge (for instance, a
threshold beyond which the machine is known to malfunction) or by analysing
historical maintenance data. In the next subsection, classification theory is em-
ployed in order to estimate the optimal threshold when such data are available.

5.2. Threshold Estimation

Let D be a set of Nm maintenance operations

D = {Ti ∈ R, yi ∈ R, si ∈ {−1, 1}}Nmi=1

where Ti is the duration of the i-th production cycle (maintenance to main-
tenance) and yi is the last observed HF measurement. Furthermore, let si be
an indicator of the effectiveness of the i-th maintenance cycle. Since it is not
possible to know what the status is of the maintained component before its
replacement, two situations can occur. Let si = −1 conventionally represent
an early replacement (the component is still functional when replaced) and let
si = 1 represent a belated replacement (component replaced after it has broken).

To derive the threshold function H(t) from D, a Support Vector Machine
(SVM) approach is hereby proposed. SVM techniques allow to find an optimal
nonlinear separation between two categories of data points (if such categories
are separable) or, in the soft-margin version, to produce an optimal robust (with
respect to data mislabeling) classification. In the following, the focus is set on
the estimation of a H(t) represented by a p-th degree polynomial function of
t. Let t̃i = [ti, t

2
i , . . . , t

p
i ] be the polynomial span of ti up to the p-th degree.

Furthermore, let z̃i = [yi t̃i]
′ ∈ Rp+1.

The problem of estimatingH, according to SVM soft-margin theory, can then
be seen as the research of a parameter vector c̃, defined as c̃ = [c(y), c(t1), c(t2), . . . , c(tp)]′

that solves the following problem.
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Figure 7: A dataset D along with an example of HF reading (in grey). The optimal threshold
H(t) is obtained using SVM (p = 1). It is to be noted that the optimal order of the class
separation, p, can be determined by means of Generalized Cross Validation (GCV).
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Problem 2. Find
min
c̃,ξ,b

max
µ,β

J

where the cost function J is defined as

J =
1

2
||c̃||2 +

Nm∑
i=1

[(C − βi)ξi − µi(si(c̃′z̃i − b)− 1 + ξi)]

under the constraints µi ≥ 0, βi ≥ 0. C is a tuning parameter that can be
selected by means of Generalized Cross Validation (GCV).

Problem 2 is the standard representation of the SVM problem with soft mar-
gin. Its solution can be obtained by means of a Sequential Minimal Optimization
(SMO) approach [58].

The optimal separating hyperplane resulting from the solution of Problem 2
(Figure 7) satisfies the condition

b+ c(y)y +

p∑
i=1

c(ti)ti = 0

The threshold function H(t) is then obtained as

H(t) = −
p∑
i=1

c(ti)

w(y)
ti − b

c(y)
(14)

By combining (13) and (14), the risk function is then

Rtk(τ) = 1− (15)

N∑
i=1

wi
γ(ταk,−(

∑p
i=1

c(ti)

c(y)
(tk + τ)i + b

c(y)
+ xi)/θ)

Γ(ταk)

5.3. Use of RF for Maintenance Optimization

The main goal of a maintenance management system is the minimization
of the costs associated with failures and maintenance operations. The cost
of maintenance operations can be associated with the cost of several factors,
such as spare parts, equipment/production downtime, staff performing the in-
terventions, scrap products due to the requalification of the system (a post-
maintenance phase in which the process needs to run before being ’stable’ or
within the production standards). At first glance, minimizing the number of
interventions seems to be the natural approach to minimize the aforementioned
costs. However, Run-to-Failure (R2F) policies, where maintenances are per-
formed only after a failure has happened, are generally deprecated because the
costs related to unexpected failures can be very high. The trade-off between
early-stage maintenances (and associated unexploited lifetime UL of the system)
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Experiment Name Kalman HGP-PF

Sigmoid Data 0.843 0.784
Sigmoid Data with Discontinuities 1.211 1.063
Industrial Data 2.471 2.118

Table 1: Filtering performances of the considered approaches in terms of RMSE.

and unexpected breaks UB can be optimized by using corresponding agglomer-
ated costs (respectively cUL and cUB) and the proposed RF. Furthermore, in the
proposed approach, reliable predictions can be obtained over given time frames,
a relevant feature in applications where timeliness is a critical issue, such as
when interventions have to be planned in advance or the monitoring of RF and
re-scheduling can be guaranteed only with a fixed time delay.

6. Simulation Results

To test the proposed methodology, synthetic datasets representing HFs have
been created. The generic dataset D has a total of N time series, the i-th time
series is defined as

Si =
{
{tj , xj}nij=1, {tj , yj}

ni
j=1, τi

}
= {[Tni Xni ], [Tni Yni ], τi} ,

where τi indicates the time instant when the i-th HF crosses a predefined thresh-
old H.

