

Graph Neural Network Inference on FPGA

SEPTEMBER 2019

AUTHOR(S):

Kazi Ahmed Asif Fuad

American International University-Bangladesh

SUPERVISOR(S):

Sofia Vallecorsa

CERN openlab Report // 2019

2

 Graph Neural Network(GNN) Inference on FPGA

PROJECT SPECIFICATION

Graph Neural Networks(GNN), Machine Learning Inference, Field Programmable Gate
Arrays(FPGAs), High Level Synthesis(HLS), Synthesis Optimization and hls4ml (High Level
Synthesis for Machine Learning).

CERN openlab Report // 2019

3

 Graph Neural Network(GNN) Inference on FPGA

ABSTRACT

Graph Neural Network possess prospect in track reconstruction for the Large Hadron Collider use-
case due to high dimensional and sparse data. Field Programmable Gate Arrays (FPGAs) have the
potential to speedup inference of machine learning algorithms compared to GPUs as they support
pipeline operation. In our research, we have used hls4ml, a machine learning inference package for
FPGAs and we have evaluated different approaches: Pipeline, Dataflow and Dataflow with pipeline
blocks architectures. Results show that the Pipeline architecture is the fastest but it has some
disadvantages such as large loop unrolling and non-functioning reuse factor. Our solution of large loop
unrolling takes more than 100 hours to complete synthesis of Hardware architecture from High Level
Synthesis(HLS) C++ code. On the other hand, our implementation of the system using the Dataflow
architecture is too slow but it does not solve large synthesis time. So we proposed a modified Dataflow
architecture where some of the building blocks are in pipeline architecture. We have found prominent
results from this architecture but we have not solved the large synthesis time problem.

CERN openlab Report // 2019

4

 Graph Neural Network(GNN) Inference on FPGA

TABLE OF CONTENTS

INTRODUCTION 05

WHY IMPLEMENTATION ON FPGAs 07

HLS4ML FOR FPGAs 08

BASIC OF FPGA IMPLEMENTATION 09

RESULT AND ANALYSIS 10

COMPLETE PIPELINE ARCHITECTURE

COMPLETE DATAFLOW ARCHITECTURE

DATAFLOW ARCHITECTURE WITH PIPELINED BLOCKS

DISCUSSIONS AND CONCLUSIONS 17

REFERENCES 17

CERN openlab Report // 2019

5

 Graph Neural Network(GNN) Inference on FPGA

1. INTRODUCTION

Track reconstruction is an important pattern recognition task for any Large Hadron Collider (LHC)
experiment. This task identifies useful hits associated with a particle trajectory (‘track’) and while, at the
same time, discarding fake hits, segments and tracks. Our project is a part of Deep Underground Neutrino
Experiment(DUNE) but results are applicable to any LHC case. The Deep Underground Neutrino
Experiment (DUNE) is an international experiment for neutrino science and proton decay studies. One of
the main objective of this experiment is to understand Neutrino-Antineutrino (and matter-antimatter)
asymmetries which may answer why the universe exists after the Big Bang theory. Track Reconstruction by
using Graph Neural Network(GNN), a powerful class of methods from Geometric Deep Learning [5, 6], has
both real-time and non-real-time applications based on its implementation technique and use-case. Image
based methods such as Convolutional Neural Networks(CNNs) and Long Short-Term Memory(LSTM) are
used for track reconstruction as well, but these approaches face issues to scale up to realistic HL-LHC data
due to the high dimensionality and sparsity [1-4] of the data. Instead, by representing the data as a space-
point structure and treat it as a graph of connected hits (see Fig. 1), we can exploit Graph Neural Network
(GNN) to describe the structure of the data with high accuracy. The graph can be constructed by connecting
plausibly-related hits using geometric constraints or other pre-processing algorithms like the Hough
Transform. A GNN model can learn on this graph representation and solve tasks with predictions over the
graph nodes, edges, or global state. Here we work with a binary segment classification model that learns to
identify many tracks at once by classifying the graph edges (hit pairs). The inputs to this model are the node
features (the 3D hit coordinates) and the connectivity specification [1].

