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ABSTRACT  
Background. Occupational asthma and allergies are potentially preventable diseases affecting 5-15% of the 

working population. However, the use of preventive measures is often low. The aim of this study was to 

estimate the average treatment effect of an educational intervention designed to improve the knowledge of 

preventive measures against asthma and allergies in farm apprentices from Bavaria (Southern Germany).  

Methods. Farm apprentices at Bavarian farm schools were asked to complete a questionnaire evaluating their 

knowledge about preventive measures against occupational asthma and allergies (use of personal protective 

equipment, personal and workplace hygiene measures). Eligible apprentices were randomized by school site to 

either a control or an intervention group. The intervention consisted of a short educational video about use of 

preventive measures. Six months after the intervention, subjects were asked to complete a post-intervention 

questionnaire. Of the 116 apprentices (70 intervention group, 46 control group) who answered the baseline 

questionnaire only 47 subjects (41%; 17 intervention group, 30 control group) also completed the follow-up 

questionnaire. We therefore estimated the causal effect of the intervention using targeted maximum likelihood 

estimation. Models were controlled for potential confounders. 

Results. Based on the targeted maximum likelihood estimation, the intervention would have increased the 

proportion of correct answers on all six preventive measures by 18.4% (95% confidence interval: 7.3% - 29.6%) 

had all participants received the intervention versus had they all been in the control group.  

Conclusions. These findings indicate the improvement of knowledge by the educational intervention.  

Keywords: occupational asthma and allergies, educational intervention, targeted maximum likelihood 

estimation, preventive measures, causal effect.  



INTRODUCTION 
Occupational asthma and allergies are potentially preventable diseases [1]. However, 5-15% of asthma cases in 

the adulthood are due to the occupation, and estimates for allergies are moving at a similar pace [2]. 

Occupational asthma is defined as a disease attributable to the occupational environment and not to stimuli 

outside the workplace, and characterized by variable airflow limitation as well as hyperresponsiveness under 

inflammatory conditions [3]. Similarly, occupational allergies -such as occupational rhinoconjunctivitis- are 

characterized by variable nasal airflow limitation and hypersecretion due to conditions of the occupational 

environment [4]. Respiratory causes, including asthma and allergies, are the most common occupational 

diseases in industrialized countries [2], and generate great costs: current estimates from the UK on direct and 

indirect lifetime costs per average case of occupational asthma range from £120k to £130k [5]. The 

development of work-related allergies or asthma not only has consequences in terms of health status, but can 

also make re-training necessary. Unemployment is very common due to the lack of alternatives for a job in the 

same area without known asthma and allergy risk [6,7]. 

In Bavaria (Southern Germany), at least 21,000 apprentices are trained every year in occupations with an 

increased risk of allergies, i.e. farmers, hairdressers, bakers and metalworkers [8], and for many of these 

trainees, presenting allergic symptoms means a premature end of training. About 9% of young Bavarians drop 

out of training [8], and approximately one-third of the young people who drop out due to health reasons suffer 

from skin and respiratory diseases [9]. In order to prevent these diseases, technical and organizational measures 

at the workplace as well as personal protective measures are recommended [10,11]. Therefore, training about 

occupational asthma and allergies as well as preventive measures should be included in the curricula in general 

education and especially vocational schools educating apprentices in high risk occupations such as farming. 

Therefore, the Social Security of Agriculture, Forestry and Horticulture in Bavaria (SVLFG) provides 

vocational schools with the required study curriculum for occupational safety and health. We have previously 

shown that the knowledge and acceptance of preventive measures -especially during training age- is low (see 

Supplemental Material, Table 4). This is probably related to a lack of interest and personal relevance. Only 

about a third of employees adhere to the recommended preventive measures [12]. Despite the lack of specific 

data in the farming context, we assume that the use of personal protective equipment (PPE) and other preventive 

measures between apprentices and workers is similar, and that these figures are also similar between farming 

and other professions. 