The accuracy of the prediction at a time instant τi−∆t is used to assess the
performance of the proposed PdM algorithm. The initial filter parameters are
chosen via likelihood maximization. A truncated multivariate Normal distri-
bution is used as proposal distribution, that is then sampled through a Gibbs
sampler [59]. A Kalman Filter is used to obtain the non-truncated Normal di-
stribution. Although the use of the Kalman filter is justified by model linearity,
an Unscented Kalman Filter can also be used [60].

6.1. Sigmoid Data

A first synthetic dataset D(1) of N = 100 time series has been generated as
follows: for each time series the time domain is T = [0, 1, . . . , 1500], while the
i-th HF at time t is

xi(t) =
10

1 + e−ai(t−bi)
,

where ai ∼ U(0.005, 0.02), a uniform distribution of support [0.005, 0.02], and
bi ∼ U(750, 1000). Gaussian noise v ∼ N (0, 1) is then added to the HF. A set
of 5 time series belonging to D(1) is reported in Fig. 8. For this study a fixed
maintenance threshold has been set to H = 8.

The proposed HGP-PF is compared with a KF-based approach. The KF
employed in this Section, and also in the experimental work detailed in Section
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Figure 8: [Sigmoid Data] On the left panel a set of 5 time series from D(1) is shown. The
red line (–) represents the maintenance threshold H = 8. On the right panel an histogram of
{τi}100i=1 with H = 8.
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Figure 9: [Sigmoid Data] Averaged Risk Functions associated with different prediction ap-
proach and different prediction horizons.

19



7 is formulated as follows. The following linear state-space model is considered:

zj+1 = Azj +Gv′j (16)

yj = Czj + w′j , (17)

where zj = [xj . . . xj−nO ] is a state vector that contains the estimated present
and past values of the HF, v′j ∼ N (0, Q) is the model error, and w′j ∼ N (0, R)
is the measurement error. v′j and w′j are supposed to be uncorrelated. Matrices
A,C and G are estimated using the N4SID algorithm [61], while the model order
nO is chosen according to the Akaike Information Criterion [62]. The Kalman
predictor for the 1-step ahead prediction has the classical formulation

ẑj+1|j = Aẑj +Kj

[
yj − Cẑj|j−1

]
, (18)

Kj = APj|j−1C
′ [CPj|j−1C

′ +R
]−1

, (19)

where Pj|j−1 is the variance matrix of the prediction error ẑj+1|j − zj+1 and it
is updated through the discrete Riccati equation. The tuning of Q and R has
been done by computing a test on the residuals correlation

REQ,R(σ) = E [eQ,R(j)eQ,R(j + σ)] , (20)

with eQ,R(j) = yj −Cẑj|j where the estimation ẑj|j depends on the choice of Q
and R. A grid search on different set of values of Q and R has been performed
to minimize maxσ>0 |REQ,R(σ)|. The multiple-step ahead prediction that can
be easily derived by exploiting 16-18 [20].

In Table 1 the filtering performances of the proposed HGP-PF are reported,
and compared to that of a KF-based approach in terms of RMSE. As for pre-
diction accuracy, averaged Risk Functions are reported in Fig. 9 for 2 cases,
a 50-step and 100-step ahead predictions. Risk Functions are aligned with re-
spect to the time instant of the fault τ and compared with a ideal function that
provides

Rideal(t) =

{
1 if t > τ
0 otherwise

The HGP-PF beats the KF both in terms of RMSE and in PdM accuracy.
In particular, it can be appreciated in Fig. 9 how the PF of the HGP-PF is
qualitatively closer to Rideal(·) than that of the KF.

6.2. Sigmoid Data with Discontinuities

A sigmoid dataset with discontinuities D(2) (with N = 100 time series and
support T = [0, 1, . . . , 1500], as before) has been generated as follows: The i-th
HF at time t is

xi(t) =
10

1 + e−ai(t−bi)
+ 0.6ci,

where ai ∼ U(0.005, 0.02), bi ∼ U(750, 1000) and ci ∼ B(0.01, 1) is a binomial
distribution with 1 trial and 0.01 success probability. Gaussian noise v ∼ N (0, 1)
is then added to the HF. A set of 5 time series in D(2) is reported in Fig. 10. A

20



Figure 10: [Sigmoid Data with Discontinuities] On the left panel a set of 5 time series from
D(1) is depicted. The red line (–) represents the maintenance threshold H = 14. On the right
panel an histogram of {τi}100i=1 with H = 14.

fixed maintenance threshold has been set toH = 14. All of the N generated HFs
exceed H in T . In Fig. 11 the averaged Risk Functions of PF and Kalman Filter
fot the 50-step and 100-step ahead predictions are reported. RMSE performance
is given in Table 1. In this case, too, the HGP-PF ouperforms the KF both in
terms of RMSE and in PdM accuracy.

