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Abstract. We investigate the decidability of the definability problem
for fragments of first order logic over finite words enriched with regular
numerical predicates. In this paper, we focus on the quantifier alternation
hierarchies of first order logic. We obtain that deciding this problem for
each level of the alternation hierarchy of both first order logic and its two-
variable fragment when equipped with all regular numerical predicates
is not harder than deciding it for the corresponding level equipped with
only the linear order.
Relying on some recent results, this proves the decidability for each level
of the alternation hierarchy of the two-variable first order fragment while
in the case of the first order logic the question remains open for levels
greater than two.
The main ingredients of the proofs are syntactic transformations of first-
order formulas as well as the infinitely testable property, a new algebraic
notion on varieties that we define.

1 Introduction

The equivalence between regular languages and automata as well as monadic
second order logic [3] and finite monoids [14] was the start of a domain of research
that is still active today. In this article, we are interested in the logic on finite
words, and more precisely the question we address is the definability problem for
fragments of logic. Fragments of logic are defined as sets of monadic second order
formulas satisfying some restrictions, and are equipped with a set of predicates
called a signature. Then the definability problem of a fragment of logic F consists
in deciding if a regular language can be defined by a formula of F.

This question has already been considered and solved in many cases where the
signature contains only the predicate <, which denotes the linear order over the
positions of the word. For instance, a celebrated result by Schützenberger [19]
and McNaughton and Papert [13] gave an effective algebraic characterization
of languages definable by first order formulas. The decidability has often been
achieved through algebraic means, showing a deep connection between algebraic
and logical properties of a given regular language. In this article, we follow this
approach.



We investigate the question of the behaviour of the decidability of some
fragments when their signature is enriched with regular numerical predicates.
These predicates are exactly the formulas of monadic second order logic without
letter predicates. Intuitively they correspond to the maximal class of numerical
predicates that can enrich the signature of a fragment of MSO, while keeping
the definable languages regular. This question was already considered in the case
of first order logic (FO) in [2] and one of its fragments: the formulas without
quantifier alternation in [15].

The enrichment by regular numerical predicates arose in the context of the
Straubing’s conjectures [23]. Roughly speaking, these conjectures state that de-
ciding the definability of a regular language to a fragment of enriched logic corre-
sponds to deciding its circuit complexity. It is known [15, 23] that an enrichment
of the classical fragments by regular numerical predicates is equivalent to an
enrichment by the signature [<,+1,Mod], where +1 denotes the local predicates
and Mod the modular predicates. A first step toward the study of fragments of
logic with these predicates was initiated by Straubing [22]. He obtained that
adding the local predicates preserves the decidability for a large number of frag-
ments. As a corollary of this work, Straubing obtained that the decidability of the
alternation hierarchy of first order logic (BΣk) equipped with [<,+1] reduces to
the decidability of the simpler one [<]. More recently, Kufleitner and Lauser [11]
proved the decidability of the alternation hierarchy of the two-variable first order
fragment (FO2

k) equipped with [<,+1] by using the recent results [10, 12] on the
decidability of this hierarchy with [<].

In this context, the case of modular predicates is poorly understood. The
study of this enrichment was first considered for first order logic in [2], and had
been extended to the first level of its alternation hierarchy with the successor
predicate in [15], and later without it in [4]. The enrichment by a finite set of
modular predicate was considered in [8]. Finally, the authors provided a charac-
terization of the two-variable first order logic over the signature [<,Mod] in [6].

In this paper, we focus on the enrichment by all regular predicates and let
aside the question of the signature [<,Mod], which surprisingly turns out to be
more intricate. The fragments we consider here are the quantifier alternations
hierarchy of the first order logic and its two-variable counterpart. Our main result
states that for both of these hierarchies, the decidability of each level equipped
with regular numerical predicates reduces to decidability of the same level with
the signature [<,+1]. Then by using the recent decidability result of Kufleitner
and Lauser [11], as well as the decidability of BΣ2[<] by Place and Zeitoun [18],
we deduce that the fragments FO2

k[Reg], for any positive k, and BΣ2[Reg] are
decidable. Our main contributions are summarized in the next table.

Proofs methods. The proofs of the main results can be decomposed in two major
steps. The first part is rather classical and shows that in the cases we consider,
adding a finite number of modular predicates does not affect the decidability.
The second part is dedicated to finding a systematic way to select, for a given
regular language and a fragment, a finite number of modular predicates that
can serve as witness of its definability. This is done through a heavy use of the
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BΣ1 = FO2
1 FO2

k FO2 BΣ2 BΣk FO

[<]
Decidable Decidable Decidable Decidable Open Decidable

[20, 26] [10, 12] [25] [18] [13, 19]

[<,+1]
Decidable Decidable Decidable Decidable Reduces to [<] Decidable

[9] [11] [25, 1] [18, 22] [22] [13, 19]

[Reg]
Decidable Decidable Decidable Decidable Reduces to [<,+1] Decidable

[16] New result New result New result New result [2]

algebraic framework of varieties of semigroups. We introduce a new notion for
varieties of semigroups that we call the infinitely testable property and show
that this property is satisfied by the considered fragments. We then conclude
by proving that this property allows us to find such a witness set for modular
predicates that only depends on the input language.

