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PROJECT SPECIFICATION 

 

Graph Neural Networks(GNN), Machine Learning Inference, Field Programmable Gate 
Arrays(FPGAs), High Level Synthesis(HLS), Synthesis Optimization and hls4ml (High Level 
Synthesis for Machine Learning).   
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ABSTRACT 

 

Graph Neural Network possess prospect in track reconstruction for the Large Hadron Collider use-
case due to high dimensional and sparse data. Field Programmable Gate Arrays (FPGAs) have the 
potential to speedup inference of machine learning algorithms compared to GPUs as they support 
pipeline operation. In our research, we have used hls4ml, a machine learning inference package for 
FPGAs and we have evaluated different approaches: Pipeline, Dataflow and Dataflow with pipeline 
blocks architectures. Results show that the Pipeline architecture is the fastest but it has some 
disadvantages such as large loop unrolling and non-functioning reuse factor. Our solution of large loop 
unrolling takes more than 100 hours to complete synthesis of Hardware architecture from High Level 
Synthesis(HLS) C++ code. On the other hand, our implementation of the system using the Dataflow 
architecture is too slow but it does not solve large synthesis time. So we proposed a modified Dataflow 
architecture where some of the building blocks are in pipeline architecture. We have found prominent 
results from this architecture but we have not solved the large synthesis time problem.  
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1. INTRODUCTION 

Track reconstruction is an important pattern recognition task for any Large Hadron Collider (LHC) 
experiment. This task identifies useful hits associated with a particle trajectory (‘track’) and while, at the 
same time, discarding fake hits, segments and tracks. Our project is a part of Deep Underground Neutrino 
Experiment(DUNE) but results are applicable to any LHC case. The Deep Underground Neutrino 
Experiment (DUNE) is an international experiment for neutrino science and proton decay studies. One of 
the main objective of this experiment is to understand Neutrino-Antineutrino (and matter-antimatter) 
asymmetries which may answer why the universe exists after the Big Bang theory. Track Reconstruction by 
using Graph Neural Network(GNN), a powerful class of methods from Geometric Deep Learning [5, 6], has 
both real-time and non-real-time applications based on its implementation technique and use-case. Image 
based methods such as Convolutional Neural Networks(CNNs) and Long Short-Term Memory(LSTM) are 
used for track reconstruction as well, but these approaches face issues to scale up to realistic HL-LHC data 
due to the high dimensionality and sparsity [1-4] of the data. Instead, by representing the data as a space-
point structure and treat it as a graph of connected hits (see Fig. 1), we can exploit Graph Neural Network 
(GNN) to describe the structure of the data with high accuracy. The graph can be constructed by connecting 
plausibly-related hits using geometric constraints or other pre-processing algorithms like the Hough 
Transform. A GNN model can learn on this graph representation and solve tasks with predictions over the 
graph nodes, edges, or global state. Here we work with a binary segment classification model that learns to 
identify many tracks at once by classifying the graph edges (hit pairs). The inputs to this model are the node 
features (the 3D hit coordinates) and the connectivity specification [1]. 

At first, let’s consider a simple graph that has 3 layers and each layer has 3 nodes(hits) (shown in Figure 
1). In this case, if a node can be connected to all the nodes of the next successive layer, then the number 
of possible edges is 18. Our main objective is to identify “Good” segments that connects the nodes with 
useful edges. The full Graph Neural Network model consists of an input transformation layer followed by 
recurrent alternating applications of the EdgeNetwork(segment classification) and NodeNetwork (hits 
classification). The architecture for the segment classification network is illustrated in figure 2. With each 
iteration of the model, information is propagated through the graph and the network, adaptively learns how 
to strengthen important connections and weaken the useless ones [1]. 

 

Figure 1. A simple 3 Layer 3 Track Graph [4].  

An EdgeNetwork computes weights for every edge of the graph using the features of the start and end 
nodes whereas a NodeNetwork computes new features for every node using the edge weight aggregated 
features of the connected nodes on the previous and next detector layers separately as well as the nodes’ 
current features. [1]. 

