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A B S T R A C T

Every year, large areas of savannas and woodlands burn due to natural conditions and land management
practices. Given the relevant level of greenhouse gas emissions produced by biomass burning in tropical regions,
it is becoming even more important to clearly define historic fire regimes so that prospective emission reduction
management strategies can be well informed, and their results Measured, Reported, and Verified (MRV). Thus,
developing tools for accurately, and periodically mapping burned areas, based on cost advantageous, expedite,
and repeatable rigorous approaches, is important. The main objective of this study is to investigate the potential
of novel Genetic Programming (GP) methodologies for classifying burned areas in satellite imagery over sa-
vannas and tropical woodlands and to assess if they can improve over the popular and currently applied methods
of Maximum Likelihood classification and Classification and Regression Tree analysis. The tests are performed
using three Landsat images from Brazil (South America), Guinea-Bissau (West Africa) and the Democratic
Republic of Congo (Central Africa). Burned areas were digitized on-screen to produce mapped information
serving as surrogate ground-truth. Validation results show that all methods provide an overestimation of burned
area, but GP achieves higher accuracy values in two of the three cases. GP is the most versatile machine learning
method available today, but still largely underused in remote sensing. This study shows that standard GP can
produce better results than two classical methods, and illustrates its versatility and potential in becoming a
mainstream method for more difficult tasks involving the large amounts of newly available data.

1. Introduction

In tropical regions, large areas of savanna and woodlands burn
every year. Occurring mainly during the dry season when herbaceous
vegetation has dried out, fires are one of the main drivers of ecosystem
transformation or maintenance (Bucini and Lambin, 2002), also re-
leasing gases and particles into the atmosphere (Smith et al., 2007). In
fact, estimates show that burning of savannas and woodlands in Sub-
Saharan Africa accounts for more than 50% of the total global emissions
from biomass burning during any typical year (Williams et al., 2012).

Land management practices induced by human activities are at the
base of the majority of fire occurrences in the tropics. Shifting culti-
vation, agricultural expansion, deforestation and harvesting are some of
the practices involving fires that may contribute to partial or complete

destruction of vegetation cover, depending on fire intensity and com-
bustion efficiency (Bucini and Lambin, 2002; Daldegan et al., 2014).
Significant intensification of fire frequency or avoidance of fire occur-
rence can negatively affect existing ecosystems and have impacts on
vegetation composition, landscape patterns, habitat types, and soil
erosion processes, which in turn affect hydrological processes and the
carbon cycle. Therefore, accurate and multi-temporal burned area maps
are important tools that can help fire and land managers understand
and assess the impacts of specific interventions, while informing land-
scape management strategies.

Multi-temporal data records of fire distribution, extent, and timing,
correspond to historical activity data, which together with vegetation
emission factors, support the quantification of emissions. The estab-
lishment of emission baselines against which the results of subsequent
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vegetation and fire management actions can be compared is essential
for the Measuring, Reporting and Verification (MRV) activities neces-
sary in carbon accounting procedures. Thus, accurately and frequently
mapping burned areas over large extents, using cost advantageous,
periodic, and expedite approaches is very desirable.

In the last decade, several methodologies based on remote sensing
techniques have been developed and applied to recurrently map burned
areas in tropical ecosystems. Some were based on coarse spatial re-
solution satellite data such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Along Track Scanning Radiometer
(ATSR)/Advanced ATSR (AATSR), Satellite pour l’Observation de la
Terre (SPOT) Vegetation (VGT) and National Oceanic and Atmospheric
Administration (NOAA)/Advanced Very High Resolution Radiometer
(AVHRR) (Brivio and Maggi, 2003; Giglio et al., 2009; Silva et al., 2005;
Grégoire et al., 2003; Zhang et al., 2015). These are adequate for global
and regional scale studies but are insufficient for local applications
where higher detail is needed and medium to high resolution sensors
are preferable for accurately mapping burned areas (Stroppiana et al.,
2012).

The higher resolution sensors Landsat TM (Thematic Mapper), ETM
+ (Enhanced Thematic Mapper) and OLI (Operational Land Imager)
are a valuable source of information and have been widely used in the
development of automated methods to detect burned areas (Bastarrika
et al., 2011; Chen et al., 2016; Daldegan et al., 2014; Hudak et al.,
2004; Júnior et al., 2014; Korontzi et al., 2003; Hawbaker et al., 2017;
Meddens et al., 2016; Laris, 2005; Liu et al., 2018; Melchiori et al.,
2014; Matricardi et al., 2013; Oumar, 2015; Smith et al., 2007;
Stroppiana et al., 2012; Trisakti et al., 2016). Even though classification
of burned areas using Landsat images provide satisfactory results with
classical approaches (Morton et al., 2011), the spectral similarities be-
tween burnt surfaces and other land cover categories, such as, water
bodies, shadows, and mixed water-vegetation, still introduce spectral
confusion and overlap with other classes. Therefore, it is important to
explore new methods capable of increasing the discrimination between
burns and other landscape features, minimizing the uncertainties
(Giglio et al., 2010; Jain, 2007).