Therefore, the aim of this study was to apply an educational intervention designed to improve the knowledge of 

preventive measures against asthma and allergies in farm apprentices from Bavaria (Southern Germany), and to 

estimate the average treatment effect of this intervention using double robust and semi-parametric methods.  



MATERIALS & METHODS 

DESIGN AND PARTICIPANTS 

Farm apprentices on their second and third year of training from Upper Bavaria were personally invited to 

participate from March to April 2014 in this 6-month, two-armed, randomized controlled interventional study. 

All students were asked to fill out a questionnaire and a consent form. Before the beginning of the study, 

appointments were set for visiting the students at their place of study as part of their training. The recruitment of 

participants for the control and intervention groups was performed during these visits. Eligible were those 

apprentices who already had turned 18 years, excluding 37 apprentices who were younger at the time of 

recruitment. We performed cluster randomization taking into account the number of participants and the school 

they belonged to, in order to rule out systematic error.  

During the visits, apprentices were informed about the study and completed the baseline questionnaire about 

their knowledge of preventive measures against asthma and allergies. For the intervention groups, and following 

an educational intervention known as Learning with errors[13,14], the completion of the questionnaire was 

followed by the first version of an educational video in which a farming student did not comply with the 

recommended measures to protect against asthma and allergies (see supplementary material, Video 1). After 

that, they were invited to identify errors in a group discussion. In the end, a second version of the video was 

shown in which the farming student behaved correctly (see supplementary material, Video 2). The time for the 

training unit was about 20 minutes. The control group did not receive any training unit. Six months after 

recruitment (between September and October 2014), all study participants were contacted by phone for the 

follow-up interview during which their knowledge about preventive measure was again assessed.  

Only those who signed the informed consent with their contact data and successfully completed the baseline 

questionnaire were eligible for follow-up. Of 277 eligible students at baseline, 40 (14.4%) refused to participate. 

Of the remaining 237, 120 (50.6%) did not provide their email address (n=29), their phone number (n=72) or 

neither (n=19). One additional subject (0.4%) was removed due to missing information on sociodemographic 

variables. Of the remaining 116 apprentices, 46 belonged to the control group and 70 to the intervention group 

(n = 70). Of them, 47 (40.5%; 17 intervention group, 30 control group) completed the follow-up questionnaire 

(figure 1). 

 The study was approved by the Ethics Committee of the University of Munich (LMU) in February 2014 . 



QUESTIONNAIRE 

The baseline questionnaire included sociodemographic factors such as year of birth, schooling years, smoking 

behavior, occupational and private contact with animals and plants, as well as personal and parental history of 

asthma. Additionally, the questionnaire included a section about knowledge regarding prevention of asthma and 

rhinoconjunctivitis. The post-intervention survey was similar to the baseline questionnaire. 

VARIABLE DEFINITION 

Sociodemographic variables and medical history 

Age was collected as a continuous variable and dichotomized in either younger than 25 years old, or older. 

According to the European Community Respiratory Health Survey [15] smoking was defined as either ever 

smoked at least 20 packages of cigarettes or 360 grams of tobacco, or having smoked at least one cigarette per 

day or one cigar per week for at least one year, or having smoked in the last month.  

Risk perception was explored by using a 1-5 Likert scale to ask how likely would it be for the subject to present 

an episode of nasal allergies or asthma in the next 5 years, and how bad would it be for the subject to present an 

episode of nasal allergies or asthma. Answers such as “very unlikely” and “not bad at all”, respectively, were 

given the highest score. The scores of these two items were summed up, and a cut-off point corresponding to the 

75th percentile was chosen a-priori to dichotomize the sum into apprentices with normal level of risk perception 

(below 75th percentile) and low level of risk perception (≥75th percentile).  

Presence of asthma or rhinoconjunctivitis was defined as either self-reported wheezing without having a cold, 

currently taking asthma medication or symptoms of rhinoconjunctivitis during the 12-months prior to survey.  