 

Figure 2. GNN based Segment Classifier Architecture [1] 
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The InputNet is one layer MLP with tanh activations. On the other hand, The EdgeNetwork is a 2-layer MLP 
with tanh and sigmoid activation. Edge (E) weight array is  

𝑤 =  𝑓𝑒𝑑𝑔𝑒(𝑅𝑖
𝑇𝑋, 𝑅𝑜

𝑇𝑋) 

The NodeNetwork is a 2-Layer MLP with tanh activations. Node features are: 

𝑋′ =  𝑓𝑛𝑜𝑑𝑒((𝑅𝑜 ⊙  𝑤)𝑅𝑖
𝑇𝑋, (𝑅𝑖 ⊙  𝑤)𝑅𝑜

𝑇𝑋, 𝑋) 

Here, X is (N × D) node feature matrix,  𝑅𝑖 is a (N×E) association matrix of nodes to input edges and 𝑅𝑜 is a (N×E) 

association matrix of nodes to output edges where N is number of Nodes and E is number of edges. The complete 
architecture for 3 layers, 3 tracks and 4 layers, 4 tracks is given in figure 3.  

 

Figure 3. Complete architecture of 3 layers, 3 tracks (left) and 4 layers, 4 tracks(right) GNNs 

For both architectures the number of hidden layers are same, however the number of multiplication 
increases as the number of hits(nodes) increases. Table 1 shows the number of multiplication for different 
layers and tracks combinations. 
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Table 1: Number of multiplication for EdgeNetwork and NodeNetwork. 

GNN EdgeNetwork- 60 Weights NodeNetworks-100 Weights 

3 layers, 3 tracks (9 Nodes, 18 Edges) 18 x 60 =1080 multiplications 
18 x 9 x 7= 1,134 multiplications 

9 x 100= 900 multiplications 

4 layers, 4 tracks (16 Nodes, 48 
Edges) 

48 x 60 =2880 multiplications 
48 x 16 x 7= 5,376 multiplications 

16 x 100= 1600 multiplications 

5 layers, 5 tracks (25 Nodes, 100 
Edges) 

100 x 60 =6000 multiplications 
100 x 25 x 7= 17,500 
multiplications  

25 x 100= 2500 multiplications 

As the multiplications increases radically with respect to number of nodes and edges, we will need to restrict 
the number of Digital Signal Processors (DSPs) in Field Programmable Gate Arrays (FPGAs). 

2. Why implementation on FPGAs? 

 Field Programmable Gate Arrays (FPGAs) are electronic devices that are based on matrix of configurable 
logic blocks (CLBs) connected via programmable interconnects. FPGAs can be reprogrammed to the 
desired application or functionality requirements after manufacturing. This feature distinguishes FPGAs from 
Application Specific Integrated Circuits (ASICs), which are custom manufactured for specific design tasks. 
Mission-critical applications (for example, autonomous vehicle, manufacturing, etc.) require deterministic 
low-latency. The data flow pattern in such applications may be in streaming form, requiring pipelined-
oriented processing. Due to the non-re-configurability after manufacture and the high initial cost of 
fabrication of Application Specific Integrated Circuits (ASICs), FPGAs are popular for prototyping digital 
systems. As far as neural networks are concerned the advantage in using FPGAs relies in the fact that we 
can upgrade the neural model every time the model is trained with better accuracy. This would be impossible 
on an ASIC. As shown in Figure 4, FPGAs also have an advantage with respect to Graphics Processors 
(GPU) in that they support pipelined operations, thus speeding up inference [7, 8, 9]. The advantages of 
FPGA over ASIC and GPU is shown in Figure 4. 

 

Figure 4. Advantages of FPGA over ASIC and GPU. 
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3. Hls4ml for FPGAs 

hls4ml is a package for machine learning inference in FPGAs that can be used to develop firmware 
implementations of machine learning algorithms using High Level Synthesis (HLS). The main goal of hls4ml 
is to provide an efficient and fast translation of machine learning models. Traditional open-source machine 
learning package models can be translated into HLS which can be configured on FPGAs after some kind of 
hardware optimization. The resulting HLS project can be then used to produce an IP which can be plugged 
into more complex designs or be used to create a kernel for CPU co-processing. The workflow for hls4ml is 
given in Figure 5.  

