

Andrew Scholbrock
Engineer | National Wind Technology Center

National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway | Golden, CO 80401

Office Phone: (303) 384 - 7181 andrew.scholbrock@nrel.gov | www.nrel.gov

An Overview of Lidar-Assisted Control PART III

Main questions today

- ➤ How can we obtain useful information for controls from lidar systems? → Part I
- ➤ How can these signals be used to improve wind turbine control? → Part II
- What are practical considerations when implementing lidar-assisted control in the field? → Part III

Controls Advanced Research Turbines (CARTs)

Photo by Andy Scholbrock, NREL

- ~40 meter rotor diameter
- Heavily instrumented
 - Dedicated met mast
 - Strain gauges
 - Accelerometers

- ~37 meter hub height
- ~600 kW rated power
- Numerous lidar field campaigns
- Can be run in a downwind configuration

Lidar Assisted Yaw Control – Bias Correction

Photo by Lee Jay Fingersh, NREL

Lidar Assisted Yaw Control – Bias Correction

 $AccErr = \int sign(er_{fast}) * er_{fast}^{2}$ TC = 1sDo nothing this cycle precompute AccErrl > vaw setpoint Yaw setpoint Stop the turbine

Lowpass

Photo by Lee Jay Fingersh, NREL

Lidar Assisted Yaw Control – Bias Correction

Annual Energy Production estimated to be increased by 2.4% for a 7.5° static misalignment

P. A. Fleming, A. K. Scholbrock, A. Jehu, S. Davoust, E. Osler, A. D. Wright, and A. Clifton, "Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment," Journal of Physics: Conference Series, vol. 524, no. 1, 2014.

Feedforward blade pitch control

- Wind Measurement \rightarrow Filter Measurement \rightarrow FF Pitch Control
 - Filter out high frequency content of wind
 - Control generator speed for low frequency
 - De-tune conventional feedback control to focus on higher frequency turbine loading controls

Photo by David Schlipf, SWE

Feedforward blade pitch control

Frequency (Hz)

Frequency (Hz)

PSD of Tower Fore-Aft Bending

Blue – Baseline feedback only control Green – Lidar assisted feedback/feed-forward control

Practical Considerations from Field Testing

Visibility/Hard Targets

Environment

Photo by Andy Scholbrock, NREL

Static/Dynamic Alignment

Photo by Mark Murphy, NREL

Practical Considerations from Field Testing

Visibility/Hard Targets

Environment

Photo by Andy Scholbrock, NREL

Static/Dynamic Alignment

Photo by Mark Murphy, NREL

Certification of Lidar Assisted Control

- Yaw controller changes
 - Loads considerations
- Feedforward Pitch Control
 - Loss of lidar signal
 - Fallback controller
 - Turbine derating
- Process needs to exist for lidar assisted control to have industrial adoption

Photo by Andy Scholbrock, NREL

Field Testing LAC Summary

- Wind turbine yaw alignment can be improved using lidars over conventional nacelle vanes
- Feedforward controller can be used to regulate rated rotor speed in region III
- Feedback controller can be tuned for loads reduction
- Yaw alignment and feedforward control can be done in tandem
- Practical considerations of visibility, environment, and alignment need to be accounted for
- Certification process needed to ensure robust turbine operation

Photo by Dennis Schroeder, NREI

Thank you for your time

Photo by Andy Scholbrock, NREL