Outcomes of interest 

The main outcome variable of interest was knowledge about six potentially preventive measures against asthma 

and allergies, based on the subject’s response to the question ‘which of the following measures can be applied in 

farming to avoid getting asthma and rhinoconjunctivitis?’: washing hair after work (yes), wearing work shoes 

(no), keeping work clothes outside of the living environment (yes), disinfecting stables (no), wearing protective 

goggles (no), avoid wearing work clothes inside the living environment (yes). Correct answers are given in 

parenthesis. Each of these six measures was given one point if correct, and zero if not correct. The scores were 

summed up. Our outcome of interest was to answer all six measures correctly. Sensitivity analyses were carried 

out using both at least five correct answers, and at least four correct answers. 



STATISTICAL ANALYSES 

Since previous analyses already show that logistic regression models are not well suited to model the effect of 

the intervention on the main outcome[16] (see Supplemental Material, Table 4) we applied Targeted Maximum 

Likelihood Estimation methods (TMLE) along with Machine Learning (ML) techniques. Logistic regression 

models did not converge to provide estimates for interpretation because of the low study sample size and high 

proportion of missing values on the outcome (drop-outs). Preliminary analyses showed that subjects who 

completed the intervention were not statistically different on confounders of interest from those who did not. 

TMLE –also found in the literature as Targeted Minimum Loss based Estimation- is a double robust method 

providing an effect estimator based on the exposure, on the outcome, or on both, while also allowing to include 

missing values as a parameter for modeling [17,18]. TMLE is performed in two stages. In the first stage, it 

models the outcome Y as a function of both the exposure A (treatment group) and the covariates (W1, W2, …, 

Wn). At the same time, it performs a joint modeling analysis of the missing values, and includes it in the model 

as a parameter. The second stage is a bias reduction step, where TMLE iteratively updates parameter estimates 

by using exposure models given the covariates, i.e. modeling the treatment mechanism. Within a counterfactual 

framework [19,20], the effect of the exposure on the probability distribution P0 of the outcome of interest is, 

ultimately, a difference in effect between the exposed and the unexposed (the target parameter), which could be 

measured on an additive or a multiplicative scale, e.g. relative risk (RR) or odds ratio (OR) [18]. As a 

consequence, the additive average treatment effect (ATE) as the true target parameter can be defined as: 

!"# =  !! ! !  ! = 1,! −  ! !  ! = 0,!)] 

where E(Y | A=a, W) is the conditional mean of the outcome given the exposure, either in the intervention (A = 

1) or the control group (A = 0), and the covariates (W) [18,21]. This second step makes use of semi-parametric 

techniques through ML that, unlike traditional parametric methods such as linear or logistic regression, are able 

to reduce bias and increase efficiency [17,22-24]. One of the main advantages about using ML techniques is that 

we allow the data to guide the controlled estimation of the best possible set of terms or interactions to include in 

the final model because the function ‘learns’ from the data itself [25]. 

Further, we estimated the average treatment effect on the treated (ATT) and the average treatment effect on the 

controls (ATC) in order to have a better understanding of the effect of the exposure only among those who 

actually receive the intervention, or those who were randomized into the control group, respectively [25-27]. 



. 

In other words, the ATT is the average difference on the outcome between the exposed subjects had they been 

exposed, and the same exposed subjects had they been unexposed [17]: 

!"" =  ! ! !  ! = 1,! − ! !  ! = 0,!) | ! = 1) 

In contrast, the ATC is the average difference on the outcome between the control subjects had they been 

exposed, and the same control subjects had they been unexposed [25]: 

!"# =  ! ! !  ! = 1,! −  ! !  ! = 0,!) | ! = 0) 

These results were adjusted for the potential confounders sex, age, education level, smoking status, presence of 

asthma or rhinoconjunctivitis, risk perception, parental asthma, and knowledge about preventive measures 

against asthma and allergies before the intervention. All statistical analyses were performed using R Statistical 

Software version 3.3.0 [28]. TMLE implementation was performed using the tmle package version 1.2.0-4 [29]. 