 

 

Figure 5. (top) hls4ml workflow[3], (bottom) a simpler hls4ml workflow [3] 

Usually, FPGAs are programmed using Hardware Description Language (HDL) such as VHDL or Verilog 
but this approach is quite time consuming for testing complex algorithms. Due to this fact, High Level 
Synthesis, translating High Level Languages C/C++ code into VHDL and Verilog code, is getting more and 
more popular. Still this is a difficult situation for Machine Learning and Deep Learning Practitioners as most 
of the Machine Learning development platforms works with Python and there is no way to program the 
FPGA using the Python Machine Learning code.  Instead, using hls4ml it is possible to convert trained 
model into HLS code once the training phase of Machine Learning is completed.   The user has the freedom 
to define many of the parameters of their algorithm to best suit their needs. 

The users can control aspects of their model such as: 

o size/compression - though not explicitly part of the hls4ml package, this is an important optimization 
to efficiently use the FPGA resources  

o precision - define the precision of the calculations in your model 
o dataflow/resource reuse - control parallel or serial model implementations with varying levels of 

pipelining 

The hls4ml package enables fast prototyping of a machine learning algorithm implementation in FPGAs, 
greatly reducing the time to results and giving the user intuition for how to best design a machine learning 
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algorithm for their application while balancing performance, resource utilization and latency requirements 
[3]. 

4. Basics of FPGA Implementation  

Field Programmable Gate Arrays (FPGAs) is built with Look Up Tables(LUTs), Flip-Flops (FFs), Block RAM 
and Digital Signal Processors (DSPs). LUTs are basically Static RAM which is why any imaginable digital 
logic can be implemented in a FPGA whereas DSP is used for faster multiplication and additions. Two digital 
system implementation techniques 1. Dataflow Architecture and 2. Pipeline Architecture are typically used 
to reduce the latency. In the Dataflow architecture, all the unit block functions are parallelized as shown in 
Figure 6 [10]. 

 

Figure 6. Dataflow architecture [10].  

On the other hand, Pipeline architecture parallelize the loops in a function as we can see in Figure 7. 

 

Figure 7. Pipeline Architecture [10]. 
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5. Results and Analysis 

Our objective was to study how to run Graph Neural Network on FPGAs and for this, we focused on 
EdgeNet, the Segment Classifier implemented by the J. M. G. Duarte et al. at Fermilab. The hls4ml 
workspace, containing the trained model and corresponding HLS codes, was provided in GitHub. Table 2 
contains the Vivado C Synthesis results of the reference GNN implementation [4]. The first steps in the HLS 
implementation are represented by  C Simulation and C Synthesis. The C simulation step verifies that the 
design code for a certain input yields the expected outputs. On the other hand, C synthesis converts the 
HLS code to hardware architecture. Once we were able to successfully run C simulation and synthesis, we 
experimented the GNN with different architectures: 

1. Complete Pipeline Architecture 
2. Complete Dataflow Architecture 
3. Dataflow Architecture with Pipelined Blocks 

Input layer, EdgeNetwork and NodeNetwork of GNN are Multilayer Perceptron so we integrated improved 
HLS implementation of dense layers (Multilayer Perceptron) into GNN designed by V. Loncar at CERN. 
hls4ml uses a special parameter reuse factor which limits the number of multiplier used in the multiplication. 
In all of our experimentation, only the reuse factors 1,7, 21 and above could be used as this quantity is GNN 
dense layer dependent. Reference implementations were targeted such as the Kintex Family FPGA: 
xcku115-flva1517-1-c, which we have used for most of our tests. Vivado HLS C Synthesis Resource 
Utilization of Reference GNN is given in Table 2. 

Table 2: Vivado HLS C Synthesis Resource Utilization Reference GNN. 