This study aims at investigating if there are comparative advantages
in using Genetic Programming (GP) – one of the most powerful and
underused flavors of machine learning – for identifying and mapping
burned areas in Landsat ETM+/OLI imagery when compared to
Maximum Likelihood classification (MLK) and Classification and
Regression Tree analysis (CART) – two classical classification methods.
Our research is conducted over three study areas located in Brazil,
Guinea-Bissau, and the Democratic Republic of Congo. The respective
tropical territories are subject to frequent and extensive fires, mainly
due to human activity.

The merit of each approach is assessed by calculating the overall
accuracy, Dice and kappa coefficients, and omission and commission
errors over a representative sample grid of points extracted from the
images. According to Padilla et al. (2014), measures such as the Dice
coefficient that are focused on a single category (i.e. burned), are the
most appropriate in the validation of Burned area products. Ad-
ditionally, the agreement of the classifications with surrogate ground-
truth burned area maps is calculated based on precision and recall
measures (Powers, 2007). Surrogate ground-truth is obtained from vi-
sual interpretation and on-screen digitizing of burned area perimeters
over the entire images. In order to assess the similitude of the overall
landscape structure obtained from the on-screen digitizing with that
obtained from the classifications, a set of landscape metrics are also
derived and compared.

Several authors applied MLK and CART to map burned areas (Chen
et al., 2016; Henry, 2008; Meddens et al., 2016; Sá et al., 2003; Sertel
and Alganci, 2016; Silva et al., 2003, Thariqa et al., 2016; Verlinden
and Laamanen, 2006), however, very few studies exist for GP (Silva
et al., 2010). Djerriri and Mimoun (2015) successfully applied a new
approach combining unsupervised classification and GP to

automatically extract burned areas from Landsat 8 imagery. Also,
Brumby et al. (2001) obtained encouraging results when applying GP to
extract wildfire scars from Landsat 7 imagery, but found some confu-
sion with dark cloud shadows and bare ground/rock outcrops. More
recently, a different type of GP, called Geometric Semantic Genetic
Programming (GSGP) (Vanneschi, 2017), was used by Castelli et al.
(2015) for identification of burned areas. Although GSGP is a very
powerful method, it does not provide readable models. Even though
very few applications of GP for classification/data extraction of remote
sensing images can be found in the literature, GP has been successfully
used in several other areas, e.g., modeling and regression, image and
signal processing, time series prediction, control, medicine, biology and
bioinformatics, and even arts and entertainment (Poli et al., 2008). GP
often yields results that are not merely academically interesting, but
competitive with the work developed by humans (Koza, 2010). It is the
master algorithm of evolutionary computation, and the only one with
the potential to emulate all the other machine learning approaches (GP
can evolve decision trees, neural networks, Bayesian networks, and
almost anything else one can think of) (Domingos, 2015).

New sensors, such as those on board of the European Union (EU)
Sentinel satellites1 provide free full global coverage and high frequency
optical and radar imagery. The EU Copernicus program, which also
aims at providing environmental monitoring services for South America
and Africa,2 can become a driver for the systematic and high periodicity
production of high resolution burned area maps over tropical regions.
Therefore, methodological developments that contribute to improve
operational processes while improving output accuracy may increase
the usefulness of products and facilitate their respective diffusion. Re-
cent studies have shown the feasibility of using distributed GP in long
running systems dealing with big data (Hodjat et al., 2014).

2. Study areas and data

2.1. Study areas

One study area located in Brazil and two in Africa were chosen to
test the performance of the burned area mapping methods: the south-
eastern Amazonian region of Brazil, the Coastal western region of
Guinea-Bissau, and the central eastern region of Congo; each corre-
sponding to one complete Landsat image as shown in Fig. 1.

The first area, located in eastern Amazonia, in southeastern Pará,
Brazil (BRZ site) lies to the south of the Amazon River which is drier
than the central and western parts of the Amazon, with annual rainfall
between 1500mm and 2000mm and average temperatures ranging
from 23 °C to 30 °C. Forests types range from lowland Amazon forest
(tall trees to 40m in height) in the north through submontane dense
and open forests in the south (Olson et al., 2001). The Landsat image
covers one of the most degraded regions in Amazonia, in the frontier
with a drier and more populated zone where intense forest degradation
driven by agriculture and cattle raising is occurring, mainly along the
roads.

