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Abstract

Environmental sound signals are multi-source, heterogeneous, and varying in

time. Many systems have been proposed to process such signals for event detec-

tion in ambient assisted living applications. Typically, these systems use feature

extraction, selection, and classification. However, despite major advances, sev-

eral important questions remain unanswered, especially in real-world settings.

This paper contributes to the body of knowledge in the field by addressing the

following problems for ambient sounds recorded in various real-world kitchen

environments: (1) which features and which classifiers are most suitable in the

presence of background noise? (2) what is the effect of signal duration on recog-

nition accuracy? (3) how do the signal-to-noise-ratio and the distance between

the microphone and the audio source affect the recognition accuracy in an en-

vironment in which the system was not trained? We show that for systems

that use traditional classifiers, it is beneficial to combine gammatone frequency

cepstral coefficients and discrete wavelet transform coefficients and to use a gra-

dient boosting classifier. For systems based on deep learning, we consider 1D

and 2D Convolutional Neural Networks (CNN) using mel-spectrogram energies

and mel-spectrograms images as inputs, respectively, and show that the 2D

CNN outperforms the 1D CNN. We obtained competitive classification results
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for two such systems. The first one, which uses a gradient boosting classifier,

achieved an F1-Score of 90.2% and a recognition accuracy of 91.7%. The second

one, which uses a 2D CNN with mel-spectrogram images, achieved an F1-Score

of 92.7% and a recognition accuracy of 96%.

Keywords: Smart homes; ambient assisted living; audio signal processing;

feature extraction; feature selection; deep learning

1. Introduction

Smart home-based ambient assisted living Information and Communications

Technology (ICT) solutions can allow the elderly to remain in their own homes

and live independently for longer [1]. Research on ICT solutions for ambient

assisted living has intensified over the last decades considerably, due to the5

emergence of affordable powerful sensors and progress in artificial intelligence

[2, 3, 4].

Various human activity recognition (HAR) systems that monitor daily ac-

tivities to identify abnormal behavior have been proposed for ambient assisted

living applications [5, 6].10

One common approach to automated HAR uses portable sensors such as

accelerometers and gyroscopes [7, 8]. However, these sensors require cooperation

of the subject, may restrict body movement, and are energy constrained [9, 10].

Another approach relies on computer vision [11, 12]. However, privacy concerns

are hindering its adoption. A further approach is based on audio processing.15

Features are extracted from the environmental sounds and classifiers are used

to recognize the corresponding human activity [13, 14, 15].

While several audio-based HAR systems have been proposed, a number of

important questions remain unanswered:

• which features and which classifiers are most suitable in the presence of20

background noise?

• what is the effect of the duration of the signal segment used for classifica-

tion on recognition accuracy? Decreasing the segment duration decreases
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the response time of the system but may harm its recognition accuracy.

At the same time, increased duration can lead to increased co-occurrence25

of multiple events within the same sound segment;

• how do the signal-to-noise-ratio (SNR) and the distance between the mi-

crophone and audio source affect the recognition accuracy in a new envi-

ronment (i.e., one which was not used to train the classifier)?

Our work answers these questions for a real-world indoor kitchen environment30

where large audio datasets are captured and processed to train classifiers. Two

representative acoustic event detection (AED) approaches are studied. The first

one extracts time and frequency features and uses a traditional classifier. We

compared various features and classifiers and showed that the best results are

obtained with hybrid time-frequency features, together with a gradient boost-35

ing classifier. Our best system achieved an F1-score of 90.2% and a recognition

accuracy of 91.7%. The second system uses mel-spectrogram images of the au-

dio signals as input to a 2D CNN. We showed that compared to a 1D CNN

that applies max-pooling to only one dimension, applying max pooling to both

dimensions of the input (time and frequency) reduces the dimensionality in40

a more uniform manner, yielding more salient features with each consecutive

convolutional-max pooling operation. This approach achieved a recognition ac-

curacy of 96% and an F1-Score of 92.7%. Additionally, we observed that in

a real-world environment the recognition accuracy for some classes did not im-

prove when the signal duration was greater than 3 s. This was due to overlapping45

sounds that occurred in the kitchen environment (e.g., kitchen faucet running,

while the user picks a plate to wash). Even in the cases where the recognition

accuracy increased, the improvement was not significant. Studying the trade-off

between signal duration and accuracy is important in scenarios where the data

needs to be captured and processed on a system-on-chip device (e.g., Raspberry50

Pi), with limited memory size. Finally, since real-world environments typically

include noise, we studied the effect of the SNR and distance between the micro-

phone and the target audio event on the recognition accuracy. For events such
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as using the mixer and the utensils (forks, spoons, knives), the recognition accu-

racy was high despite the background noise of a kitchen fan and a refrigerator.55