7. Application to predictive maintenance of a dry etching equipment
for semiconductor manufacturing

Maintenance optimization strategies based on HFs are receiving increasing
attention in the field of semiconductor manufacturing [17, 20]. In this Sec-
tion, the HPG-PF approach developed in the present paper is tested on a PdM
problem related to a dry etching equipment. Etching is a fundamental step in
semiconductor fabrication that is employed to chemically remove layers from
the wafer surface. In some etching tools, the wafer is held on a Electrostatic
Chuck (ESC) thanks to electrostatic charge, while a backside helium flow cools
down the wafer and prevents problems during the unloading of the product [63].
During this operation, the quartz parts around the ESC (and the ESC itself)
undergo the action of aggressive plasma, causing a wearing out that affects both
wafer quality and process stability. The intensity of the helium flow intensity in
the etching equipment, represented in Fig. 12, reflects the wear of the ESC and
can be considered a HF for the degradation problem at hand. The helium flow
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Figure 11: [Sigmoid Data with Discontinuities] Averaged Risk Functions associated with
different prediction approach and different prediction horizons.

exhibits a monotonically increasing trend (masked by noise) and it is common
practice that, in a Condition-based Maintenance fashion, when a given thresh-
old is exceeded, maintenance operations take place, including the (expensive)
replacement of several components. Predicting future values of the HF is fun-
damental to timely schedule maintenance actions and minimize the trade-off
between unnecessary replacements and unexpected breaks. For such reasons,
stability and reliability of the predictions are primary needs in the problem at
hand, as in general for HF signal employed in PdM.

To test the proposed methodology, a dataset consisting of 17 complete helium
flow readings (from maintenance to maintenance) is employed as benchmark.
The i-th test series is defined as

Si =
{
{tj , yj}nij=1, t̄i

}
, i = 1, . . . , 17

where τi is the actual time instant at which a maintenance operation has taken
place, and {tj , yj}nij=1 are the related helium flow readings. Specifically, the
accuracy of the prediction at a time t̄i −∆t is used to assess the performance
of the proposed algorithm.

In Table 1 the filtering performances of the proposed HGP-PF and of a KF
in terms of RMSE are reported. As in the simulation studies of previous sec-
tion, the HGP-PF outperforms the KF. Fig. 13 reports filtering and prediction
results based on the data of Fig. 12. In Fig. 3, the predictions distributions are
represented with grey and red areas if they are below or above the FCL, respec-
tively. Fig. 14 shows the estimated risk (i.e., the threshold-crossing probability)
at time instant t̄i −∆t for the actual failure time t̄i (i.e., R(t̄i) computed with
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Figure 12: Anonymized helium flow data and an example of fixed control limit (FCL). It can
be noticed the observation noise (possibly resulting in outliers), as well as the time-varying
behavior of the signal.
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Figure 13: [Industrial Data] Filtering and prediction of the signal presented in Fig. 12.
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Figure 14: [Industrial] Risk function assessments for the experimental dataset.

all the available information at time instant t̄i − ∆t). Rather unsurprisingly,
the best performances are obtained with the smallest ∆t, namely, 100 working
hours (left panel of Figure 14). In this case, only 3 out of 17 estimated risks
are below 50%, and only one below 40%. When ∆t is increased to 200 working
hours (central panel of Figure 14), the increased uncertainty does not allow to
obtain optimal results. For ∆t = 250 working hours (right panel of Figure 14)
the phenomenon is even more evident, as the distribution of the risk function
assessment is almost flat.

From an operational point of view, the most important feature of the pro-
posed methodology is its capability to precisely assess the fault event probabi-
lity when the life-cycle of the equipment is coming to an end, thus allowing to
schedule an early maintenance operation. With respect to this requirement, the
performances presented in Figure 14 are satisfactory. The experimental results
presented in this section show that the choice of a proper prediction range is
crucial: Indeed, a long range would result in almost uninformative predictions,
while a short range would yield extremely precise predictions when the optimal
time to adjust the maintenance schedule is already passed. Such trade-off be-
tween precision and timeliness is consistent with the characteristics of proposed
prediction paradigm.