The second area is located in Guinea-Bissau (GB site), which is
characterized by a marshy coastal plain with dry to moist (North to
South) tropical climate. There are two marked seasons, a dry season
between November and May, and a wet season between June and
October. Total annual rain values vary from 2400 to 2600mm in the
Southwest region, and from 1200 to 1400mm in the Northeast region
(Marinho, 1946). The monthly average temperature ranges from 25.9
and 27.1 °C (Catarino, 2004). The vegetation consists of mangroves on
the coast, and gradually becomes composed of mainly dry forest and
savanna inland. The extent of natural vegetation patches has been de-
creasing in the last decade mainly due to the intensification of

1 http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4.
2 http://www.copernicus.eu/.
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subsistence livelihood practices, such as shifting cultivation, slash and
burn agriculture, illegal logging and fire (MDRARNAGB, 2009), and
more recently with conversion to permanent cashew tree plantations
(Catarino et al., 2015).

The third study area is located in central-eastern Democratic
Republic of Congo (DRC site) and it corresponds to a humid tropical
climate with two distinct seasons, a dry season (with temperatures
ranging between 18 and 27 °C) from June to August, and a rainy season
(with temperatures ranging between 22 and 33 °C) from September to
May. It is characterized by a vegetation transition zone, with congolian
lowland forest in the north and miombo woodlands in the south. In the
south west region, the population pressure has conducted to the de-
gradation of the miombo woodlands, consequence of the demand for
food and fuel (USAID, 2010). Although historically low, deforestation
has been increasing due to several human practices, in particular, slash
and burn agriculture, and charcoal production (Ickowitz et al., 2015).

2.2. Landsat data

Two cloud free Landsat 8 OLI images and one Landsat 7 ETM+
image were obtained for Brazil, Democratic Republic of Congo and
Guinea Bissau, respectively. The details of each Landsat image are given
in Table 1. All images were freely downloaded from the U.S. Geological
Survey (USGS) Earth Resources Observation and Science (EROS) Data
Center (EDC).3 GLOVIS datacenter provides images processed with a
Standard Terrain Correction (Level 1T). This level of correction pro-
vides systematic geometric and radiometric corrections based on
ground control points and a Digital Elevation Model (DEM) for topo-
graphic accuracy.

All images were acquired in the dry season to ensure the presence of
burned areas and to maximize the discrimination among the vegetation

Fig. 1. Location of the three study areas in Brazil (BRZ), Guinea-Bissau (GB) and Democratic Republic of Congo (DRC) and in South America and Africa continent.
Area 1 and Area 2 are locations used for assessing details in classifier performance.

3 http://glovis.usgs.gov/.
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types. Landsat images were geometrically corrected to UTM (Universal
Transverse Mercator), Zone 22 South (BRZ), Zone 28 North (GB) and
Zone 35 South (DRC), WGS84 (World Geodetic System 84) datum and a
spatial resolution of 30m. Bands 1 to seven of the Landsat 8 OLI images
and Landsat ETM+ were used in this study to test the classifiers.
Panchromatic bands from ETM+ and OLI sensors were not used since
they have different spatial resolution, as well as, the OLÍs thermal bands
in order to test the algorithms capacity in detecting burned areas
without thermic spectral information.

3. Methodology

3.1. Reference dataset

Visual inspection of the combination of Landsat ETM+ bands 7, 4
and 3 and Landsat OLI bands 7, 5 and 4 allows a clear visual depicting
of burned areas (Pereira et al., 1999). Using the 7-4-3 or 7-5-4 combi-
nation for display, according to the sensor, all visible polygons of
burned areas perimeters were manually delimited on-screen to con-
stitute a burned area ground-truth map for each of the study areas.
These burned areas, and their complementary non-burned polygons,
constitute the binary base map against which the maps produced by
image classification shall be compared.

For training and testing the classifiers, reference data are assembled
for each image. The reference sets consist of the spectral values asso-
ciated with pixels extracted from the original images together with the
corresponding class labels (burned/non-burned) obtained from the on-
screen digitized maps. These reference data sets consist of: (a)
4872 pixel samples (2053 burned and 2819 unburned) for the BRZ site,
(b) 3637 pixel samples (1889 burned and 1748 unburned) for the GB
site, (c) 2849 pixel samples (877 burned and 1972 unburned) for the
DRC site. Each observation in the data set (a sample) consists of the DN
values for the seven spectral bands (seven explanatory variables) at a
pixel location and the corresponding target value, burned (1) and un-
burned (0) (dependent variable).

Due to the characteristics of some of the classification methods (next
section) a transformation of the data was applied to obtain a data dis-
tribution in the range 0–1 for both explanatory and dependent vari-
ables. For the Landsat ETM+ data, represented in 8-bits, a simple
scaling to the interval [0 1] was applied by dividing each DN by its
maximum allowed value, 255. Regarding the Landsat OLI sensor, it
records pixels in 12-bits, which translates into 4096 potential grey le-
vels for each band. However, the images are delivered as 16-bit values,
scaled to 55,000 grey levels.4 Looking at the values in each reference
set, one can observe that most values are concentrated in a very narrow
interval, particularly for the bands 1-4 (as can be clearly observed for
the BRZ site in Fig. 2, left).