The high amplitudes in the signals associated with these events could mask the

low amplitudes of the background noise signals. On the other hand, we noticed

a drop in the recognition accuracy for quieter sounds (e.g., dishwasher). We

did not add artificial background noise to affect the SNR since we wanted to

be as close to a real-world scenario as possible. The classification results that60

we obtained at various distances showed that we can achieve good accuracies

with one microphone. This was useful, especially for monitoring houses of the

elderly, where the number of sensors should be as small as possible.

The two systems are unobtrusive and preserve privacy as the raw audio is

immediately deleted after feature extraction and cannot be recovered from the65

features.

The rest of the Chapter is organized as follows. Section 3.2 discusses related

work. Section 3.3 describes the two systems used in our study, giving details

on signal acquisition, feature extraction, feature selection and classification.

The experimental setup and the results are presented in Sections 3.4 and 3.5,70

respectively. Finally, Section 3.6 concludes this Chapter.

2. Related Work

Audio-based activity recognition has received a lot of attention from re-

searchers in recent years [16, 17]. A number of studies have also taken the

first steps to characterize the indoor sound environment and the classification75

of events [18, 19].

While many approaches addressed the problem of audio-based activity recog-

nition in a home environment [20, 21, 22, 23], there is not enough justification

for the classifier and feature selection. Most of them used well-known features

from the field of speech recognition (e.g., Mel-frequency Cepstral Coefficients80

(MFCCs)) along with classifiers, such as the k-Nearest Neighbors (kNN) algo-

rithm, to serve as a proof of concept for indoor audio-based activity classifi-
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cation. Chu et al. [24] showed that increasing the number of audio features

does not improve the recognition accuracy of a system classifying environmen-

tal sounds and used the matching pursuit algorithm to obtain effective time-85

frequency features.

Deep Neural Networks (DNNs) are able to extract important information

from the raw data without the need for hand-crafted feature extraction and

outperform traditional classifiers in many tasks. There is significant research

on recognizing single events in monophonic recordings [25] and multiple concur-90

rent events in polyphonic recordings [26]. Different feature extraction techniques

[27], hybrid classifiers [28, 29] and very deep neural models [30] have been ex-

plored. However, none of these works compared 1D and 2D CNN architectures

for ambient sounds.

Another focus of this work is the duration of the signal used with an audio-95

based event detection system. The works [31, 32, 33] examined the length needed

for sufficient recognition accuracy. They used systems based on time-frequency

features and simple classifiers, such as Support Vector Machines (SVMs) and

Hidden Markov Models (HMMs). The proposed approaches work well with

datasets that contain indoor or outdoor environmental sounds. However, due100

to the high variability in the class and the similarity between different classes,

they can fail in a specific AED task (e.g., in a kitchen environment).

Finally, there has been extensive research on the effect of the SNR in the

presence of background noise [34, 35, 36]. Wang et al. [37] performed experi-

ments for various artificially added SNRs (0-10 dB and clean recordings) using105

different environmental sound datasets and a hierarchical-diving deep belief net-

work. However, all previous work assumed prior knowledge of the SNR, which

is not possible in a real-world environment.

3. Proposed System Architectures

We propose two approaches for acoustic event detection in an indoor envi-110

ronment.
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Figure 1: First proposed AED approach.

For the first AED approach (Figure 1), we considered time-domain features

(Zero-Crossing Rate (ZCR)), frequency-domain features (MFCCs, Gammatone

Frequency Cepstral Coefficients (GFCCs), Spectral Roll-Off (SR), Spectral Cen-

troid (SC)), and time-frequency features (Discrete Wavelet Transform coeffi-115

cients). Furthermore, we studied the effect of adding many audio features along

with proper feature selection and reduction techniques on recognition accuracy.

For classification, we examined well-known classifiers such as kNN, SVM, Ran-

dom Forest, Extra Trees and Gradient Boosting.