Reference: Graph Neural Network inference in FPGA 

Tracks Layers 3 Tracks 3 Layers 4 Tracks 4 Layers 

Resource Utilization 

Device: xcku115-flva1517-1-c Device: xcku115-flva1517-1-c 

Vivado HLS C Synthesis Vivado HLS C Synthesis 

BRAM_18K DSP48E FF LUT BRAM_18K DSP48E FF LUT 

Reuse 

Factor 

Available 4320 5520 1326720 663360 4320 5520 1326720 663360 

Available 
SLR 

2160 2760 663360 331680 2160 2760 663360 331680 

1 

Total(Used) 184 5067 181959 425524 516 17424 660071 1786841 

Utilization 
SLR (%) 

8 183 27 128 23 631 99 538 

Utilization(%) 4 91 13 64 11 315 49 269 

10 

Total(Used) 68 578 121855 362723 268 1908 636742 1506481 

Utilization 
SLR (%) 

3 20 18 109 12 69 95 454 

Utilization(%) 1 10 9 54 6 34 47 227 

a. Complete Pipeline Architecture 

At first, the complete network was designed using the pipeline architecture where all the adjacency matrices 
and layers were pipelined including the adjacency matrices for Edge and Node Networks (shown in Figure 
8). Table 3 contains the Vivado C Synthesis and Vivado Synthesis result of 3 Layers and 3 Tracks GNN for 
Reuse factor of 3. There is a difference between the usage of DSP blocks and LUTs in Vivado C Synthesis 
and Vivado Synthesis. Vivado Synthesis tries to optimise speed of the design by using more DSP blocks 
for computation in place of LUTs. So DSP utilisation increases in Vivado Synthesis. 3 Layers and 3 Tracks 
GNN with Reuse factor 1 crosses the SLR utilization limit but if we increase the Reuse factor to 7 and above, 
we can reduce the SLR utilization under 100%. Tuning the Reuse factor is not efficient since we observed 
that, even increasing the reuse factor, the DSP count does not decrease proportionately. We have found 
that the DSP count for adjacency matrices follows the Reuse of the DSP block but MLP layers don’t follow 
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proportionally. In case of a Reuse factor of 7 and 21, we can see that our design takes 18% and 21% less 
area than the reference implementation. If we check the timing results in table 4, it can be seen that a fully 
pipelined architecture is 68% and 35% faster than reference for Reuse factors of 7 and 21 respectively.   

 

Figure 8. A complete Pipelined GNN. 

Table 3: Vivado C Synthesis and Vivado Synthesis of Complete Pipelined 3 layers, 3 tracks GNN. 

GNN Resources Usage for 
Pipeline Architecture 

Device: xcku115-flva1517-1-c 

Utilization Estimates: Vivado HLS C Synthesis Utilization Estimates: Vivado  Synthesis 

DSP48E Change LUT Change DSP48E Change CLB LUT Change 

 

Available 5520 na 663360 na 5520 Na 663360 na 

Available 
SLR 

2760 na 331680 na na Na na na 

Reuse=1 

Total(Used) 5067 -776.64% 420412 -15.90% 5049 -773.53% 143112 60.55% 

Utilization(%) 91 -810.00% 63 -16.67% 91.47 -814.70% 21.57 60.06% 

Utilization 
SLR (%) 

183 -815.00% 126 -15.60% na  na  

Reuse=7 

Total(Used) 1484 -156.75% 295398 18.56% 3309 -472.49% 106199 70.72% 

Utilization(%) 26 -160.00% 44 18.52% 59.95 -499.50% 16.01 70.35% 

Utilization 
SLR (%) 

53 -165.00% 89 18.35%     

Reuse=21 

Total(Used) 1161 -100.87% 285845 21.19% 3023 -423.01% 107392 70.39% 

Utilization(%) 21 -110.00% 43 20.37% 54.76 -447.60% 16.19 70.02% 

Utilization 
SLR (%) 

42 -110.00% 86 21.10%     
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Table 4: Timing from Vivado C Synthesis of Complete Pipelined 3 layers, 3 tracks GNN. 

 

Latency (Clock Cycles) 
Timing (ns) Target: 10.00 

Latency Interval 

Min Change Max Change Min Max Estimated/Uncertainty 

Reuse=1 21 81.58% 21 81.58% 1 1 

8.619/1.25 Reuse=7 36 68.42% 36 68.42% 7 7 

Reuse=21 73 35.96% 73 35.96% 21 21 

We could not fit the 4 Layers, 4 Tracks GNN into the Kintex FPGA. In table 5, it can be seen that even if, 
we increase the reuse factor to 21 we cannot reduce the resource utilization less than 100 percent. Fully 
Pipelined architecture only improved the speed (given in Table 6). 

Table 5: Vivado C Synthesis and Vivado Synthesis of Complete Pipelined 4 layers, 4 tracks GNN. 