At first, let’s consider a simple graph that has 3 layers and each layer has 3 nodes(hits) (shown in Figure
1). In this case, if a node can be connected to all the nodes of the next successive layer, then the number
of possible edges is 18. Our main objective is to identify “Good” segments that connects the nodes with
useful edges. The full Graph Neural Network model consists of an input transformation layer followed by
recurrent alternating applications of the EdgeNetwork(segment classification) and NodeNetwork (hits
classification). The architecture for the segment classification network is illustrated in figure 2. With each
iteration of the model, information is propagated through the graph and the network, adaptively learns how
to strengthen important connections and weaken the useless ones [1].

Figure 1. A simple 3 Layer 3 Track Graph [4].

An EdgeNetwork computes weights for every edge of the graph using the features of the start and end
nodes whereas a NodeNetwork computes new features for every node using the edge weight aggregated
features of the connected nodes on the previous and next detector layers separately as well as the nodes’
current features. [1].

Figure 2. GNN based Segment Classifier Architecture [1]

CERN openlab Report // 2019

6

 Graph Neural Network(GNN) Inference on FPGA

The InputNet is one layer MLP with tanh activations. On the other hand, The EdgeNetwork is a 2-layer MLP
with tanh and sigmoid activation. Edge (E) weight array is

𝑤 = 𝑓𝑒𝑑𝑔𝑒(𝑅𝑖
𝑇𝑋, 𝑅𝑜

𝑇𝑋)

The NodeNetwork is a 2-Layer MLP with tanh activations. Node features are:

𝑋′ = 𝑓𝑛𝑜𝑑𝑒((𝑅𝑜 ⊙ 𝑤)𝑅𝑖
𝑇𝑋, (𝑅𝑖 ⊙ 𝑤)𝑅𝑜

𝑇𝑋, 𝑋)

Here, X is (N × D) node feature matrix, 𝑅𝑖 is a (N×E) association matrix of nodes to input edges and 𝑅𝑜 is a (N×E)

association matrix of nodes to output edges where N is number of Nodes and E is number of edges. The complete
architecture for 3 layers, 3 tracks and 4 layers, 4 tracks is given in figure 3.

Figure 3. Complete architecture of 3 layers, 3 tracks (left) and 4 layers, 4 tracks(right) GNNs

For both architectures the number of hidden layers are same, however the number of multiplication
increases as the number of hits(nodes) increases. Table 1 shows the number of multiplication for different
layers and tracks combinations.

CERN openlab Report // 2019

7

 Graph Neural Network(GNN) Inference on FPGA

Table 1: Number of multiplication for EdgeNetwork and NodeNetwork.

GNN EdgeNetwork- 60 Weights NodeNetworks-100 Weights

3 layers, 3 tracks (9 Nodes, 18 Edges) 18 x 60 =1080 multiplications
18 x 9 x 7= 1,134 multiplications

9 x 100= 900 multiplications

4 layers, 4 tracks (16 Nodes, 48
Edges)

48 x 60 =2880 multiplications
48 x 16 x 7= 5,376 multiplications

16 x 100= 1600 multiplications

5 layers, 5 tracks (25 Nodes, 100
Edges)

100 x 60 =6000 multiplications
100 x 25 x 7= 17,500
multiplications

25 x 100= 2500 multiplications

As the multiplications increases radically with respect to number of nodes and edges, we will need to restrict
the number of Digital Signal Processors (DSPs) in Field Programmable Gate Arrays (FPGAs).