For the second AED approach, we used a CNN trained on mel-spectrogram120

images (Figure 5). We show that even for a small dataset, a 2-dimensional

CNN with 2-dimensional max-pooling (downsamping) layers can provide good

recognition accuracy results. The details of the two approaches are given in the

following sub-sections.

3.1. Signal Acquisition125

The success of the signal recording depends on the environment and the

placement of the microphone. Ideally the recordings should take place in sound-

proof studios or labs. However, this is not possible in real life. Therefore, we

examined test case scenarios with various types of noises that may occur in a

home environment. Three kitchen environments (first author’s house, CERTH130
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KRIPIS smart home and AKTIOS S.A. Elderly Care Units in Vari, Athens)

were used for data collection.

In the first step of the preprocessing, we recorded the input signal in stereo

at 44,100 Hz (16-bit depth) and then averaged the two channels. This allowed

us to use frequencies up to 22,050 Hz, according to the Nyquist criterion. This is135

sufficient to cover all the harmonics generated by our input signal and removes

noise above this range (also not detected by human ear).

3.2. Data Augmentation

Environmental audio recordings have various temporal properties. There-

fore, we need to make sure that we have captured all the significant information140

of the signal in both the time and frequency domain. Any environmental signal

is a non-stationary signal [24], since it is a stochastic signal and a signal value is

not equally probable to occur given another signal value at any time instance.

Previous research [38, 39] showed that data augmentation can significantly

improve the performance of a classification system by introducing variability145

into the original recordings. For this reason, for both AED approaches, we pro-

duced two additional recordings from the original ones. First, for each recording,

we added noise with uniform probability distribution. This allowed us to train

our system better, since the test audio data in an unknown environment (not

used for training) would also include various noises (e.g., different people speak-150

ing while performing an activity such as cooking). Second, we re-sampled the

original recording from 44.1 kHz to 16 kHz. Most of the monitored kitchen

environment recordings (mixer, dishwasher, faucet, utensils) had a fundamental

frequency of around 600-700 Hz. We focused on the harmonics produced by de-

vices such as the mixer and the dishwasher and found that a lot of information155

at around 11 kHz was necessary for these classes.

The quality of the data was maintained since i) downsampling removed the

frequencies above 16 kHz and did not affect the general recording since the

energy of the highest frequencies (above 16 kHz) was very small and ii) the

added uniform noise corresponded to the scenario where ambient noise was160
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present in the kitchen environment (e.g., fan and refrigerator of the setup in

Figure 6 (c)).

3.3. Feature Extraction

To include the range of frequencies that are relevant to identifying the kitchen

environmental sounds and to efficiently extract the audio features, we split the165

input signal into smaller frames for processing. Each frame had a window size

of 20 ms with a 10 ms hop size from the next one (50% overlapping sliding

Hamming window). Thus, there were 173 frames per recording.

For the second AED approach, we calculated the mel-spectrogram with 128

bins to keep the spectral characteristics of the audio signal while greatly reducing170

the feature dimension. We normalized the values before using them as an input

into the CNN by subtracting the mean and dividing by the standard deviation.

In the following, we give the details of feature extraction for the first AED

approach.

3.3.1. MFCC: Mel-Frequency Cepstral Coefficients175

MFCCs are one of the most popular features for voice recognition [40]. Fig-

ure 2 shows the steps involved in MFCC feature extraction.

Figure 2: MFCC Feature Extraction

One of the disadvantages of MFCCs is that they are not very robust against

additive noise, and so it is common to normalize their values in speech recogni-

tion systems to lessen the influence of noise.180
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MFCCs are used for voice/speaker recognition. However, the indoor envi-

ronmental audio signals had significant information at the trajectories of the

MFCCs over time. Therefore, we included the delta values and delta-delta val-

ues [41]. To compute these features, we used the mfcc function of the Librosa

library [42], which return 39 MFCC features per frame: 13 MFCCs where the185

zeroth coefficient was replaced with the logarithm of the total frame energy, 13

delta features and 13 delta-delta features.

3.3.2. DWT: Discrete Wavelet Transform

The DWT provides a compact representation of a signal in time and fre-

quency and can be computed efficiently using a fast, pyramidal algorithm. In190

the pyramidal algorithm the input signal is analyzed at different frequency bands

with different resolution by decomposing it into a coarse approximation and de-

tail information. This is achieved by successive high pass and low pass filtering

of the time domain signal. We used an 8-level DWT with the 20-coefficient

wavelet family (db20) proposed by Daubechies [43], because of its robustness to195

noise, and extracted the mean and variance in each sub-band, resulting in 16

(high-frequency) features. The wavelet transform concentrated the signal fea-

tures in a few large-magnitude wavelet coefficients; hence the coefficients with a

small value (noise) could be removed without affecting the input signal quality.