GNN Resources Usage for 
Pipeline Architecture 

Device: xcku115-flva1517-1-c 

Utilization Estimates: Vivado HLS C Synthesis Utilization Estimates: Vivado  Synthesis 

DSP48E Change LUT Change DSP48E Change CLB LUT Change 

 
Available 5520 na 663360 na 5520 na 663360 na 

Available SLR 2760 na 331680 na na na na na 

Reuse=1 

Total(Used) 17616 -823.27% 1798687 -19.40% 5520 -189.31% 2285042 -51.68% 

Utilization(%) 319 -838.24% 271 -19.38% 100 -194.12% 344.46 -51.74% 

Utilization SLR (%) 638 -824.64% 542 -19.38%     

Reuse=21 

Total(Used) 4640 -143.19% 1355382 10.03% 2582 -35.32% 1025563 31.92% 

Utilization(%) 84 -147.06% 204 10.13% 46.78 -37.59% 154.6 31.89% 

Utilization SLR (%) 168 -143.48% 408 10.13%     

Table 6: Timing from Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN. 

 

Latency (Clock Cycles) 
Timing (ns) Target: 10.00 

Latency Interval 

Min Change Max Change Min Max Estimated/Uncertainty 

Reuse=1 23 78.10% 23 78.10% 1 1 8.619/1.25 

Reuse=21 63 40.00% 63 40.00% 21 21 8.619/1.25 

To fit the design, we needed a bigger FPGA from Virtex family. So we chose the largest FPGA, xcvu13p-
fhga2104-1-I, available in Vivado HLS. From table 7, we can see that, for the reuse factor 21, the 4 layers, 
4 tracks GNN fits in the Virtex FPGA. Vivado synthesis presents similar behaviour of optimizing the speed 
by using more DSPs than LUTs. If we compare table 6 and table 8, it is clear that the speed of this 
architecture is almost similar for both Kintex and Virtex FPGAs.   

Table 7: Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex FPGA. 

GNN Resources Usage for 
Pipeline Architecture 

Device: xcvu13p-fhga2104-1-i 

Vivado HLS C Synthesis Vivado Synthesis 

DSP48E LUT DSP48E CLB LUT 

 Reuse Available 12288 1728000 12288 1728000 

Reuse=1 
Total(Used) 17616 1790783 12288 991030 

Utilization(%) 143 103 100 57.35 

Reuse=21 
Total(Used) 4640 1355242 12272 629730 

Utilization(%) 37 78 99.87 36.44 
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Table 8: Timing from Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex 
FPGA. 

  

Latency (Clock Cycles) 
Timing (ns) Target: 10.00 

Latency Interval 

Min Max Min Max Estimated/Uncertainty 

Reuse=1 21 21 1 1 8.729/1.25 

Reuse=21 61 61 21 21 8.729/1.25 

When we moved to 5 layers, 5 tracks GNN, we faced large loop unrolling: in the Vivado HLS pipeline 
approach, loops are unrolled in order to process all the data in parallel. Unfortunately, the unrolled data for 
the 5 layers, 5 tracks GNN, reaches the 64GB RAM limit and therefore Vivado kills the synthesis. After a 

detailed investigation, we found that Vivado HLS can’t perform 𝒃𝒐 = 𝑹𝒐
𝑻𝑿 and 𝒃𝒊 = 𝑹𝒊

𝑻𝑿 in a same ‘for loop’ 
for a high number of edges (in this case 50). So we divide these similar tasks with similar number of iterations 
into different loops and different size of iterations. Then, we impose the Vivado HLS pragma ‘#pragma HLS 
unroll factor=2’ to limit the unrolling: unfortunately  the synthesis took a very large amount of time (around 
105 hours). The result is given in table 9 and it shows that this design does not fit into the FPGA. 

 

Table 9: Vivado C Synthesis of Complete Pipelined 5 layers, 5 tracks GNN. 