2. Why implementation on FPGAs?

 Field Programmable Gate Arrays (FPGAs) are electronic devices that are based on matrix of configurable
logic blocks (CLBs) connected via programmable interconnects. FPGAs can be reprogrammed to the
desired application or functionality requirements after manufacturing. This feature distinguishes FPGAs from
Application Specific Integrated Circuits (ASICs), which are custom manufactured for specific design tasks.
Mission-critical applications (for example, autonomous vehicle, manufacturing, etc.) require deterministic
low-latency. The data flow pattern in such applications may be in streaming form, requiring pipelined-
oriented processing. Due to the non-re-configurability after manufacture and the high initial cost of
fabrication of Application Specific Integrated Circuits (ASICs), FPGAs are popular for prototyping digital
systems. As far as neural networks are concerned the advantage in using FPGAs relies in the fact that we
can upgrade the neural model every time the model is trained with better accuracy. This would be impossible
on an ASIC. As shown in Figure 4, FPGAs also have an advantage with respect to Graphics Processors
(GPU) in that they support pipelined operations, thus speeding up inference [7, 8, 9]. The advantages of
FPGA over ASIC and GPU is shown in Figure 4.

Figure 4. Advantages of FPGA over ASIC and GPU.

CERN openlab Report // 2019

8

 Graph Neural Network(GNN) Inference on FPGA

3. Hls4ml for FPGAs

hls4ml is a package for machine learning inference in FPGAs that can be used to develop firmware
implementations of machine learning algorithms using High Level Synthesis (HLS). The main goal of hls4ml
is to provide an efficient and fast translation of machine learning models. Traditional open-source machine
learning package models can be translated into HLS which can be configured on FPGAs after some kind of
hardware optimization. The resulting HLS project can be then used to produce an IP which can be plugged
into more complex designs or be used to create a kernel for CPU co-processing. The workflow for hls4ml is
given in Figure 5.

Figure 5. (top) hls4ml workflow[3], (bottom) a simpler hls4ml workflow [3]

Usually, FPGAs are programmed using Hardware Description Language (HDL) such as VHDL or Verilog
but this approach is quite time consuming for testing complex algorithms. Due to this fact, High Level
Synthesis, translating High Level Languages C/C++ code into VHDL and Verilog code, is getting more and
more popular. Still this is a difficult situation for Machine Learning and Deep Learning Practitioners as most
of the Machine Learning development platforms works with Python and there is no way to program the
FPGA using the Python Machine Learning code. Instead, using hls4ml it is possible to convert trained
model into HLS code once the training phase of Machine Learning is completed. The user has the freedom
to define many of the parameters of their algorithm to best suit their needs.

The users can control aspects of their model such as:

o size/compression - though not explicitly part of the hls4ml package, this is an important optimization
to efficiently use the FPGA resources

o precision - define the precision of the calculations in your model
o dataflow/resource reuse - control parallel or serial model implementations with varying levels of

pipelining

The hls4ml package enables fast prototyping of a machine learning algorithm implementation in FPGAs,
greatly reducing the time to results and giving the user intuition for how to best design a machine learning

CERN openlab Report // 2019

9

 Graph Neural Network(GNN) Inference on FPGA

algorithm for their application while balancing performance, resource utilization and latency requirements
[3].

4. Basics of FPGA Implementation

Field Programmable Gate Arrays (FPGAs) is built with Look Up Tables(LUTs), Flip-Flops (FFs), Block RAM
and Digital Signal Processors (DSPs). LUTs are basically Static RAM which is why any imaginable digital
logic can be implemented in a FPGA whereas DSP is used for faster multiplication and additions. Two digital
system implementation techniques 1. Dataflow Architecture and 2. Pipeline Architecture are typically used
to reduce the latency. In the Dataflow architecture, all the unit block functions are parallelized as shown in
Figure 6 [10].

Figure 6. Dataflow architecture [10].

On the other hand, Pipeline architecture parallelize the loops in a function as we can see in Figure 7.

Figure 7. Pipeline Architecture [10].