ML learning implementation within TMLE was performed using the SuperLearner package version 2.0-19 [30]. 

Estimation of ATT and ATC was done using the tmlecte package version 0.3.1 [31].  



RESULTS 
The majority of the population (n = 116) consisted of males (88.8%), 24 years old or younger (94.8%), non-

smokers (62.9%), with more than 10 years of schooling (60.3%), with no personal history of asthma or 

rhinoconjunctivitis (62.9%) or parental history of asthma (75.9%) (Table 1). At baseline, only 23.3% correctly 

answered all six questions about preventive measures against asthma and allergies, and this proportion increases 

to 27.7% at follow-up (Table 1).  On subjects who completed the intervention phase (n = 47), the proportion of 

correct answers in the intervention group increased from 17.7% to 23.5% for the main outcome, and from 

52.9% to 64.7% for having at least five correct answers (Table 2). This proportion remained unchanged for 

having at least four correct answers (Table 2). There were no statistically significant differences before the 

intervention. 

The adjusted additive ATE of the educational intervention was 18.4% (95% Confidence Interval (CI) 7.3% - 

29.6%) for the main analyses. In other words, the intervention would have increased the proportion of correct 

answers on all six preventive measures by 18.4%, had all participants received the intervention versus had they 

all been in the control group (Table 3). The adjusted additive treatment effect on the treated (ATT) was 16.9%, 

(95% CI 5.4% - 28.5%), while on the controls (ATC) it was 16.8% (95% CI 5.0% - 28.6%). 

In the sensitivity analyses, the additive ATE was the highest when the cut-off point for knowledge was at least 5 

correct measures (55.5%, 95% CI 37.0% - 74.1%). The additive ATT was 63.08% (95% CI 46.02% - 80.13%), 

while the additive ATC was 32.28% (95% CI 12.84% - 51.72%). Furthermore, for knowledge of about 4 correct 

measures, ATE dropped to 29.60% (95% CI 12.2% - 47.0%), while ATT was 62.78% (95% CI 41.64% - 

83.93%), and ATC was 18.97% (95% CI 1.91% - 36.02%).  



DISCUSSION 
We found that using an instructional video as educational intervention is an effective approach to improve 

knowledge about preventive measures against occupational asthma and allergies in Bavarian farm apprentices. 

Our data shows that the intervention would be able to increase the proportion of correct answers by 18% had all 

participants taken the intervention vs. had nobody taken it. The magnitude of the effect changed depending on 

the selected cut-off point for knowledge, but remained to be positive and statistically significant for all selected 

outcomes. 

Our results are consistent with current literature on the topic. Previous studies on apprentices and practicing 

farmers [32-34], hairdressers [35-37] and welders [38,39] have reported that knowledge about preventive 

measures varies from poor to average, the use of PPE is low, and several types of interventions tend to increase 

the level of knowledge and compliance with preventive measures. Kim et al.[32] demonstrated in a pilot study 

among farmers that one educational workshop consisting of rotating stations with information on causes of 

work-related asthma, spirometry and use of PPE, aiming at increasing the knowledge about safety training and 

occupational health and safety (OHS) was feasible and effective, while Levesque et al.[33] showed that farmers 

who received traditional pesticide safety training were more likely to use PPE; however, their confidence 

intervals were wide due to low number of participants. Meanwhile, Pounds et al.[34] implemented a different 

kind of intervention: a social media campaign promoting the use of respiratory protection devices (RPD) among 

farmers, and results showed that communication via e-mail increased knowledge about RPD, as well as 

intention to use these devices in dusty conditions.  