For that reason, the values of each band were mapped by a linear
stretching and scaling into the interval [0,1] in such a way that its input
limits correspond to the minimum and maximum values found for the
band, excluding the outliers which fall outside the range [0,1] (Fig. 2,

right).

3.2. Classification approaches

Two classical methods to map burned areas using Landsat data are
evaluated: Classification Trees (Breiman et al., 1984) and the Maximum
Likelihood classifier (Richards and Jia, 2005; Theodoridis et al., 2009).
Due to their popularity and success, these two methods are regarded as
standards over which newly developed methods should improve. The
new method proposed is based on GP, a young and successful paradigm
of evolutionary computation developed by Koza (1992) which can be
used for an array of different tasks, including supervised classification.
A brief description of each method is presented below.

Classification trees are a non-parametric method based on a binary
recursive partitioning which has been applied successfully to remote
sensing data for burned area mapping in Africa (Silva et al., 2005; Silva
et al., 2003; Pereira et al., 2000; Sá et al., 2001). They consist of a set of
hierarchical if-then rules induced by identification of patterns of the
predictor variables corresponding to a given class (Cabral et al., 2006).
The software used to induce the classification trees was the Salford
Systems CART package (Steinberg and Colla, 1997). In the generation
of a single classification tree, several parameters were considered: (1)
the Gini index criterion for node splitting (Breiman et al., 1984), (2)
equal classification error costs for burned and unburned classes, (3)
equal class prior probabilities, and (4) terminal nodes with a minimum
of 20 observations. Linear combinations were employed to deal more
effectively with the underlying data patterns (Cabral et al., 2006). The
selection of the best classification tree size (optimal tree) was per-
formed using the cost-complexity pruning technique, to avoid over-
fitting with the training data. For every generated classification tree,
the cost complexity technique was based on a test sample. This tech-
nique selects an optimal compromise between the number of tree nodes
and misclassification rate, and penalizes very large trees (Breiman
et al., 1984; Hayes et al., 2015; Silva et al., 2003).

The MLK approach is a parametric method based on the Bayes' rule
(Richards and Jia, 2005; Theodoridis et al., 2009). It computes the
conditional probability xP ω( | ) that a pixel is correctly assigned to a
spectral class ω (burned or unburned) given that its feature vector
(defined by the scaled and/or stretched DN in the seven bands) takes
the value x, and then assigns the pixel to the class with the highest
likelihood. This conditional probability can be expressed, according to
Bayes' rule, as

=x x xP ω P ω p ω P( | ) ( ) ( | )/ ( ).

Here P ω( ) denotes the a priori probability that a class ω occurs in the
study area (estimated as the proportion of training samples in class ω)
and xP ( ) is the probability of finding a pixel of any class with feature
vector x (which is omitted from the classifier since it is the same for all
classes). The samples in each spectral class ω are assumed to follow a
multivariate normal distribution with class conditional density function

xp ω( | ). The corresponding class signatures (mean μω and covariance
matrix Σω) are estimated using the Maximum Likelihood method on
each set of training samples assigned to ω. The class ω with the highest
likelihood xP ω( | ), or equivalently, the highest xlog P ω( | ), corresponds
to the class with the highest score for the so-called discriminant func-
tion,

= − − − −−x xg logN μ μ log1
2

( ) Σ ( ) 1
2

|Σ |,ω ω ω
t

ω ω ω
1

where Nω is the number of training samples in class ω and |Σ |ω denotes
the determinant of the covariance matrix Σω. In order to be able to
compare the outcomes among the three classification approaches no
discrimination threshold was imposed on the MLK outputs, and there-
fore all pixels were classified either as burned or unburned. All com-
putations were directly implemented in the statistical software R.

Genetic Programming is a non-parametric method for the

Table 1
Site, sensor, date and path and row of each image used in this study.

Site Satellite
(sensor)

Acquisition date
DD/MM/YY

Scene or point
identifier

Path Row

Brazil (BRZ) Landsat OLI 28/02/2015 225 64
Guinea-Bissau (GB) Landsat ETM+ 13/05/2002 204 52
Democratic Republic of

Congo (DRC)
Landsat OLI 08/06/2013 175 62

4 https://landsat.usgs.gov/landsat-8.
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automated learning of computer programs, using Darwinian selection
and Mendelian genetics as sources of inspiration (Koza, 1992; Poli
et al., 2008). Starting from an initial population of randomly created
programs representing the potential solutions to a given problem, it
evaluates the fitness of each, quantifying how well the program solves
the problem. New generations of programs are iteratively created by
selecting parents based on their fitness, and breeding them using ge-
netic operators like crossover and mutation, where pieces of code are
swapped and modified, respectively. Because fitter individuals are se-
lected more often and given the chance to pass their best characteristics
to their offspring, the population tends to improve in quality along
successive generations. Theoretically, GP can solve any problem whose
candidate solutions can be evaluated and compared, making it a widely
applicable technique.