Generalizations. While we are focused in this article on the levels of the quantifier
alternation hierarchies, our approach can be generalized to other fragments under
certain conditions. The generality of our results are discussed in Remarks 5, 7, 11
and 13.

Organization of the paper. Section 2 defines the logical and algebraic notions
that will be used in the paper. The main results of the paper are presented in
Section 3. The Sections 4 and 5 are then dedicated to the proofs. Section 4 first
discusses adding a finite number of predicates and reduces our decidability prob-
lems to a delay question, which can be summarized as being able to choose the
proper finite set of modular predicates. Then Section 5 defines a new notion, the
infinitely testable property, which is satisfied by the fragments that we consider
and whereby gives a delay. Finally, we discuss in Section 5 some other results
that can be directly obtained from our approach, as well as a related algebraic
characterization of the two-variable first order logic with the regular numerical
signature.

2 Preliminaries

Logic. We consider the monadic second order logic on finite words MSO[<] as
usual (see [23] for example). We denote by A an alphabet and by a a letter of
A. A word u over an alphabet A is a set of labelled positions ordered from 0 to
|u| − 1. The set of words over A is denoted A∗ and a subset L of A∗ is called a
language. We also denote by A+ the set of non-empty words. A language is said
to be defined by a formula if it corresponds exactly to the set of words that satisfy
this formula. It is said to be regular if it is defined by a MSO[<] formula. When
syntactic restrictions are applied to MSO[<], one defines fragments of logic that
characterize subclasses of regular languages. The most well-known fragment is
probably the first order logic, whose expressive power was characterized thanks
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to the results of [13, 19]. The first order logic itself gave birth to its own zoo
of fragments. These were defined using syntactical restrictions such as limiting
the number of variables, or by enrichment of its signature. A fragment F with
signature σ will be denoted F[σ] and will refer to the formulas as well as the
class of languages it defines.

We first define the different signatures that will appear through this paper,
and then formally define the fragments that are considered here: the quantifier
alternation hierarchies.

Signatures. We are interested in regular numerical predicates, which are numer-
ical predicates that can only define regular languages. Simultaneously, Straub-
ing [23] and Péladeau [15] defined three sets of regular numerical predicates that
can be used as a base for all the regular numerical predicates. The first set is
the singleton order {<} which is a binary predicate corresponding to the natural
order on the positions of the input word. The second set is {min,max,S} and
is called the local predicates. It is usually denoted +1. The predicates min and
max are unary predicates that are satisfied respectively on the first and last
positions. The predicate S, the successor, is a binary predicate satisfied if the
second variable quantifies the successor of the first one.

Example 1. The formula ∃x∃y min(x)∧S(x, y)∧a(x)∧a(y) defines the regular
language aaA∗.

Finally, we define, for each positive integer d, the modular predicates on d,
denoted Modd, as the set, for i < d, of predicates MODd

i (x) which are unary
predicates satisfied if the position quantified by x is congruent to i modulo d,
and the predicates Dd

i which are constants holding if the length of the input

word is congruent to i mod d. We denote by Mod the union of the classes Modd,
for any positive d.

Example 2. The language (A2)∗aA∗ is defined by the formula:

∃x a(x) ∧ MOD2
0(x) .

The signatures that we will consider for our fragments are unions of these
three sets of regular numerical predicate, and will always contain the letter pred-
icates. Abusing notations, we will also write Reg = {<} ∪+1 ∪Mod.

Fragments and alternation hierarchies. While MSO[Reg] = MSO[<], the equal-
ity does not hold for subclasses of MSO. For a signature σ, we denote by FO[σ]
the class of first order formulas whose predicates belong to σ. Since the local
predicates can be expressed in FO[<], the fragments FO[<] and FO[<,+1] de-
fine the same classes of languages, called the Star-Free languages [13]. On the
other hand the fragment FO[<,Mod] is strictly more expressive [2].

The fragment FO2 is the subclass of formulas of FO using only two symbols
of variables which can be reused (see Example 3). Here, the class of languages
defined by FO2[<] is strictly contained in FO2[<,+1] and FO2[<,Mod] (see [25,
6]).

4



Example 3. The language A∗aA∗bA∗aA∗ can be described by the first order
formula

∃x∃y∃z x < y < z ∧ a(x) ∧ b(y) ∧ a(z) .