Our study has several strengths. Our educational intervention is easy to apply and to measure. Moreover, all 

relevant information about correct and incorrect practices are embedded in the videos, and students have the 

opportunity to discuss these practices and learn from mistakes made by a third party and not themselves[13,14]. 

A consequence of this dynamic is that the instructor does not need to possess any relevant information about the 

topic. We would recommend, however, elaborating an info sheet for the instructor, as extra material on how to 

lead the session. Furthermore, by using a double-robust method such as TMLE, we were able estimate the 

parameter of interest in presence of small sample size and with a high proportion of missing values on the 

outcome. The combination of TMLE and ML (SuperLearner) as semi-parametric techniques allowed us to have 

more flexibility and to reduce common modeling errors due to incorrect parametric assumptions [40], therefore 

reducing bias and increasing efficiency [17,41,42]. Simulation studies have shown that TMLE has many 



advantages over other methods such as the G-computation formula, inverse probability of treatment weighting 

(IPTW) or propensity score matching (PS) [40,43], namely that these other methods are inconsistent if the initial 

regression estimator is inconsistent (while TMLE remains consistent), and that TMLE still performs relatively 

well even if there are violations to the experimental treatment assignment (ETA) assumption. A practical ETA 

violation occurs when the conditional probability of receiving treatment is below some small ε, typically 

ranging between (0.1 and 0.01), depending on the number of observations [42]. Unlike traditional regression 

methods (e.g. logistic regression), TMLE is able to provide a measure of effect on the additive scale, which 

makes interpretation easier. Finally, our study is unique on its kind, and provides data and analyses on a 

population of young Bavarian farmers, thus filling a prior gap of knowledge on this specific subpopulation. 

Nevertheless, our study also has limitations. We analyzed only knowledge as main outcome, but it would be 

also interesting to measure and analyze behavioral change before and after the intervention. The cut-off point 

for the main outcome (all six correct measures) was chosen arbitrarily and might have been too strict. 

Nevertheless, we decided to use this cut-off point in order to be conservative and we performed sensitivity 

analyses taking into account less strict cut-off points, which confirmed the same results. Further, we modeled 

our outcome as binary instead of ordinal. Several methods have been proposed for randomized clinical trials 

with ordinal outcomes, which could increase the relative efficiency of the estimator [44]. Hence, the results of 

our study could be further improved by applying these methods. The main challenge was the huge number of 

losses to follow up we faced, which did not permit to use e.g., logistic regression models (see Supplemental 

Material, Table 4). We have overcome this limitation by using TMLE to model these missing values 

simultaneously with estimators for both the exposure and the outcome. Thus, we were able to obtain 

interpretable results that allow us to answer our research question. 

A popular criticism done to the counterfactual model is the possibility of individual treatment effects, which 

may introduce treatment-effect heterogeneity bias [45-49]. This type of bias is less common in randomized 

controlled trials because several assumptions are met: no interference among subjects, one unique version of the 

treatment, a non-zero probability of treatment assignment for each subject, and independence between treatment 

level and potential outcomes given observed covariates [48,50]. When treatment effects are homogeneous for all 

subjects, the values for the ATE, ATT and ATC are identical [45,46]. Our results show that the ATE, ATT and 

ATC on the main outcome are fairly similar. Hence, the presence of treatment-effect heterogeneity bias is 

unlikely. Additionally, all causal frameworks might still be susceptible to unmeasured confounding, especially 



in observational studies [51,52]. In our study, however, we have made sure to measure and include all possible 

covariates that might be related to both our exposure and outcome. This approach, along with our study design 

and randomization strategy, provides us with an adequate amount of confidence to make statements about the 

results of our data.    