CERN openlab Report // 2019

10

 Graph Neural Network(GNN) Inference on FPGA

5. Results and Analysis

Our objective was to study how to run Graph Neural Network on FPGAs and for this, we focused on
EdgeNet, the Segment Classifier implemented by the J. M. G. Duarte et al. at Fermilab. The hls4ml
workspace, containing the trained model and corresponding HLS codes, was provided in GitHub. Table 2
contains the Vivado C Synthesis results of the reference GNN implementation [4]. The first steps in the HLS
implementation are represented by C Simulation and C Synthesis. The C simulation step verifies that the
design code for a certain input yields the expected outputs. On the other hand, C synthesis converts the
HLS code to hardware architecture. Once we were able to successfully run C simulation and synthesis, we
experimented the GNN with different architectures:

1. Complete Pipeline Architecture
2. Complete Dataflow Architecture
3. Dataflow Architecture with Pipelined Blocks

Input layer, EdgeNetwork and NodeNetwork of GNN are Multilayer Perceptron so we integrated improved
HLS implementation of dense layers (Multilayer Perceptron) into GNN designed by V. Loncar at CERN.
hls4ml uses a special parameter reuse factor which limits the number of multiplier used in the multiplication.
In all of our experimentation, only the reuse factors 1,7, 21 and above could be used as this quantity is GNN
dense layer dependent. Reference implementations were targeted such as the Kintex Family FPGA:
xcku115-flva1517-1-c, which we have used for most of our tests. Vivado HLS C Synthesis Resource
Utilization of Reference GNN is given in Table 2.

Table 2: Vivado HLS C Synthesis Resource Utilization Reference GNN.

Reference: Graph Neural Network inference in FPGA

Tracks Layers 3 Tracks 3 Layers 4 Tracks 4 Layers

Resource Utilization

Device: xcku115-flva1517-1-c Device: xcku115-flva1517-1-c

Vivado HLS C Synthesis Vivado HLS C Synthesis

BRAM_18K DSP48E FF LUT BRAM_18K DSP48E FF LUT

Reuse

Factor

Available 4320 5520 1326720 663360 4320 5520 1326720 663360

Available
SLR

2160 2760 663360 331680 2160 2760 663360 331680

1

Total(Used) 184 5067 181959 425524 516 17424 660071 1786841

Utilization
SLR (%)

8 183 27 128 23 631 99 538

Utilization(%) 4 91 13 64 11 315 49 269

10

Total(Used) 68 578 121855 362723 268 1908 636742 1506481

Utilization
SLR (%)

3 20 18 109 12 69 95 454

Utilization(%) 1 10 9 54 6 34 47 227

a. Complete Pipeline Architecture

At first, the complete network was designed using the pipeline architecture where all the adjacency matrices
and layers were pipelined including the adjacency matrices for Edge and Node Networks (shown in Figure
8). Table 3 contains the Vivado C Synthesis and Vivado Synthesis result of 3 Layers and 3 Tracks GNN for
Reuse factor of 3. There is a difference between the usage of DSP blocks and LUTs in Vivado C Synthesis
and Vivado Synthesis. Vivado Synthesis tries to optimise speed of the design by using more DSP blocks
for computation in place of LUTs. So DSP utilisation increases in Vivado Synthesis. 3 Layers and 3 Tracks
GNN with Reuse factor 1 crosses the SLR utilization limit but if we increase the Reuse factor to 7 and above,
we can reduce the SLR utilization under 100%. Tuning the Reuse factor is not efficient since we observed
that, even increasing the reuse factor, the DSP count does not decrease proportionately. We have found
that the DSP count for adjacency matrices follows the Reuse of the DSP block but MLP layers don’t follow

CERN openlab Report // 2019

11

 Graph Neural Network(GNN) Inference on FPGA

proportionally. In case of a Reuse factor of 7 and 21, we can see that our design takes 18% and 21% less
area than the reference implementation. If we check the timing results in table 4, it can be seen that a fully
pipelined architecture is 68% and 35% faster than reference for Reuse factors of 7 and 21 respectively.

Figure 8. A complete Pipelined GNN.

Table 3: Vivado C Synthesis and Vivado Synthesis of Complete Pipelined 3 layers, 3 tracks GNN.