This formula uses three variables x, y and z. However, by reusing x we get an
equivalent formula that uses only two variables:

∃x a(x) ∧
(
∃y x < y ∧ b(y) ∧

(
∃x y < x ∧ a(x)

))
. (a)

Now given a first order formula, one can compute a prenex normal form using
the De Morgan’s laws. We define the quantifier alternation depth of a formula
as the number of blocks of quantifiers ∀ and ∃ in its prenex normal form. For
example, the formula ∃x∃y∀z x < z < y ∧ a(x) ∧ a(y) ∧ c(z) has a quantifier
depth of 2. It describes the language A∗ac∗aA∗. Then given a signature σ and
a positive integer k, we denote by BΣk[σ] the set of prenex normal formulas of
FO[σ] whose quantifier depth is smaller or equal to k. They form the levels of
the quantifier alternation hierarchy over FO[σ].

When σ is reduced to {<}, this hierarchy is called the Straubing-Thérien
hierarchy [21, 24]. Only the first [20] and second [18] levels are known to be
decidable. For σ = {<} ∪+1, this hierarchy is called the Dot-Depth hierarchy [5].
The decidability of each level reduces to the decidability of the corresponding
level of the Straubing-Thérien hierarchy [22]. In both cases, the hierarchies are
known to be strict, and cover all Star-Free languages. In this article, we also
consider the alternation hierarchy of FO2. To define formally the number of
alternations of a formula, we cannot rely on the prenex normal form since the
construction increases the number of variables. In particular, remark that FO2[<
] is equivalent to Σ2[<] ∩Π2[<] which is a subclass of BΣ2[<] [7]. That said,
the number of alternations is still a relevant parameter that could be defined as
follows: Consider the parse tree naturally associated to a formula. For instance,
(a) has ∃ as a root and the atomic formulas as the leaves. In a two-variable
first order formula we count the maximal number of alternations appearing on
a branch, i.e. between the root and a leaf, once the negations have been pushed
on to the leaves. A more precise definition can be found in [28]. We denote by
FO2

k[σ] the formulas of FO2[σ] that have at most k − 1 quantifier alternations.
The hierarchy induced by FO2

k[<] is known to be strict [28] and its definability
problem is decidable [10, 12]. Note that the hierarchy FO2

k[<,+1] is also known
to be decidable [11].

Algebra. We quickly present here the fundamental notions used by the proofs of
the article (mainly Section 5) and refer the reader to [17] for a detailed approach.
A (finite) semigroup is a finite set equipped with an associative internal law. A
semigroup with a neutral element for this law is called a monoid. Recall that a
semigroup S divides another semigroup T if S is a quotient of a subsemigroup
of T . This defines a partial order on finite semigroups. Given a finite semigroup
S, an element e of S is idempotent if ee = e. We denote by E(S) the set of
idempotents of S. For any element x of S, there exists a positive integer n such
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that xn is idempotent. We call this element the idempotent power of x and denote
it by xω. One can check that the application x→ xω is well defined.

A semigroup S recognizes a language L over an alphabet A via a morphism
η : A+ → S. Given a regular language L, we can compute its syntactic semigroup
as the smallest semigroup that recognizes L, in the sense of division. For a
morphism η : A+ → S, the set η(A) is an element of the powerset semigroup
of S. As such it has an idempotent power. The stability index of a morphism
η is then defined as the smallest positive integer s such that η(As) = η(A2s).
Remark that η(As) forms a subsemigroup of S, that we call the stable semigroup.
A subset T of S is an ideal if the sets TS and ST are both included in T . A
(pseudo-)variety of semigroups is a non empty class of finite semigroups closed
under division and finite product.

A fragment of logic is characterized by a variety if they recognize the same
languages. By extension, a variety V will also refers to the class of languages it
recognizes. The most famous example is the equality FO[<] = A [13, 19], where
A denotes the class of aperiodic semigroups, which are finite semigroups that
are not divided by any group. As for FO[<], the definability problem for a frag-
ment of logic has often been solved thanks to an algebraic characterization ([20,
24, 25] for example). This decidability is sometimes obtained through profinite
equations. For example, the variety of aperiodic semigroups A is defined by the
equation xω+1 = xω.

3 Main results

We present here the main results of this paper, which are reductions of decid-
ability from any level of the first order hierarchies equipped with the regular
complete signature to the corresponding level whose signature is reduced to the
order.

As the decidability of each level of the two-variable hierarchy is known, we
get a decidability result. But as the decidability of both the Straubing-Thérien
hierarchy, and consequently the Dot-Depth hierarchy as well as their decidability
are equivalent, is still open for any level greater than 2, we only get a transfer
result.