It is also important to take into account a possible community effect that may ‘contaminate’ the effect of the 

intervention between those treated and those untreated [53]. After all, young apprentices take courses and 

perform daily activities together. However, we reduced the possibility for interaction between treated and 

untreated subjects when we performed clustered randomization. In other words, all participants of one study 

center were randomized either to receive the intervention or to be in the control group, thus decreasing the 

possibility of disturbing the effect on the outcome. Moreover, apprentices in this population tend to meet only 

occasionally if they have lectures, while the rest of the time they are working on the farms, so they do not see 

each other as frequently as trainees in other areas. This study was performed in a very well characterized 

population of young Bavarian farm apprentices. Extrapolation of results to other populations must be done 

cautiously, since risk perception, work practices, and other variables may vary according to strong local cultural 

patterns [54]. 

Even though we have obtained positive and significant results with our intervention, we believe we are still 

short in closing the breach of knowledge about preventive measures against asthma and allergies in the 

workplace. A valid point for discussion is whether or not an 18% increase in the proportion of correct answers is 

sufficient. Taking into account that 23% of our population had a full score on all six preventive measures at 

baseline (Table 1), and that our intervention would increase this proportion by 18%, we are still left with more 

than 50% of apprentices with inadequate knowledge on prevention. Further, it is still unclear if an increase in 

knowledge would effectively relate to an increase in the correct use of preventive measures.  

In summary, our findings suggest that our educational intervention improves the knowledge about preventive 

measures against asthma and allergies in about 20% of young Bavarian farm apprentices, and that TMLE is an 

efficient double-robust and semi-parametric method able to provide causal effect estimates where traditional 

regression methods cannot.  
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Table 1 Descriptive data of subjects, and level of knowledge after the intervention 
        Level of knowledge after the intervention (n = 47) 
 Overall 

(n = 116) 
(n, %) 

 Follow-up 
(n = 47) 
(n, %) 

 Missing 
values a 
(n, %) 

  All 6 
measures b   

(n, %) 

 At least 5 
measures c 

(n, %)  

 At least 4 
measures 

(n, %) 

 Less than 4 
measures  

(n, %) 
Age Younger (18-24 years old) 110 94.83  42 89.36  68 98.55   5 83.33  21 95.45  33 91.67  9 81.82 

Older (25-44 years old) 6 5.17  5 10.64  1 1.45   1 16.67  1 4.55  3 8.33  2 18.18 
   

Sex Female 13 11.21  8 17.02  5 7.25   4 66.67  7 31.82  7 19.44  1 9.09 
Male 103 88.79  39 82.98  64 92.75   2 33.33  15 68.18  29 80.56  10 90.91 

   
Smoking status  Non-smoker 73 62.93  26 55.32  47 68.12   6 100.0  13 59.09  22 61.11  4 36.36 

Smoker 43 37.07  21 44.68  22 31.88   0 0.0  9 40.91  14 38.89  7 63.64 
   

Education level 9 years of schooling 46 39.66  17 36.17  29 42.03   1 16.67  5 22.73  11 30.56  6 54.55 
10+ years of schooling 70 60.34  30 63.83  40 57.97   5 83.33  17 77.27  25 69.44  5 45.45 

   
Risk perception d High level 86 74.14  36 76.60  50 72.46   4 66.67  16 72.73  26 72.22  10 90.91 

Low level 30 25.86  11 23.40  19 27.54   2 33.33  6 27.27  10 27.78  1 9.09 
   

Asthma or 
Rhinoconjunctivitis e 

No 73 62.93  30 63.83  43 62.32   3 50.00  13 59.09  22 61.11  8 72.73 
Yes 43 37.07  17 36.17  26 37.68   3 50.00  9 40.91  14 38.89  3 27.27 

   
Parental asthma No 88 75.86  30 63.83  58 84.06   3 50.00  16 72.73  25 69.44  5 45.45 

Yes 28 24.14  17 36.17  11 15.94   3 50.00  6 27.27  11 30.56  6 54.55 
   

Knowledge before the 
intervention f 

Less than cut-off point 89 g 76.72  34 72.34  55 79.71   4 66.67  7 31.82  3 8.33  3 27.27 
More than cut-off point 27 23.28  13 27.66  14 20.29   2 33.33  15 68.18  33 91.67  8 72.73 