The individuals in GP are most commonly represented as parse
trees, but depending on the particular set of initial elements used to
build them, different types of programs are evolved, giving rise to dif-
ferent classification methods. Even though qualitative ingredient sets,
such as rules, could be used, for simplicity we used the four basic ar-
ithmetic operators only (addition, subtraction, multiplication and di-
vision). Thus, the programs evolved are arithmetic expressions com-
bining the different variables, outputting real values that are expected
to be close to the target values 0 or 1. To the output of such an ex-
pression, a cutoff value in the continuous output range between 0 and
1, is applied in order to obtain a binary classification (1 or 0, respec-
tively, burned or unburned). Since GP searches for classifiers whose
output values stand as close as possible to the expected 0 or 1 classi-
fication, 0.5 is generally regarded as an adequate cutoff value.

Fig. 2. Boxplots of original DNs as delivered (left) and values obtained after stretching and scaling (right), on each of the Landsat OLI sensor bands, for the BRZ site
reference data. On each box, the central mark is the median, the edges of the box are Q1 and Q3 (the 25th and 75th percentiles, respectively), and the whiskers extend
to 1.5 times the interquartile range above Q3 and below Q1. The outliers are the points falling outside this interval, represented by crosses.

Fig. 3. Graphical representation of the Precision/Recall concepts. The dark and
light grey areas in the square correspond to pixels classified as unburned (ne-
gative), whereas the ellipsoid shaded areas correspond to pixels classified as
burned (positive). The former is further divided into the set of true negative
(TN) and false negatives (FN) while the latter is decomposed into true positives
(TP) and false positives (FP). In this framework, the Precision=TP/(TP+ FP)
and Recall= TP/(TP+FN) measures can be viewed as the proportions of
shaded areas depicted in the figure.

Table 2
Description of the landscape metrics.

Structural category Landscape metric Abbreviation Description Units/Value

Area/Density/Edge Number of patches NP The number of patches No units; > 1
Mean patch size MPS The average mean surface of the patches Hectares;> 0
Largest Patch Index LPI Percentage of the landscape area occupied by the largest patch No units; 0–100%

Shape Mean Shape Index MSI Ratio between the perimeter of a patch and the perimeter of the simplest patch in the same area
(Indicator of class shape complexity)

No units; >=1

Landscape Shape
Index

LSI Complexity of landscape structure No units; >=1
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A common and pernicious problem affecting GP methods is the bloat
phenomenon, i.e., an excess of code growth without a corresponding
improvement in fitness (Silva and Costa, 2009), which often stagnates
the evolution and causes the proposed solutions to become too complex
and difficult to interpret. In order to avoid bloat in GP, the most ad-
vanced state-of-the-art bloat control method was used, Operator
Equalisation (OpEq) (Silva et al., 2012). For the DRC site (Landsat ETM
+ data), the Mutation-based variant of OpEq (MutOpEq) was used. This
variant was the one producing the shorter solutions in earlier work
(Silva et al., 2010), and its search dynamics was found to achieve good
results with minimal computational effort (Silva and Vanneschi, 2011).
However, for the BRZ and GB sites (Landsat OLI data) the more pow-
erful variant of OpEq (DynOpEq) had to be used in order to produce
competitive results in the same number of generations.

3.3. Experimental setup and selection of classifiers

To assess the learning and generalization ability of the different
classification techniques, 30 random partitions were created from the
reference data set collected as explained in Section 3.1; 70% used for
training and the remaining 30% used for testing. Each of the three
classification methods ran 30 times, once over each training and cor-
responding testing set. The classifier achieving the highest accuracy
among the 30 classifiers was selected to generate the final map used for
overall performance assessment. A more detailed description is given
below for each of the classification approaches.

For generating the best classification tree, four steps were im-
plemented in each run (Breiman et al., 1984): (1) A large initial tree T0

was grown using only the training samples, according to several defined
parameters as mentioned in Section 3.2, (2) The branches of T0 were
iteratively pruned, in order to obtain a sequence of optimally nested
subtrees, (3) The misclassification costs of each subtree were estimated
from the independent testing samples, (4) The subtree with smallest
misclassification cost (highest accuracy) was selected as the best sub-
tree (optimal tree size). This sequence of steps was repeated for the 30
partitions, with all classifiers reaching overall accuracies around 99% at
the three sites, and the classifier attaining the smallest error chosen to
generate the final burned map.