Theorem 4. Let k be a positive integer.

1. The fragment BΣk[Reg] is decidable if BΣk[<] is decidable.
2. The fragment FO2

k[Reg] is decidable.

Let us remark first that this theorem implies that both hierarchies are strict,
which is a new result. The recent result of Place and Zeitoun [18] allows us to
state as a direct corollary that BΣ2[Reg] is decidable.

Remark 5. This approach could be applied to any abstract fragment charac-
terized by a variety and expressive enough to contain the languages (ab)+ and
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A∗a. At this level of abstraction, the operation of adding modular predicates
corresponds to a wreath product by modular morphisms. However, for the sake
of concise presentation, we focus on what we assume to be the most interest-
ing corollaries of this approach: the alternation hierarchies with successor. This
method can also be generalized to varieties that do not contain (ab)+ and is
therefore not dependant on the presence of the successor relation. However, this
requires to introduce the more involved framework of finite categories [27]. In
this context, the infinitely testable property of a variety of semigroups, which is
the key ingredient of the proof, lifts to the associated variety of semigroupoids.

Proof scheme. First, we reduce the decidability of BΣk[Reg] and FO2
k[Reg] to

the decidability of BΣk[<,+1] and FO2
k[<,+1], respectively. Then we conclude

by using the result of Straubing [22], that reduces the decidability of BΣk[<,+1]
to the decidability of BΣk[<], and the result of Kufleitner and Lauser [11] that
prove the decidability of FO2

k[<,+1]. The main issue is therefore to prove the
first reduction. In order to obtain it, we decompose the proof in two important
steps. The first one proves that adding a finite number of modular predicates is
decidable, while the second one allows us to compute such a finite set that serves
as a witness for a language to belong to the fragment. If the first step is quite
standard, the second introduces a new notion, the infinitely testable property,
which allows us to solve the delay question for the fragments we consider.

4 The delay question

The objective of this section is to reduce the decidability question to another
question, the delay. Informally, the delay question is: which modular predicates
would be used by a formula of the fragment to describe the input language.
Firstly, we deal with adding the modular predicates ranging over one specific
congruence. The idea is to reduce the decidability of a partially enriched fragment
to the one of the input fragment. As in [6], this is done by transferring the
modular information to an enriched alphabet. For any positive integer d, we
denote by Ad = A × Zd the enriched alphabet of A and by πd : A+

d → A+

the projection on the first component. To link this enrichment to the modular
information, we also define the well-formed words Kd as the language of words
(a0, i0) . . . (an, in) such that for any 0 6 j 6 n ij = j mod d. Finally, given a
language L, we denote by Ld = π−1d (L) ∩ Kd. The following theorem proves
the reduction from the partially enriched fragment to the initial one by deriving
formulas for one language to a formula to the other (see proof in Appendix).

Proposition 6. Let F[σ] be one of the fragments BΣk[<,+1] or FO2
k[<,+1]

for k > 1. Then, for any regular language L and any d > 0, L ∈ F[σ,Modd] if,
and only if, Ld ∈ F[σ].

Remark that since one can compute the well-formed enrichment of given a regular
language, we obtain as a direct consequence that if F[σ] is one of the fragments
BΣk[<,+1] or FO2

k[<,+1] for k > 1, the fragment F[σ] is decidable if, and only
if, F[σ,Modd] is decidable.
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Remark 7. Even if the previous proposition is only stated for the fragments con-
sidered in this article, its applications range over many more fragments. Indeed,
it would hold for any expressive enough fragment, i.e. any fragment that can
define the set of well-formed words over the enriched alphabet and that satisfies
some closure properties.

Now that we proved that adding predicates according to one congruence we
make the following easy remark. Let F[σ] be one of the fragments BΣk[<,+1]
or FO2

k[<,+1] and d, p be two positive integers. Then F[σ,Modd,Modp] ⊆
F[σ,Moddp]. Then as a formula can only use a finite number of modular predi-
cates, for any language of F [σ,Mod], there exists an integer d such that it belongs
to F [σ,Modd]. In fact, there exists an infinite number of such witnesses. Thanks
to Proposition 6, the decidability of the fragments we study reduces to the fol-
lowing question:

The delay question: Given a regular language L, is it possible to compute
an integer dL such that L belongs to F [σ,Mod] if, and only if, it belongs to
F [σ,ModdL ]?

The denomination stems from the Delay Theorem of [22] that solves a similar
question for the enrichment by the successor predicate.

5 The infinitely testable property

In this Section, we conclude the proof of the main theorem by solving the delay
question for the fragments considered. We actually solve the delay question for
the fragments we consider via an algebraic property on varieties satisfied by their
characterization. This property, which we call the infinitely testable property, is
a new notion that we introduce and which is defined below. Informally, a variety
is infinitely testable if the membership of a language to the variety only depends
on words long enough.