GNN Resources Usage for
Pipeline Architecture

Device: xcku115-flva1517-1-c

Utilization Estimates: Vivado HLS C Synthesis Utilization Estimates: Vivado Synthesis

DSP48E Change LUT Change DSP48E Change CLB LUT Change

Available 5520 na 663360 na 5520 Na 663360 na

Available
SLR

2760 na 331680 na na Na na na

Reuse=1

Total(Used) 5067 -776.64% 420412 -15.90% 5049 -773.53% 143112 60.55%

Utilization(%) 91 -810.00% 63 -16.67% 91.47 -814.70% 21.57 60.06%

Utilization
SLR (%)

183 -815.00% 126 -15.60% na na

Reuse=7

Total(Used) 1484 -156.75% 295398 18.56% 3309 -472.49% 106199 70.72%

Utilization(%) 26 -160.00% 44 18.52% 59.95 -499.50% 16.01 70.35%

Utilization
SLR (%)

53 -165.00% 89 18.35%

Reuse=21

Total(Used) 1161 -100.87% 285845 21.19% 3023 -423.01% 107392 70.39%

Utilization(%) 21 -110.00% 43 20.37% 54.76 -447.60% 16.19 70.02%

Utilization
SLR (%)

42 -110.00% 86 21.10%

CERN openlab Report // 2019

12

 Graph Neural Network(GNN) Inference on FPGA

Table 4: Timing from Vivado C Synthesis of Complete Pipelined 3 layers, 3 tracks GNN.

Latency (Clock Cycles)
Timing (ns) Target: 10.00

Latency Interval

Min Change Max Change Min Max Estimated/Uncertainty

Reuse=1 21 81.58% 21 81.58% 1 1

8.619/1.25 Reuse=7 36 68.42% 36 68.42% 7 7

Reuse=21 73 35.96% 73 35.96% 21 21

We could not fit the 4 Layers, 4 Tracks GNN into the Kintex FPGA. In table 5, it can be seen that even if,
we increase the reuse factor to 21 we cannot reduce the resource utilization less than 100 percent. Fully
Pipelined architecture only improved the speed (given in Table 6).

Table 5: Vivado C Synthesis and Vivado Synthesis of Complete Pipelined 4 layers, 4 tracks GNN.

GNN Resources Usage for
Pipeline Architecture

Device: xcku115-flva1517-1-c

Utilization Estimates: Vivado HLS C Synthesis Utilization Estimates: Vivado Synthesis

DSP48E Change LUT Change DSP48E Change CLB LUT Change

Available 5520 na 663360 na 5520 na 663360 na

Available SLR 2760 na 331680 na na na na na

Reuse=1

Total(Used) 17616 -823.27% 1798687 -19.40% 5520 -189.31% 2285042 -51.68%

Utilization(%) 319 -838.24% 271 -19.38% 100 -194.12% 344.46 -51.74%

Utilization SLR (%) 638 -824.64% 542 -19.38%

Reuse=21

Total(Used) 4640 -143.19% 1355382 10.03% 2582 -35.32% 1025563 31.92%

Utilization(%) 84 -147.06% 204 10.13% 46.78 -37.59% 154.6 31.89%

Utilization SLR (%) 168 -143.48% 408 10.13%

Table 6: Timing from Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN.

Latency (Clock Cycles)
Timing (ns) Target: 10.00

Latency Interval

Min Change Max Change Min Max Estimated/Uncertainty

Reuse=1 23 78.10% 23 78.10% 1 1 8.619/1.25

Reuse=21 63 40.00% 63 40.00% 21 21 8.619/1.25

To fit the design, we needed a bigger FPGA from Virtex family. So we chose the largest FPGA, xcvu13p-
fhga2104-1-I, available in Vivado HLS. From table 7, we can see that, for the reuse factor 21, the 4 layers,
4 tracks GNN fits in the Virtex FPGA. Vivado synthesis presents similar behaviour of optimizing the speed
by using more DSPs than LUTs. If we compare table 6 and table 8, it is clear that the speed of this
architecture is almost similar for both Kintex and Virtex FPGAs.

Table 7: Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex FPGA.