In the MLK case, the class signatures, mean μω and covariance
matrix Σω, were estimated using the Maximum Likelihood method,

̂̂ ̂ ̂∑ ∑= = − −
= =

x xμ
N N

μ x μ1 , Σ 1 ( )( ) ,ML
ω i

N

i ω ML
ω i

N

i ω ML i ω ML
t

1
,

1
, ,

ω ω

where xi ω, , =i N1, ..., ω, denotes the set of training samples belonging to
ω, with the number of training samples per class approaching or sur-
passing 100 times the number of feature variables (7 spectral bands), as
recommended by Swain and Davis (1978). In all cases the classifiers
were able to learn from their training sets with overall accuracies above
or close to 98% for the BRZ site, 99% for the GB site and 96% for the
DRC site.

For the GP methods (Silva, 2009), each run employed a population
of 500 individuals and was allowed to evolve for 200 generations. The
parameter settings were defined according Koza (1992), except with
respect to the following details. The selection of the parents of the next

generation was made with lexicographical tournaments (Luke and
Panait, 2002) of size 10. The offspring were created using standard
subtree crossover, and no mutation (Koza, 1992). Fitness was measured
as the Root Mean Squared Error (RMSE) between expected and pre-
dicted values on the training set. For each run, the solution returned
was the one among all the individuals in the last generation that
achieved the lowest RMSE. It was observed that all the 30 different
classifiers (30 partitions) of each of the three different data sets were
able to learn their training sets and to generalize on the respective test
sets, with accuracy values rounding 99% very well balanced between
the two classes.

3.4. Accuracy assessment

The burned area map derived from each classifier in each study area
was compared with the corresponding surrogate ground-truth fire
perimeters map using two types of map-to-map comparisons.

The first type, consisted of a direct comparison between classified
burned areas with fire perimeters digitized on-screen, and included in
the ground truth map. The agreement between the landscape structures
of the two maps (classified and ground truth) was also assessed by
means of the Precision-Recall measures (Powers, 2007) and of several
landscape metrics (McGarigal et al., 2002). The Precision measure is the
fraction of truly burned pixels (from the ground truth) with respect to
the number of pixels classified as burned and it is related with com-
mission errors. Recall is the ratio of true burned pixels caught by the
classifier with respect to the total number of truly burned pixels (Fig. 3),
and it is related with omission errors. The Precision and Recall indices
were computed through cross-tabulation of the number of pixels lying
in the same class in the burned area maps and in the ground-truth map
versus the number of pixels lying in distinct classes.

The similarity between the landscape structure derived from each
classification method and the landscape structure observed in the
ground-truth maps was assessed using several landscape metrics
(Table 2), resorting to the FRAGSTATS v4.2.597 software (a spatial
pattern analysis program for categorical maps) (McGarigal et al., 2002).

For the second map-to-map comparison type, a new systematic grid
of 5000 points with a random origin was generated. This validation grid
is based upon the minimum bounding box containing the satellite
image area at each site. All points located at the no Data region were
removed. For each site, burned and unburned classes were identified
overlapping the validation grid over the corresponding Landsat image.
The final number of burned and unburned samples pixels per site are
shown in Table 3.

For each sample, a pixel-by-pixel comparison over the validation
grid was performed to calculate the overall accuracy, Dice and kappa
coefficient (K), and omission and commission errors (Foody, 2002;
Padilla et al., 2014) for all classifiers and sites.

4. Results and discussion

Visual comparison between the classified maps and the satellite
images shows distinct performance patterns according to the site lo-
cation and classification method adopted. A detail of fire perimeter
agreement between the ground-truth maps and the classified burned
areas is shown for Area 1 and Area 2 of each of the three locations in
Fig. 4.

The Precision and Recall values obtained for each burned area map
are reported in Table 4. These values are also depicted as points in a
plot to facilitate their interpretation (Fig. 5).

The joint analysis of the results of Table 4 and Fig. 5 clearly reveals
that the Recall values have a narrower range of variation (between 72.0
and 90.2), whereas the Precision values (between 9.1 and 73.4) exhibit
greater dispersion. This means that the three classification methods
have more consistent and satisfactory behavior in regard to omission
errors than to commission errors. In fact, while all methods could detect

Table 3
Number of pixel samples for Brazil, Guinea-Bissau and Democratic Republic of
Congo sites.

Image sites

Brazil Guinea-
Bissau

Democratic Republic of
Congo

Number of pixel
samples

Burned 27 43 59
Unburned 3498 564 3471
Total 3525 607 3530
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high percentages of burned pixels, they all overestimate burned areas.
The best area agreement was observed for MLK in the BRZ site, and all
methods had a similar performance in the GB site. GP (both simple and
complex) achieved the best agreement in DRC.