Finally, the HGP-PF based and KF based PdM policies have been tested
versus a simulated Preventive Maintenance (PvM) tool. PvM is a really popular
approach to maintenance that triggers actions based on the amount of time
passed from previous maintenance. Here the PvM tool has been simulated by
computing a risk factor RPvM on a different set D0 of N0 time series from the
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Figure 15: [Industrial Data] Optimal value of J for the various maintenance strategies as a
function of the ratio of the costs cUL

cUB
(averaged results over 100 Monte Carlo simulations).

same distributions of D as follows

RPvM(t) =

∑N0

i=i Θ(τi − t)
N0

%, (21)

where Θ(·) is the Heaviside step function. Observe that the Risk Function
(21) is computed on the training data and does not depend on current sensor
readings. Let ρUB be the percentage of unexpected breaks and ρUl the number of
unexploited runs. In Fig. 15 the overall costs J = cUBρUB+cULρUL are reported,
over a range of different values of the ratio cUL

cUB
, for the different policies. It can

be appreciated how PdM approaches are generally superior to PvM and PF
outperfoms the Kalman Filtering-based PdM policy.

To better highlight the trade-off between prediction accuracy and timeliness
of the proposed HGP-PF approach, performances for fixed values of the ratio cUL

cUB
and different values of ∆t for the HGP-PF PdM-based and for the PvM-based
maintenance management policy. are reported in Table 2. It can be noticed
that, for ∆t = 200 and ∆t = 250, the PvM-based policy is more effective than
the HGP-PF PdM-based one. It can also be appreciated that, as expected,
the more timely a prediction is, the lower the performance is in terms of costs
associate with unexpected breaks and unexploited lifetime. However, in a cost-
minimization perspective such lower performance could be justified in some
real world example by the cost savings associated with timely maintenance
planning.
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Maintenance Policy cUL/cUB = 25 cUL/cUB = 40
PdM HGP-PF ∆t = 25 11.13 13.25
PdM HGP-PF ∆t = 50 15.81 19.75
PdM HGP-PF ∆t = 75 17.34 22.43
PdM HGP-PF ∆t = 100 20.14 26.29
PdM HGP-PF ∆t = 150 23.49 30.71
PdM HGP-PF ∆t = 200 26.56 38.31
PdM HGP-PF ∆t = 250 27.12 39.12
PvM 24.84 37.81

Table 2: [Industrial Data] HGP-PF-based PdM and PvM performances in terms of overall
cost J for fixed values of the ratio cUL

cUB
.

Conclusions and Discussion

In this work, a hidden Gamma process particle-filter approach for health
factor has been presented. The proposed approach is well suited for real-world
industrial health factors, characterized by monotonic behavior and observed
through irregularly sampled and noisy measurements. The proposed approach
provides predictions based on a Particle Filter that employs Monte Carlo sim-
ulation to approximate the health factor posterior distribution from the afore-
mentioned data. To account for changes in variability of the health factor, an
adaptive filtering scheme, based on a regularization approach, has also been
proposed. Furthermore, the definition and generation of a proper risk function
associated with the model has been discussed. The proposed approach has been
tested on both synthetic data and experimental data coming from a semicon-
ductor manufacturing application. In both cases, the new approach has proved
to ensure better performance with respect to those based on Kalman Filtering
when applied to the definition of Predictive Maintenance policies. Furthermore,
the possibility of calculating the future distribution of the health factor can be
used to obtain a quantitative assessment of failure risks.

In Fault Detection and Isolation, model robustness and reliability are crucial
issues [64, 65]. For this reason, many data-driven approaches, thanks to their
simple forms and limited requirements in terms of design and engineering efforts,
have become more and more popular both in industry and academia [66]. One of
the main advantages of the approach proposed in this work is that it only relies
on the simple model assumption that the Health Factor and its increments are
nonnegative. As shown in Section 1, such assumption is common and realistic
in most industrial/real-world scenarios.

Beside robustness and reliability, current research in Fault Detection and
Isolation and Predictive Maintenance is dedicated to the derivation of multi-
component, incipient faults [67], and model-free solutions. In the present work
the latter 2 aspects have been addressed, while multi-component problems have
not been explored. In fact, in complex, real-world industrial scenarios processes
are described by a large number of variables that can be related to a given
fault. For this reason, many works on multi-dimensional diagnosis have been
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presented in the past recent years [66, 68, 3]. However, in terms of prognosis,
the focus of the proposed approach, Health Factors can be traced back to a
single variable/quantity, identified through experience/domain expertise, the
output of multi-dimensional Soft Sensor, or the residual of a Fault Detection
& Identification multi-dimensional procedure. One aspect that has not been
tackled in this work and may be subject of future research activities is the
case of multiple fault problems that may be associated with multiple Health
Factors. While the Hidden-Gamma Process-Particle Filter procedure can still
be applied in such cases (prognostic for each Health Factor can be run in parallel
by different instances of the proposed approach), a jointly risk function has to be
considered to implement Predictive Maintenance policies considering multiple
faults.
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