GNN Resources Usage for
Pipeline Architecture

Device: xcvu13p-fhga2104-1-i

Vivado HLS C Synthesis Vivado Synthesis

DSP48E LUT DSP48E CLB LUT

 Reuse Available 12288 1728000 12288 1728000

Reuse=1
Total(Used) 17616 1790783 12288 991030

Utilization(%) 143 103 100 57.35

Reuse=21
Total(Used) 4640 1355242 12272 629730

Utilization(%) 37 78 99.87 36.44

CERN openlab Report // 2019

13

 Graph Neural Network(GNN) Inference on FPGA

Table 8: Timing from Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex
FPGA.

Latency (Clock Cycles)
Timing (ns) Target: 10.00

Latency Interval

Min Max Min Max Estimated/Uncertainty

Reuse=1 21 21 1 1 8.729/1.25

Reuse=21 61 61 21 21 8.729/1.25

When we moved to 5 layers, 5 tracks GNN, we faced large loop unrolling: in the Vivado HLS pipeline
approach, loops are unrolled in order to process all the data in parallel. Unfortunately, the unrolled data for
the 5 layers, 5 tracks GNN, reaches the 64GB RAM limit and therefore Vivado kills the synthesis. After a

detailed investigation, we found that Vivado HLS can’t perform 𝒃𝒐 = 𝑹𝒐
𝑻𝑿 and 𝒃𝒊 = 𝑹𝒊

𝑻𝑿 in a same ‘for loop’
for a high number of edges (in this case 50). So we divide these similar tasks with similar number of iterations
into different loops and different size of iterations. Then, we impose the Vivado HLS pragma ‘#pragma HLS
unroll factor=2’ to limit the unrolling: unfortunately the synthesis took a very large amount of time (around
105 hours). The result is given in table 9 and it shows that this design does not fit into the FPGA.

Table 9: Vivado C Synthesis of Complete Pipelined 5 layers, 5 tracks GNN.

Graph Neural Network inference on FPGA: 5 Tracks 5 Layers

Resource Utilization

Device: xcvu13p-fhga2104-1-i

Vivado HLS C Synthesis

BRAM_18K DSP48E FF LUT Latency Interval

 Available 5376 12288 3456000 1728000 Min max Min Max

Reuse=28
Total(Used) 550 9300 604827 4153953 38 38 28 28

Utilization(%) 10 75 12 240

Resource utilization in different layers was investigated as it was observed that DSP blocks were not
reduced proportional to the increase of the Reuse factor. From the table 10, it can be seen that NodeNetwork
adjacency matrices scales down in DSP count in accordance with reuse factor where EdgeNetwork does
not use any DSP blocks as it is only Boolean operation. But MLP layers were not following the Reuse factor.

CERN openlab Report // 2019

14

 Graph Neural Network(GNN) Inference on FPGA

Table 10: Resource Utilization in different layers in Complete Pipelined 3 layers, 3 tracks GNN.

3 Tracks 3 Layers Device: xcku115-flva1517-1-c

EdgeNetwork

Adjacency Matrices
NodeNetwork

Adjacency Matrices
All the MLPs

Reuse Factor DSP48E LUT DSP48E LUT DSP48E LUT

1 0 145,440 2268 166687 2799 106,149

7 0 72720 324 176843 1160 43055

21 0 72720 108 171915 1053 38723

In conclusion, we found two main issues with the pipeline implementation: first, a large synthesis time for
large networks and second, Reuse factor is not working as expected. So we moved to investigate to
Dataflow.

b. Complete Dataflow Architecture

Due to the long simulation time and Reuse factor issue, the complete network was designed using the
Dataflow architecture where all the functions and layers were in Dataflow including the adjacency matrices
for Edge and Node Networks (shown in Figure 9).

Figure 9. A complete Dataflow GNN

In the Dataflow approach, the design uses less amount of resources and less synthesis time but it requires
huge latency. At the same time, the Reuse factor functions properly but the large unrolling issue is not still
solved for 5 layers, 5 tracks GNN. Table 11 and table 12 contain Vivado C synthesis and timing results. If
we compare the results with the pipeline architecture implementation, it is evident that this implementation
is area efficient but the delay makes it not feasible for further implementation.