The poor results observed for CART and GP at the BRZ site are

attributable to the existence of a mislabeled polygon in the reference
data set (Silva et al., 2017). This polygon, identified after observing the
results, consists of 20 pixels of forest that were mislabeled as burned,
representing less than 0.5% of the reference set. Being a probabilistic
approach, the MLK method was able to adequately deal with this small

Area 1 Brazil Site Guinea-Bissau Site Democratic Republic of Congo 
Site 

Landsat

OLI 
BRZ, DRC
(RGB 754)

ETM+
GB 
(RGB 743)

CART

MLK

GP-
Complex  

GP-
Simple

Fig. 4. Landsat OLI (RGB 754) and Landsat ETM+ (RGB743) color composites crops corresponding to areas 1 and 2, located at the small squares of Fig. 1, together
with the burned area maps (in grey) derived from the three classification methods for each study site. The red line polygons delimit the ground-truth fire perimeters.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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percentage of error in the training set, since they hardly affected the
class signature estimates. However, CART and, quite surprisingly, also
GP, were highly affected by the error. An extensive analysis of how a
robust method like GP can be so strongly affected by less than 0.5% of
mislabeled samples, is work in progress (Silva et al., 2017). It was al-
ready found that, in the first 30 generations of the evolutionary process,

GP ignores the errors as it focuses on the easier task of improving the
fitness over the correctly labelled samples. As the improvement of fit-
ness becomes harder, it eventually also learns the incorrectly labelled
samples. A much better understanding of this special type of hidden
overfitting was obtained, and a simple solution has been proposed
(Silva et al., 2017), one that may be easily applied to upcoming studies.

Area 2 Brazil Site Guinea-Bissau Site Democratic Republic of Congo 
Site 

Landsat  
 
OLI  
BRZ, DRC 
(RGB 754) 
 
ETM+ 
GB 
(RGB 743) 

   
CART  

   
MLK  

   
GP- 
Complex  

   
GP- 
Simple 

   

Fig. 4. (continued)
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For now, we remain focused on the standard GP method.
Accuracy values, Dice and kappa coefficients and omission and

commission errors, obtained by cross tabulating the pixels of the vali-
dation grid with the classified maps are reported in Table 5. A closer

inspection of Table 5 shows that the GP methods at the DRC and GB
sites present the highest values of overall accuracy and Dice and kappa
coefficients. However, for the GB site, the observation of the few mis-
classified pixels revealed that about half of them were common to all

Table 4
Precision and Recall values obtained comparing baseline burned area polygons with burned area maps at the Brazil, Guinea-Bissau and Democratic Republic of Congo
sites with each method.

Methods Brazil Guinea-Bissau Democratic Republic of Congo

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

CART 9.1 76.8 65.5 81.4 22.9 81.6
MLK 73.4 90.2 54.1 85.2 36.8 72.0
GP-Complex 16.4 80.3 53.7 85.3 60.1 78.2
GP-Simple 29.1 82.5 45.8 85.1 62.7 76.2

Fig. 5. Plot of Precision against Recall values for each method and site.

Table 5
Summary of the classification accuracies for each classifier for Brazil, Guinea-Bissau and Democratic Republic of Congo study areas.

Study site Methods Accuracy Class Error

Overall (%) Kappa Dice Omission (%) Commission (%)

Brazil CART 95.5 0.23 0.24 Burned 7.4 82.3
Unburned 4.5 0.1

MLK 99.7 0.84 0.84 Burned 11.1 20.0
Unburned 0.1 0.1

GP-Complex 98.4 0.49 0.50 Burned 0.0 67.1
Unburned 0.0 1.6

GP-Simple 98.7 0.51 0.52 Burned 7.4 64.2
Unburned 1.3 0.1

Guinea-Bissau CART 96.5 0.67 0.69 Burned 46.5 4.2
Unburned 0.9 3.4

MLK 96.7 0.70 0.71 Burned 41.9 7.4
Unburned 0.4 3.1

GP-Complex 97.5 0.78 0.79 Burned 34.9 0.0
Unburned 0.0 2.6

GP-Simple 97.0 0.73 0.75 Burned 37.2 6.9
Unburned 0.4 2.8

Democratic R of Congo CART 96.7 0.47 0.48 Burned 10.2 67.3
Unburned 3.1 0.2

MLK 98.2 0.59 0.60 Burned 20.3 52.0
Unburned 1.5 0.4

GP-Complex 99.7 0.91 0.91 Burned 3.4 13.6
Unburned 0.3 0.1

GP-Simple 99.8 0.93 0.94 Burned 5.1 8.2
Unburned 0.1 0.1

A.I.R. Cabral et al. ISPRS Journal of Photogrammetry and Remote Sensing 142 (2018) 94–105

102



classifiers and correspond to pixels lying in wet grasslands around the
sea arms that go inland in the coastal areas. These pixels are often
confused with burns (Pereira et al., 1999), due to their similar spectral
signatures. In the GB case, none of the three methods has actually
learned these errors, which speaks strongly of their robustness.
Nevertheless, the Dice and kappa values obtained by CART at the three
sites was clearly low and below the results reported in some studies
using the same type of data (Meddens et al., 2016; Thariqa et al., 2016).
However, the MLK accuracy performance was only marginally inferior
when compared with other published works (Chen et al., 2016; Oumar,
2015). Higher accuracy results have been obtained by different authors
but most using low resolution imagery (Edwards et al., 2018; Pereira
et al., 2000) or multi-temporal approaches (Sá et al., 2003; Silva et al.,
2003, 2005) which are not directly comparable.

