

Biogeographical patterns in the deep ocean: environmental, biological, and historical drivers in the North Atlantic

ATLAS Annual General Meeting, Edinburgh 9-12th March

Berta Ramiro-Sánchez¹, Lea-Anne Henry¹, Johanne Vad¹ and J. Murray Roberts¹

¹School of GeoSciences, The University of Edinburgh

RATIONALE

Effective management of VMEs should be based on the full understanding of ecological processes and the assessment of the different scales structuring VMEs species diversity and communities.

Research Questions:

- 1. Are existing biogeographic classifications adequate to represent deep-sea VME biogeography?
- 2. Are current patterns of distribution in the North Atlantic a result of larval dispersal or environmental adaptation mechanisms?

RQ1

Are existing biogeographic classifications adequate for VME taxa?

Background

- The lack of biogeographic data in the deep sea has pushed for approaches based on physiognomic proxies (i.e. bathymetry, oceanographic variables) not validated with species data.
- GOODS and EMUs have implemented this approach with expert knowledge and statistical modelling, respectively.

- nMDS ordination and ANOSIM to test for significant differences in VME assemblages among GOODS and EMUS provinces.
- Exploration of the effect of longitude on dispersal.

atlas

RESULTS

- Significant spatial structure in assemblage composition:
 - **GOODS**: † R Global value = **depth has strong effect**
 - EMUs: $\int R$ global value = no pattern in the nMDS plot
- A longitudinal gradient was evident in GOODS.

													Torricia	0.	202
0.50 -				•	2D St	tress: 0.17	GOODS Bathyal				•		2D Stres	ss: 0.19	EMUs 10 26
).25 -	A	•	• •	•	•		Northern bathyalArctic bathyalAbyssal	0.25 -	•			•	•		293637
0.00 -	•			A , •			Section Arctic	WD 0.00-		•			→		Section Arctic
0.25 -	A	A	* *				Caribbean▲ Central◆ Eastern• Western	-0.25 -	•			•	•	•	CaribbCentraEaster
-0.50	-0	0.25	0. MDS	00	C).25	- Western		0.4	-(0.2 0.0 N	/IDS1	0.2 0.4	0.6	• Weste

		Global R	P-value	
(A) ALL TAXA	EMUs GOODS	0.196 0.440	0.0005* 0.0005*	
(B) EMUs	Scleractinia Octocorallia	0.168 0.130	0.014* 0.039*	
	Porifera	0.162	0.005*	
(C) GOODS	Scleractinia	0.048	0.335	
	Octocorallia	0.177	0.054	
	Porifera	0.262	0.006*	

CONCLUSIONS

- Expert driven classification (GOODS) performed better than purely statistical approaches (EMUs).
- Important effect of depth → Bathymetry co-varies with many factors that influence deep-sea species distribution patterns.
- Some evidence of an eastern and western differentiation in assemblage composition was observed in the nMDS ordination of the GOODS provinces only.
- Longitudinal patterns were not observed in the cluster analysis that included species from upper bathyal depths $(200 800 \text{ m}) \rightarrow$ Topographic effect?

Refined GOODS could be implemented! (east and west Atlantic separation)

Larval dispersal vs. environmental adaptation

Background

• Biotic and abiotic interactions control community structure at varying spatial and temporal scales, and generate spatial patterns that need to be assessed to disentangle the ecological processes structuring these communities.

- We aimed to describe the distribution of VMEs and relate these to environmental factors at basin scale.
- Unravel the relative importance of environmental versus larval dispersal mechanisms in the biogeographical structure of VMEs.
- Spatial variation in multivariate data through distance-based Moran's eigenvector mapping (dbMEM) and redundancy analysis (RDA).

RESULTS

- 8 biogeographic clusters representing all VME taxa.
- dbMEM analysis provided vectors representing broad-scale patterns.
- Full spatial and environmental model explained 21.3 % of the variation of the data:

VME Presence/absence ~ T + Aragonite Saturation state + Calcite Saturation state + SD Oxygen + SD Si + EPC + pH + Currents Speed + Salinity + spatial eigenfunctions (broad-scale)

78%

Unexplained [d]

CONCLUSIONS

- Change in resolution of environmental variables to match species data masks their potential effect.
- Role of space indicates that present broad-scale patterns of deep-sea VME distribution are likely a result of topography, distance-decay relationships or historical events.
- Biogeographical clusters were driven by the oceanographic conditions characterising the water masses present in each geographic area.
- Larval dispersal mechanisms, primarily, and environmental processes (spatially structured environmental variables) not fully captured at the resolution of our study, potentially have determined the present-day distribution of complex habitats formed by VMEs in the North Atlantic.

Implications for spatial management measures

Acknowledgements

Fisheries and Oceans Canada

Thank You

Patlas

Presenter details

Berta Ramiro Sánchez
PhD candidate
The University of Edinburgh
E: berta.ramiro@ed.ac.uk

Project contact details

Coordination: Professor Murray Roberts murray.roberts@ed.ac.uk

Project Office: EU-Atlas@ed.ac.uk

Communication & Press: atlas@aquatt.ie

Follow us

@eu_atlas

@EuATLAS

Image © M Bilan