Definition. Given a semigroup S, the idempotents’ ideal of S, denoted IE(S),
is the ideal of S generated by its idempotents. We have then IE(S) = SE(S)S,
where E(S) denotes the set of idempotents of S. Note also that given a morphism
η : A+ → S, it is the semigroup of all elements of S having an infinite number of
preimages by η. An aware reader could notice that IE(S) is the set of all elements
of S that are J -below an idempotent. A variety of semigroups V is said to be
infinitely testable if the membership of a semigroup to V is equivalent to the
membership of its idempotents’ ideal. Informally, a variety is infinitely testable
if its membership can be reduced to an algebraic condition on the idempotents’
ideal. By extension, we say that a fragment of logic is infinitely testable if it is
characterized by an infinitely testable variety.

Example 8. The fragment FO[=] is equivalent to the aperiodic and commuta-
tive variety ACom. This fragment is also described by the equations xy = yx
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and xω+1 = xω. This fragment is not infinitely testable. For instance the lan-
guage equal to the singleton {ab} has a trivial idempotents’ ideal while it is not
definable in FO[=].

Example 9. The fragment FO[+1] is equivalent to the languages whose syntac-
tic semigroup belongs to the variety: ACom ∗ LI [23, Theorem VI.3.1]. This
fragment is also described by the profinite equation

xωuyωvxωwyω = xωwyωvxωuyω . (a)

We now show that it is an infinitely testable fragment. Let L be a regular lan-
guage and S its syntactic semigroup. We simply prove that if the equation (a)
is not satisfied by S, then it is not satisfied by IE(S). Suppose that there ex-
ists x, y, u, v, w ∈ S such that the equation (a) is not satisfied. Then by setting:
x′ = xω, y′ = yω, u′ = xωuyω, v′ = yωvxω, w′ = xωwyω. All new variables
belong to IE(S) and they also fail to satisfy (a).

Infinitely testable fragments. The infinitely testable property of levels of the
FO2[<,+1] hierarchy is proved using the equational characterization obtained
in [11], following Example 9. Because of the lack of equational description for
BΣk[<,+1], we use a more involved algebraic argument for this latter case (see
proofs in Appendix).

Proposition 10. Let k be a positive integer. The fragments FO2
k[<,+1] and

BΣk[<,+1] are infinitely testable.

Remark 11. The infinitely testable property of BΣk[<,+1] can be stated in a
more general framework. Indeed, in the article of Tilson [27], a version of the
delay theorem states that a semigroup belongs to V ∗ LI if, and only if, the
idempotents’ category belongs to the variety of finite categories generated by V.
In this framework of finite categories, the idempotents categories is defined as
the semigroup SE by removing the absorbing element 0. Therefore, one could
argue that all varieties of semigroups of the form V ∗ LI have the property to
be infinitely testable.

Delay theorem for quantifier hierarchies. We reach the key theorem of our
presentation. It proves a delay for each levels of the quantifier hierarchies over
the first order logic and its two-variable counterpart. The delay we obtain here
is the stability index.

Theorem 12. Let F[σ] be one of the fragments BΣk[<,+1] or FO2
k[<,+1] and

L a regular language of stability index s. Then L belongs to F [σ,Mod] if, and
only if, L belongs to F [σ,Mods].

Proof. We denote by V the infinitely testable variety of semigroups equivalent
to F [σ]. Consider a regular language L that belongs to F [σ,Mod]. Then as there
exists an integer d such that L belongs to F [σ,Modd], it is sufficient to show
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that if there exists d > 0 such that if L belongs to F [σ,Modds], then it belongs
to F [σ,Mods]. Thus, by Proposition 6, it suffices to prove that if Lds is definable
in F [σ], then Ls is in F [σ] as well. We recall that Ld = π−1d (L) ∩ Kd for any
d > 0. We set ηs : A+

s → Ss and ηds : A+
ds → Sds the syntactic morphisms of Ls

and Lds respectively.
Claim. The semigroup IE(Ss) divides IE(Sds).

Before proving this claim, let us remark that since a variety of semigroups is
closed by division, this claim ends the proof. Since if L belongs to F [σ,Modds]
then Sds belongs to V and therefore IE(Sds) belongs to V as well. By division,
IE(Ss) belongs to V, and thanks to the infinitely testable hypothesis, we have
that Ss belongs to V. Finally, we deduce that Ls belongs to F[σ]. We now aim to
construct a division from IE(Ss) to IE(Sds). This is done through the enriched
alphabet. We introduce the following projection

h :

{
A+

ds → A+
s

(a, i) 7→ (a, i mod s)

and Fd the language of well-formed factors, which is the set of well-formed
words that do not necessarily start by a letter of the form (a, 0). Note that
Lds = h−1(Ls) ∩Ks. Let us remark also that the image a word not in Fs (resp.
Fds) by ηs (resp. ηds) has an absorbing zero as image by ηs (resp. ηds). This zero
being idempotent, it belongs to IE(Ss) (resp. IE(Sds)). Finally, if two words of
Fs have the same image by ηs, then they have the same length modulo s and
their first (and consequently last) letters have the same enrichment.