The commission and omissions errors varied considerably de-
pending on the classifier and study site. The higher commission errors
occurred at the BRZ site for CART, followed by the two GPs (corre-
sponding to the low Precision values). These are most likely related to
the labelling errors detected in the training set, as already pointed out.
At the DRC site, CART and MLK were the worst performers presenting
high percentages of omission and commission errors. This is in ac-
cordance with the low Precision scores attained by both classification
methods at the DRC site, with MLK not being able to detect around 20%
of the burned area. This fact is probably related with parameter esti-
mation errors of the class signatures due to the smaller number of
training samples that were available for this site.

The landscape metrics calculated for the ground-truth map and for
the burned area maps, derived from the three classification methods are
reported in Table 6. The results show that no approach was consistently
better for all study areas. For the BRZ site, the best approximation in
terms of the number of patches, complexity shape and size of the largest
patch, was obtained for MLK followed by GP-Simple. The values of the
Mean Shape Index (MSI) were not significantly different between
sources, indicating similar shapes between the ground truth map and
the classified burned patches. All other approaches presented more
fragmented areas with higher shape complexity. For the GB site, CART
yields the highest agreement between ground-truth and the classified
burned area maps, but with higher landscape fragmentation, lower
patch sizes, and simpler shape. The most fragmented patterns were also

generated by the GP and MLK methods. At the DRC site, GP-Simple and
GP-Complex classifications result in the best landscape structure
agreement between the classification and the ground-truth map.
Nevertheless, the burned maps produced by GP-Simple and GP-Com-
plex exhibit higher fragmentation and disaggregation of the burned
patches.

The results presented above reveal that no single method is better
than the others. They also reveal that the implementation of standard
GP was able to produce some of the best results, indicating that it is
worthwhile to invest some effort in the exploitation of other GP char-
acteristics to further improve its applicability. With the exception of
linear combinations in CART, both CART and MLK were also used in
their standard format, leaving room for some additional explorations in
terms of the a priori probabilities for each class, and the choice of the
best threshold in MLK. In turn, GP is more versatile and, based on these
results, will be molded in several different ways in upcoming studies.
For example, the fitness function used to evaluate each candidate so-
lution could be specialized in optimizing not only the overall accuracy,
but also the precision and recall measures, or the Dice and kappa
coefficients, or a combination of all of them in a multi-objective setting.
The set of choices is actually very large and does not facilitate a full
exploration. In any case, it is not expected that a single setting will
return the best results in all sites and for all the quality assessment
measures. Instead, the major improvements may arrive from the de-
velopment of non-standard GP elements that provide the method with
added robustness to labelling errors (Silva et al., 2017), as discussed
above.

5. Conclusions

The present study has compared three different methods (GP, CART
and MLK) for detecting burned areas in three different sites (BRZ, GB
and DRC). The results have shown that, depending on the study area
and sensor type, the three methods achieved different accuracies.
Nevertheless, the accuracies of the burned area maps produced by the
GP methods were always higher than those produced by CART, and
only at the BRZ site GP performed worse than MLK, being affected by a
small percentage of mislabeling errors.

GP revealed to be a very versatile supervised classification method,
obtaining some of the best results with practically no tuning of its im-
mense array of possible configurations that remain open to further
experiment. The sensitivity revealed by this method to a small per-
centage of labelling errors was a surprise, and prompted further studies
with the development of a new solution that is still work in progress and
will be used in upcoming studies.

Despite the relatively high Dice and kappa (higher than 0.90 in some
cases) and accuracy levels (higher than 99% in some cases) of the dif-
ferent classifiers, many fire scars were missed, and other areas were
incorrectly mapped as fires (for example, shadows due to the topo-
graphic effect), even in the best performing case. Each study site is
characterized by different land cover types, and some of these types
show similar spectral values with those representing burned sites,
which can introduce classification errors. Also, the well-known fact that
the spectral signal of fire scars has a fast decay in savannas may explain
some of the difficulties of accurately mapping burned areas in a single
date approach. Further research is needed to establish the degree of
improvement that can be achieved, in particular with relatively un-
explored methods like GP, in a multi-temporal, data heavy and high-
resolution study.
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