   
Intervention group Control 46 39.66  30 63.83  16 23.19   2 33.33  11 50.00  20 55.56  10 90.91 

Intervention 70 60.34  17 36.17  53 76.81   4 66.67  11 50.00  16 44.44  1 9.09 
  
 a  Missing values of the outcome 

b  Includes 4 and 5 correct 
c Includes 4 correct 
d  A low level of risk perception puts the subject at a higher risk. It results from answering the questions ”how likely would you think it is to present an episode of nasal allergies or asthma in the next 

five years” and “how bad do you think it would be to present an episode of nasal allergies or asthma?” For details on how this variable was constructed, see text 
e Defined as the 12-months prevalence of either self-reported wheezing without a cold, currently taking medication for asthma or rhinoconjunctivitis 
f  Each outcome was compared against the same outcome at baseline: all six correct measures at baseline vs. all six correct measures at follow-up, at least 5 correct measures at baseline vs. at least 5 

correct measures at follow-up, at least 4 correct measures at baseline vs. at least 4 correct measures at follow-up 
g For all six correct measures 



 

Table 2 Descriptive data by intervention group (n = 47) 
 Intervention group 
 Control 

n = 30 
(n, %) 

Intervention 
n = 17 
(n, %) 

Age Older (25-44 years old) 2 6.67 3 17.65 

      

Sex Male 24 80.00 15 88.24 

      

Smoking status Smoker 13 43.33 8 47.06 

      

Education level 10+ years of schooling 18 60.00 12 70.59 

      
Risk perception a Low level 26 86.67 10 58.82 
      
Asthma or 
Rhinoconjunctivitis b 

Yes 10 33.33 7 41.18 

      
Parental asthma Yes 9 30.00 8 47.06 
      
Knowledge before the 
intervention  

All 6 correct answers 10 33.33 3 17.65 
At least 5 correct answers 19 63.33 9 52.94 
At least 4 correct answers 25 83.33 16 94.12 

      
Knowledge after the 
intervention 

All 6 correct answers 2 6.67 4 23.53 
At least 5 correct answers 11 36.67 11 64.71 
At least 4 correct answers 20 66.67 16 94.12 

 
a  A low level of risk perception puts the subject at a higher risk. It results from answering 

the questions ”how likely would you think it is to present an episode of nasal allergies or 
asthma in the next five years” and “how bad do you think it would be to present an 
episode of nasal allergies or asthma?” For details on how this variable was constructed, 
see text 

b  Defined as the 12-months prevalence of either self-reported wheezing without a cold, 
currently taking medication for asthma or rhinoconjunctivitis 

 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Table 3 Adjusteda average treatment effects of the intervention (n=116b) 
  All 6 correct 

measures 
At least 5 correct 

measures 
At least 4 correct 

measures 
Additive ATE Parameter 18.44% 55.53% 29.60% 

95% CI (7.3% – 29.58%) (36.96% - 74.09%) (12.2% - 47.0%) 
     

Additive ATT Parameter 16.9% 63.07%  62.78% 
95% CI (5.38% - 28.51%) (46.02% - 80.13%) (41.64% - 83.93%) 

     
Additive ATC Parameter 16.8% 32.28% 18.97% 

95% CI (5.02% - 28.57%) (12.84% - 51.72%) (1.91% - 36.02%) 
     

Abbreviations: ATE = Average treatment effect; ATT = Average treatment effect on the treated; CI = 
Confidence Interval; ATC = Average treatment effect on the controls; TMLE = targeted maximum likelihood 
estimation. 
a Adjusted for sex, age, education level, smoking status, presence of asthma or rhinoconjunctivitis, risk 

perception, parental asthma, and knowledge about preventive measures against asthma and allergies before 
the intervention 

b The adjusted model using TMLE allowed including both observed data (n = 47) and missing values (n = 
69) as parameters 
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