CERN openlab Report // 2019

15

 Graph Neural Network(GNN) Inference on FPGA

Table 11: Vivado C Synthesis of Complete Dataflow 4 layers, 4 tracks GNN.

GNN Resources Usage for

Dataflow Architecture

Device: xcku115-flva1517-1-c

Utilization Estimates: Vivado HLS C Synthesis

DSP48E Change LUT Change

Available 5520 na 663360 Na

Available SLR 2760 na 331680 Na

Reuse=1

Total(Used) 2473 -327.85% 477649 -31.68%

Utilization(%) 44 -340.00% 72 -33.33%

Utilization SLR (%) 87 -335.00% 144 -32.11%

Reuse=21

Total(Used) 120 79.24% 483488 -33.29%

Utilization(%) 2 80.00% 72 -33.33%

Utilization SLR (%) 4 80.00% 145 -33.03%

Table 12: Timing of Complete Dataflow 4 layers, 4 tracks GNN.

Latency (Clock Cycles)

Latency Interval

Min Change Max Change Min Max

Reuse=1 3003 -2534.21% 3003 -2534.21% 632 632

Reuse=21 5684 -4885.96% 5765 -4957.02% 1424 1442

c. Dataflow architecture with Pipelined Blocks

Complete Dataflow supports functioning reuse factor but long latency made this GNN impractical. So we
tried to pipeline some blocks of the Graph Neural Network. The modified architecture is given in Figure 10.

Figure 10. A Dataflow GNN with Pipelined Blocks.

CERN openlab Report // 2019

16

 Graph Neural Network(GNN) Inference on FPGA

The overall GNN was developed in Dataflow manner but different units were pipelined in different ways.
Activation layers are completely pipelined whereas in Dense layers only for loops are pipelined. In this way,
Reuse factor is working for all the layers except dense layers. DSP usage in dense layers are fixed in this
implementation but they are small in number which does not create problem for small implementation. But
in this implementation, Vivado Synthesis crashes for 4 layers, 4 tracks GNN. It takes up full 62.4GB RAM
and crashes. We followed a similar Xilinx forum solution for this but it did not solve the issue.

Table 13: Vivado C Synthesis of Complete Pipelined 3 layers, 3 tracks GNN.

GNN Resources Usage for Pipeline Architecture

Device: xcku115-flva1517-1-c

Utilization Estimates: Vivado HLS C Synthesis

DSP48E Change LUT Change

Available 5520 - 663360 -

Available SLR 2760 - 331680 -

Reuse=1

Total(Used) 2473 -327.85% 445565 -22.84%

Utilization(%) 44 -340.00% 74 -37.04%

Utilization SLR (%) 89 -345.00% 149 -36.70%

Reuse=7

Total(Used) 529 8.48% 507872 -40.02%

Utilization(%) 9 10.00% 76 -40.74%

Utilization SLR (%) 19 5.00% 153 -40.37%

Reuse=21

Total(Used) 313 45.85% 503840 -38.90%

Utilization(%) 5 50.00% 75 -38.89%

Utilization SLR (%) 11 45.00% 151 -38.53%

Table 14: Timing of 3 layers, 3 tracks GNN for Kintex FPGA.

Latency (Clock Cycles)

Latency Interval

Min Change Max Change Min Max

Reuse=1 153 -34.21% 153 -34.21% 27 27

Reuse=7 160 -40.35% 160 -40.35% 28 28

Reuse=21 158 -38.60% 158 -38.60% 21 21

Table 15: Vivado C Synthesis of Complete Pipelined 4 layers, 4 tracks GNN for Virtex FPGA.

GNN Resources Usage for Pipeline Architecture

Device: xcku115-flva1517-1-c

Utilization Estimates: Vivado HLS C Synthesis

DSP48E Change LUT Change

Available 5520 - 663360 -

Available SLR 2760 - 331680 -

Reuse=1

Total(Used) 10953 -474.06% 2118547 -40.63%

Utilization(%) 198 -482.35% 319 -40.53%

Utilization SLR (%) 396 -473.91% 638 -40.53%

Reuse=7

Total(Used) 1737 8.96% 2165281 -43.73%

Utilization(%) 31 8.82% 326 -43.61%

Utilization SLR (%) 62 10.14% 652 -43.61%

Reuse=21

Total(Used) 713 62.63% 2136505 -41.82%

Utilization(%) 12 64.71% 322 -41.85%

Utilization SLR (%) 25 63.77% 644 -41.85%

CERN openlab Report // 2019

17

 Graph Neural Network(GNN) Inference on FPGA

Table 16: Timing of 4 layers, 4 tracks GNN for Virtex FPGA.