Graph Neural Network inference on FPGA: 5 Tracks 5 Layers 

Resource Utilization 

Device: xcvu13p-fhga2104-1-i 

Vivado HLS C Synthesis 

BRAM_18K DSP48E FF LUT Latency Interval 

 Available 5376 12288 3456000 1728000 Min max Min Max 

Reuse=28 
Total(Used) 550 9300 604827 4153953 38 38 28 28 

Utilization(%) 10 75 12 240  

Resource utilization in different layers was investigated as it was observed that DSP blocks were not 
reduced proportional to the increase of the Reuse factor. From the table 10, it can be seen that NodeNetwork 
adjacency matrices scales down in DSP count in accordance with reuse factor where EdgeNetwork does 
not use any DSP blocks as it is only Boolean operation. But MLP layers were not following the Reuse factor. 
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Table 10: Resource Utilization in different layers in Complete Pipelined 3 layers, 3 tracks GNN. 

3 Tracks 3 Layers Device: xcku115-flva1517-1-c 

 
EdgeNetwork 

Adjacency Matrices 
NodeNetwork 

Adjacency Matrices 
All the MLPs 

Reuse Factor DSP48E LUT DSP48E LUT DSP48E LUT 

1 0 145,440 2268 166687 2799 106,149 

7 0 72720 324 176843 1160 43055 

21 0 72720 108 171915 1053 38723 

In conclusion, we found two main issues with the pipeline implementation: first, a large synthesis time for 
large networks and second, Reuse factor is not working as expected. So we moved to investigate to 
Dataflow.  

b.  Complete Dataflow Architecture 

Due to the long simulation time and Reuse factor issue, the complete network was designed using the 
Dataflow architecture where all the functions and layers were in Dataflow including the adjacency matrices 
for Edge and Node Networks (shown in Figure 9). 

 

Figure 9. A complete Dataflow GNN 

In the Dataflow approach, the design uses less amount of resources and less synthesis time but it requires 
huge latency. At the same time, the Reuse factor functions properly but the large unrolling issue is not still 
solved for 5 layers, 5 tracks GNN. Table 11 and table 12 contain Vivado C synthesis and timing results. If 
we compare the results with the pipeline architecture implementation, it is evident that this implementation 
is area efficient but the delay makes it not feasible for further implementation. 
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Table 11: Vivado C Synthesis of Complete Dataflow 4 layers, 4 tracks GNN. 

GNN Resources Usage for  

Dataflow Architecture 

Device: xcku115-flva1517-1-c 

Utilization Estimates: Vivado HLS C Synthesis 

DSP48E Change LUT Change 

 
Available 5520 na 663360 Na 

Available SLR 2760 na 331680 Na 

Reuse=1 

Total(Used) 2473 -327.85% 477649 -31.68% 

Utilization(%) 44 -340.00% 72 -33.33% 

Utilization SLR (%) 87 -335.00% 144 -32.11% 

Reuse=21 

Total(Used) 120 79.24% 483488 -33.29% 

Utilization(%) 2 80.00% 72 -33.33% 

Utilization SLR (%) 4 80.00% 145 -33.03% 

Table 12: Timing of Complete Dataflow 4 layers, 4 tracks GNN. 

 

Latency (Clock Cycles) 

Latency Interval 

Min Change Max Change Min Max 

Reuse=1 3003 -2534.21% 3003 -2534.21% 632 632 

Reuse=21 5684 -4885.96% 5765 -4957.02% 1424 1442 

c. Dataflow architecture with Pipelined Blocks 

Complete Dataflow supports functioning reuse factor but long latency made this GNN impractical. So we 
tried to pipeline some blocks of the Graph Neural Network. The modified architecture is given in Figure 10. 

 

Figure 10. A Dataflow GNN with Pipelined Blocks. 
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The overall GNN was developed in Dataflow manner but different units were pipelined in different ways. 
Activation layers are completely pipelined whereas in Dense layers only for loops are pipelined. In this way, 
Reuse factor is working for all the layers except dense layers. DSP usage in dense layers are fixed in this 
implementation but they are small in number which does not create problem for small implementation. But 
in this implementation, Vivado Synthesis crashes for 4 layers, 4 tracks GNN. It takes up full 62.4GB RAM 
and crashes. We followed a similar Xilinx forum solution for this but it did not solve the issue.  

Table 13: Vivado C Synthesis of Complete Pipelined 3 layers, 3 tracks GNN. 