Consider then x a non-zero element of IE(Ss). We show that

h−1(η−1s (x)) ∩ η−1ds (IE(Sds)) 6= ∅ .

Since x belongs to IE(Ss), there exists a word u of A+
s of length greater than s

in the preimage of x. And since ηs(A
s
s) = ηs(A

2s
s ) by definition of the stability

index, for any k > 0 there exists a word vk of A+
s of length greater than ks

such that u ≡L vk and |u| = |vk| mod s, since ηs(u) = ηs(vk). Then for k
sufficiently large, there exists a word w in h−1(vk), such that ηds(w) belongs to
IE(Sds). Note that by taking k as a multiple of d, we obtain a word w such
that |u| mod s = |w| mod ds. Thus for each element x ∈ IE(Ss), we can choose
such an element, that we denote wx. This justifies the definition of the following
function:

f :

IE(Ss)→ IE(Sds)
x 7→ ηds(wx) if x 6= 0
0 7→ 0 otherwise.

We conclude by proving that f is an injective morphism, and thus IE(Ss) is a
subsemigroup of IE(Sds).

The application f is a morphism. Let x, y ∈ IE(Ss). We show that f(xy) =
f(x)f(y). First, we can assume without loss of generality that x 6= 0 and
y 6= 0. We remark that since |wx| mod ds = |h(wx)| mod s, the concate-
nated word wxwy is well-formed if, and only if, h(wx)h(wy) is well-formed
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too. If xy 6= 0.Then, xy have a well-formed preimage and wxwy is well-
formed. Then as wxy and wxwy are syntactically equivalent with respect to
both Fds and h−1(Ls), ηds(wxy) = ηds(wxwy) = ηds(wx)ηds(wy), meaning
that f(xy) = f(x)f(y).
Now if xy = 0, then either xy has no well-formed preimage or xy is a zero
for π−1s (L). In the latter case, then f(x)f(y) = 0 according to the previous
point. If xy has no well-formed preimage, then wxwy is not well-formed
and consequently f(x)f(y) = 0.

The application f is injective. Let x, y ∈ IE(Ss) be such that x 6= y. Without
loss of generality, we assume that x 6= 0. Necessarily, there exist p, q ∈ Ss

such that pxq ∈ ηs(Ls) if, and only if, pyq 6∈ ηs(Ls). Let u and v be words
from the preimage of p and q respectively. Then there exists two words
u′ ∈ h−1(u) ∩ Fds and v′ ∈ h−1(v) ∩ Fds such that u′wxv

′ ∈ Lds if, and
only if, u′wyv

′ 6∈ Lds. Therefore, we have f(x) 6= f(y) and f is injective.

Remark 13. Theorem 12 is only stated for the levels of the quantifier alternation
hierarchies that we consider. The main reason for that is that it makes use of
Proposition 6 which was also stated for these fragments. Actually, the theorem
would hold for any infinitely testable fragment for which we can obtain a result
similar to Proposition 6 (see Remark 7).

Discussion. The main result gives the decidability of the alternation hierarchy
of FO2[Reg]. However, the decidability of this fragment is still an open prob-
lem. But one can notice that Proposition 10 proves that FO2[<,+1] is infinitely
testable, and that Proposition 6 holds. Therefore, Theorem 12 gives the decid-
ability of FO2[Reg] as well. However, we prefer to give an elegant algebraic char-
acterization of this fragment that one could transfer into an equational descrip-
tion. This characterization draws a parallel with the characterization FO[Reg] =
QA obtained in [2] and extends the characterization FO2[<,Mod] = QDA ob-
tained by the authors in [6].

A language L belongs to LDA if for any idempotent e of SL, the monoid
eSLe belongs to DA. It belongs to QLDA if its stable semigroup belongs to
LDA (proof in the Appendix).

Theorem 14. FO2[Reg] = QLDA.

Conclusion. In this paper, we proved that regarding the quantifier alternation
hierarchy of the first order and its two-variable counterpart, dealing with all the
regular numerical predicates is as difficult as dealing with the order predicate
only. We chose a generic algebraic approach which introduced a new notion, the
infinitely testable property, and proved that for fragments that are expressive
enough, the decidability with enriched signature reduces to the simpler one.