Latency (Clock Cycles)

Latency Interval

Min Change Max Change Min Max

Reuse=1 289 -175.24% 289 -175.24% 57 57

Reuse=7 289 -175.24% 289 -175.24% 57 57

Reuse=21 289 -175.24% 289 -175.24% 51 51

The issue about long synthesis time is not still solved for large designs like 5 layers, 5 tracks GNN. Even
for this structure, the synthesis took 125 hours.

Table 17: Resource Utilization in different layers in Complete Pipelined 5 layers, 5 tracks GNN.

Graph Neural Network inference on FPGA: 5 Tracks 5 Layers

Resource Utilization

Device: xcku115-flva1517-1-c

Vivado HLS C Synthesis

BRAM_18K DSP48E FF LUT Latency Interval

 Available 4320 5520 1326720 663360 Min max Min Max

 Available SLR 2160 2760 663360 331680 511 511 103 103

Reuse=21

Total(Used) 2088 1877 760229 7049620

 Utilization(%) 48 34 57 1062

Utilization SLR (%) 96 68 114 2125

6. Discussions and Conclusions

We have presented a study on the possibility to synthetize GNN architectures on FPGA exploring different
approaches. We have been able to improve the GNN synthesis using the Pipeline architecture and
achieving 60% improvement in terms of speed with respect to the reference implementation. Using the
Pipeline Architecture, 3 Layers x 3 Tracks and 4 Layers x 4 Tracks network fit into an FPGA. As far as the
Dataflow approach is concerned, we have been able solve the large memory usage of loop unrolling but we
could not improve on the time needed to run the synthesis: the Dataflow architecture turned out to be too
slow for practical applications. On the other hand, we devised a modified Dataflow architecture improving
its speed compared to the standard Dataflow approach, even though issues remained concerning the large
unrolling memory usage and large synthesis time.

References

[1] Novel deep learning methods for track reconstruction. Available at: arXiv:1810.06111v1

[2] M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, CoRR abs/1611.08097 (2016),
1611.08097

[3] J. Duarte et al., "Fast inference of deep neural networks in FPGAs for particle physics", JINST 13 P07027
(2018), arXiv:1804.06913.

[4] ACTS Meeting of August 30, 2018. Meeting report available at https://indico.cern.ch/event/753577/
contributions/3123602/attachments/1707996/2752966/acts-gnn-Aug30.pdf

https://arxiv.org/abs/1810.06111v1
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf

CERN openlab Report // 2019

18

 Graph Neural Network(GNN) Inference on FPGA

[5] HEP.TrkX Meeting. Report Available at: https://indico.cern.ch/event/658267/contributions/2881175/
attachments/1621912/2581064/Farrell_hept rkx_ctd2018.pdf

[6] HEP.TrkX: https://heptrkx.github.io/

[7] Arrow.com website article. Available at: https://www.arrow.com/en/research-and-events/articles/fpga-vs-
cpu-vs-gpu-vs-microcontroller

[8] Lance Simms blog. Available at: https://lancesimms.com/Microprocessors/CPU_vs_GPU_vs_FPGA.
html

[9] Numato Lab online article. Available at: https://numato.com/blog/differences-between-fpga-and-asics/

[10] Xilinx Documentation. Available at: https://www.xilinx.com/support/documentation/sw_manuals/xilinx
2015_2/sdsoc_doc/topics/calling-coding guidelines/concept_data_flow.html#concept_data_flow__fig _mnp
_jxh_ks

https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://numato.com/blog/differences-between-fpga-and-asics/