GNN Resources Usage for Pipeline Architecture 

Device: xcku115-flva1517-1-c 

Utilization Estimates: Vivado HLS C Synthesis 

DSP48E Change LUT Change 

 
Available 5520 - 663360 - 

Available SLR 2760 - 331680 - 

Reuse=1 

Total(Used) 2473 -327.85% 445565 -22.84% 

Utilization(%) 44 -340.00% 74 -37.04% 

Utilization SLR (%) 89 -345.00% 149 -36.70% 

Reuse=7 

Total(Used) 529 8.48% 507872 -40.02% 

Utilization(%) 9 10.00% 76 -40.74% 

Utilization SLR (%) 19 5.00% 153 -40.37% 

Reuse=21 

Total(Used) 313 45.85% 503840 -38.90% 

Utilization(%) 5 50.00% 75 -38.89% 

Utilization SLR (%) 11 45.00% 151 -38.53% 

Table 14: Timing of 3 layers, 3 tracks GNN for Kintex FPGA. 

 

Latency (Clock Cycles) 

Latency Interval 

Min Change Max Change Min Max 

Reuse=1 153 -34.21% 153 -34.21% 27 27 

Reuse=7 160 -40.35% 160 -40.35% 28 28 

Reuse=21 158 -38.60% 158 -38.60% 21 21 

Table 15: Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex FPGA. 

GNN Resources Usage for Pipeline Architecture 

Device: xcku115-flva1517-1-c 

Utilization Estimates: Vivado HLS C Synthesis 

DSP48E Change LUT Change 

 
Available 5520 - 663360 - 

Available SLR 2760 - 331680 - 

Reuse=1 

Total(Used) 10953 -474.06% 2118547 -40.63% 

Utilization(%) 198 -482.35% 319 -40.53% 

Utilization SLR (%) 396 -473.91% 638 -40.53% 

Reuse=7 

Total(Used) 1737 8.96% 2165281 -43.73% 

Utilization(%) 31 8.82% 326 -43.61% 

Utilization SLR (%) 62 10.14% 652 -43.61% 

Reuse=21 

Total(Used) 713 62.63% 2136505 -41.82% 

Utilization(%) 12 64.71% 322 -41.85% 

Utilization SLR (%) 25 63.77% 644 -41.85% 
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Table 16: Timing of 4 layers, 4 tracks GNN for Virtex FPGA. 

 

Latency (Clock Cycles) 

Latency Interval 

Min Change Max Change Min Max 

Reuse=1 289 -175.24% 289 -175.24% 57 57 

Reuse=7 289 -175.24% 289 -175.24% 57 57 

Reuse=21 289 -175.24% 289 -175.24% 51 51 

The issue about long synthesis time is not still solved for large designs like 5 layers, 5 tracks GNN. Even 
for this structure, the synthesis took 125 hours. 

Table 17: Resource Utilization in different layers in Complete Pipelined 5 layers, 5 tracks GNN. 

Graph Neural Network inference on FPGA: 5 Tracks 5 Layers 

Resource Utilization 

Device: xcku115-flva1517-1-c 

Vivado HLS C Synthesis 

BRAM_18K DSP48E FF LUT Latency Interval 

 Available 4320  5520 1326720 663360 Min max Min Max 

 Available SLR 2160  2760 663360 331680 511  511 103 103 

Reuse=21 

Total(Used) 2088  1877 760229 7049620 

 Utilization(%) 48  34 57 1062 

Utilization SLR (%) 96  68 114 2125 

6. Discussions and Conclusions 

We have presented a study on the possibility to synthetize GNN architectures on FPGA exploring different 
approaches. We have been able to improve the GNN synthesis using the Pipeline architecture and 
achieving 60% improvement in terms of speed with respect to the reference implementation. Using the 
Pipeline Architecture, 3 Layers x 3 Tracks and 4 Layers x 4 Tracks network fit into an FPGA. As far as the 
Dataflow approach is concerned, we have been able solve the large memory usage of loop unrolling but we 
could not improve on the time needed to run the synthesis: the Dataflow architecture turned out to be too 
slow for practical applications. On the other hand, we devised a modified Dataflow architecture improving 
its speed compared to the standard Dataflow approach, even though issues remained concerning the large 
unrolling memory usage and large synthesis time.    
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