While mainly applied to the levels of the quantifier alternation hierarchies,
this approach can be used on other fragments that satisfy the same hypotheses,
as the fragment FO[+1]. This approach appears in fact to be a part of some
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more generic results that could also be applied to less expressive fragments. These
results stem from the more intricate framework of varieties of finite categories, as
considered in [4]. In this case, if the delay question is solved, then the decidability
of the modular enriched fragment reduces to the decidability of the global of the
initial variety. It is possible to adapt the definition of the infinitely testable
property for varieties of categories, and extend the equational proofs like the
one proposed in Example 9 to prove that this property holds. This generalized
approach might provide the decidability of the hierarchy FO2

k[<,Mod], which is
not covered by our results.

An interesting fact is that despite the different methods used to obtain a
delay when adding modular predicates, it was always revealed that the stability
index is a delay, even in cases not covered by the approach mentioned above. The
question of solving the adding of modular predicate in a general setting seems
then achievable, but one has first to solve many questions, like for example what
is a good notion of fragment of logic. Surprisingly, a good case of study would
be the quite simple fragment FO[=]. Indeed, the global of this fragment is not
infinitely testable, and it is unknown if it accepts the stability index as a delay.

References

1. Jorge Almeida. A syntactical proof of locality of DA. Internat. J. Algebra Comput.,
6(2):165–177, 1996.

2. David A. Mix Barrington, Kevin Compton, Howard Straubing, and Denis Thérien.
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Appendix

The delay question

Proposition 6. Let F[σ] be one of the fragments BΣk[<,+1] or FO2
k[<,+1]

for k > 1. Then, for any regular language L and any d > 0, L ∈ F[σ,Modd] if,
and only if, Ld ∈ F[σ].

Proof. First we remark that the language Kd is defined by the formula:

κd = ∀x∀y
(
min(x)→ 0(x)

)
∧

d−1∧
i=0

(i(x) ∧ S(x, y))→ (i + 1 mod d)(y)

where i(x) =
∨

a∈A (a, i)(x) for 0 6 i < d. Let us remark that the formula κd
belongs to the fragment F[σ] over the enriched alphabet.

We now prove the left-to-right direction. Let ϕ be a formula of F[σ,Modd].
Since F[σ] contains the max symbol, we can eliminate all the modular constants
predicates by replacing them by unary modular predicates. For instance, the
predicate Dd

i can be replaced by either one of the following formulas:

∃x max(x) ∧MODd
i (x) or ∀x max(x)→MODd

i (x) ,

depending on the context in order to maintain the quantifier depth of the for-
mula. Therefore, without loss of generality, we can assume that ϕ does not con-
tain any modular constant predicates. Now we use the enriched alphabet. A
modular predicate can be seen as a special disjunction of letter predicates over
the enriched alphabet. More precisely, we do the following syntactical substitu-
tions on ϕ:

a(x) 
∨

06i<d

(a, i)(x)

MODd
i (x) i(x)

We obtain a new formula ϕd which belongs to F[σ] over the alphabet Ad. We
then get the first inclusion as the language π−1d (L) ∩Kd is defined by ϕd ∧ κd.

To prove the other direction, assume that there is a formula ψ of F[σ] that
defines the language π−1d (L)∩Kd. From ψ we obtain a formula ϕ of F [σ,Modd]
by doing the converse operation:

(a, i)(x) a(x) ∧MODd
i (x) .

The new formula we obtain is indeed in F [σ,Modd] and since it is only satisfied
by well-formed words, it defines the language L. ut
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The infinitely testable property

Proposition 10 (1). Let k be a positive integer. The fragment FO2
k[<,+1] is

infinitely testable.

Proof. As for the case of FO[+1], we are going to heavily use the equational
description of FO2

k[<,+1], which was obtained in [11]. The fragment FO2
k[<,+1]

is defined by the equation Uk = Vk, where the expressions Uk and Vk are defined
inductively using two idempotents e and f and some variables (xi)i>1, (yi)i>1,
s, t, (pi)i>1, (qi)i>1. Precisely, we get, for k = 1:

U1 =(esfx1e)
ωs(fy1etf)ω

V1 =(esfx1e)
ωt(fy1etf)ω

and for k > 2, we set:

Uk =(pkUk−1qkxk)ωpkUk−1qk(ykpkUk−1qk)ω (a)

Vk =(pkUk−1qkxk)ωpkVk−1qk(ykpkUk−1qk)ω (b)

Let now L be a regular language and S be its syntactic semigroup. We prove
that if S does not satisfy the equation Uk = Vk, then IE(S) does not satisfy it
either.

The idea is that given two idempotents e, f and some values (xi)i>1, (yi)i>1,
s, t, (pi)i>1, (qi)i>1 from S, we define some new values that belongs to IE(S)
and which preserves the evaluation of Uk and Vk. We denote by U ′k and V ′k the
valuation of Uk and Vk over the new values. We start by giving new variables
for k = 1. Note that they belong to IE(S).

s′ =esf t′ =etf

x′1 =fx1e y′1 =fy1e

A quick computation checks out that U1 = U ′1 and V1 = V ′1 . For the inductive
case, we set the following new variables that belongs to IE(S):

x′k =xk(pkUk−1qkxk)ω y′k =(ykpkUk−1qk)ωyk

p′2 =p2e q′2 =fq2

p′k =pk(pk−1Uk−2qk−1xk−1)ω q′k =(yk−1pk−1Uk−2qk−1)ωqk for k > 3

Should we remark that for any k > 2, we have p′kUk−1q
′
k = pkUk−1qk, it implies

that

(pkUk−1qkx
′
k)ω = (pkUk−1qkxk(pkUk−1qkxk)ω)ω = (pkUk−1qkxk)ω

(y′kpkUk−1qk)ω = ((ykpkUk−1qk)ωykpkUk−1qk)ω = (ykpkUk−1qk)ω
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Then we have U ′k = Uk and V ′k = Vk. Consequently, if S fails to satisfy the
equation Uk = Vk, from the valuations of variables such that Uk 6= Vk, we get
valuations from IE(S) such that U ′k 6= V ′k, which concludes the proof. ut

Proposition 10 (2). Let k be a positive integer. The fragment BΣk[<,+1] is
infinitely testable.

Proof. We first remark that since BΣ1[<,+1] = FO2
1[<,+1], the case k = 1 is

handled by Proposition 10. Thus we can assume that k > 1. For k > 1, the
proposition can be derived from results of Straubing [22].

First, it is proved that if Vk is the variety of monoids equivalent to the frag-
ment BΣk[<], then BΣk[<,+1] is equivalent to the semidirect product Vk ∗ LI.
Without defining Vk ∗ LI, we rely on Theorem 6.1 from the same article, that
defines the semigroups of V ∗ LI, for V a variety of monoids containing the
language (ab)∗, as the semigroups whose submonoid A(S) belongs to V. The
set A(S) consists of triplets (e, x, f) from E(S)× S × E(S) where x belongs to
eSf , enriched with a neutral element 1 and an absorbing one 0. This set A(S)
is a monoid when equipped with the product (e, x, f)(g, y, h) equals (e, xy, h)
if f = g and equals 0 otherwise. Since (ab)∗ belongs to BΣk[<] for k > 2, we
directly deduce from Straubing’s Theorem that a regular language L of syntactic
semigroup S belongs to BΣk[<,+1] if, and only if, A(S) belongs to Vk. Finally,
thank to this result, we conclude the proof by remarking that A(S) = A(IE(S)).

ut

Discussion

Theorem 14. FO2[Reg] = QLDA.

Proof. First we remark that FO2[Reg] = FO2[<,+1,Mod]. Therefore, from
Theorem 12 and Proposition 10, we deduce that a language L is definable in
FO2[Reg] if, and only if the language Ls = π−1s (L) ∩Ks ∈ FO2[<,+1]. In [25],
the fragment FO2[<,+1] was characterized as LDA. The proof is concluded by
the following claim:
Claim: Ls belongs to LDA if, and only if, L belongs to QLDA.

We now prove both implications of the claim.

• Assume that Ls belongs to LDA. Let T = (As
s)

+ ∩ Ks. We remark that
T is a semigroup. Therefore, the set ηs(T ) is a subsemigroup of Ss. Since
S belongs to LDA, the semigroup ηs(T ) belongs to LDA as well. Remark
now that Ss is a quotient of the product of S and the syntactic semigroup
of Ks. Since the image of πs(T ) in the syntactic monoid of L is the stable
semigroup of L and the image of T in the syntactic semigroup of Ks is
trivial, we can conclude as ηs(T ) is isomorphic to the stable semigroup of
L.

• Assume that L belongs to QLDA, and we denote by T its stable semi-
group. By hypothesis, T is in LDA and therefore T ∪ {0}, the semigroup
obtained by adding an absorbing element, also belongs to LDA. We now
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have to show that Ls is in LDA as well. Let e be an idempotent of Ss.
First, if e is the zero of Ss, then eSse = {e}. Otherwise, e is the image of
a well-formed factor u that start by a letter of the form (a, i) and end by
a letter of the form (a, j) with j + 1 ≡ i mod s. We denote by f the image
of πs(u) by the syntactic morphism of L. This element is idempotent and,
therefore, belongs to T . We conclude by noting that the local monoid eSse
is a quotient of fTf ∪ {0}. ut

17