In the kitchen environment signals, high frequency components are present200

very briefly at the onset of a sound while lower frequencies are present for a long

period.

3.3.3. ZCR: Zero-Crossing Rate

In the context of discrete-time signals, a zero crossing is said to occur if suc-

cessive samples have different algebraic signs. The rate at which zero crossings205

occur is a simple measure of the frequency content of a signal.

The zero-crossing rate returned a 1×173 vector for each recording and we

calculated the mean and median of each vector, resulting in two ZCR features

per recording.
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3.3.4. SR: Spectral Roll-off210

Spectral Roll-off (SR) is defined as the frequency below which a certain

percentage (85% - 95%; depending on the application) of the magnitude distri-

bution of the power spectrum is accumulated. The equation of the feature is

given in Equation (1):

m∑
k=1

Xi(k) = C

N∑
k=1

Xi(k) (1)
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Figure 3: SR comparison between the sound of the kitchen sink (top) and the sound of a

violin (bottom). The x-axis on shows time in s

where Xi(k), k = 1, ..., N are the Discrete Fourier Transform (DFT) coeffi-215

cients of the i-th short-term frame and N is the number of frequency bins. The

DFT coefficient Xi(m) corresponds to the SR of the i-th frame and C is the

percentage of the magnitude distribution of the spectrum. We found a threshold

of 95% to be suitable for distinguishing different kitchen sounds. The mean and

median of the SR for each recording were calculated and normalized between 0220

and 1.

Figure 3 shows the difference of the SR between a violin recording and the

running tap water in the sink. The harmonics of the violin are very distinct in
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the spectrum, the mean is 0.423 and the median is 0.417. On the other hand,

the mean and median of the kitchen sink sound are 0.811 and 0.803 respectively.225

3.3.5. SC: Spectral Centroid

Spectral Centroid (SC) is defined as the “center of gravity” of the spectrum.

It is described by Equation (2)

SC =

∑N
k=1(k + 1)Xi(k)∑N

k=1Xi(k)
(2)

where Xi(k), k = 1, ..., N are the DFT coefficients of the i-th short-term

frame and N is the number of frequency bins.230

SC is directly related to the sharpness (high-frequency content) of the sound

spectrum. Hence, higher SC values mean that there is a very bright sound with

high frequencies present. The mean and median of the SC for each recording

were calculated and normalized between 0 and 1.

3 × 102

4 × 102

6 × 102

Hz

Kitchen Sink Spectral centroid

0 1.5 3 4.5 6 7.5 9
Time

0
64

128
256
512

1024
2048
4096
8192

Hz

log Power spectrogram

103

Hz

Violin Spectral centroid

0 1 2 3 4 5 6
Time

0
64

128
256
512

1024
2048
4096
8192

Hz

log Power spectrogram

Figure 4: SC comparison between the sound of the kitchen sink (top) and the sound of a

violin (bottom). The x-axis on shows time in s

Figure 4 shows a significant difference between the brighter sound of a violin235

and the more broadband sound of the running water of a kitchen sink. More

specifically, for the kitchen sink, where low frequencies are mainly present, the
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mean is 0.126 and the median is 0.113. On the other hand, the “sharper” sound

of the violin, where the harmonics are very distinct at higher frequencies has a

mean of 0.383 and a median of 0.366.240

3.3.6. GFCC: Gammatone Frequency Cepstral Coefficients

The Gammatone filter-bank consists of a series of band-pass filters, which

model the frequency selectivity property of the basilar membrane. The main

difference between the MFCC and GFCC is that the Gammatone filter-bank

and the cube root are used before applying the DCT while the triangular filter-245

bank and the log operation are applied in MFCC. Equation (3) describes the

calculation of the GFCC:

GFCCm =

√
2

N

N∑
n=1

log(En) cos[
πn

N
(m− 1

2
)], 1 ≤ m ≤M (3)

where En is the energy of the signal in the n-th band, N is the number of

Gammatone filters and M is the number of GFCC.

We extracted 39 GFCC features per frame. These consisted of 13 GFCCs,250

13 delta values and 13 delta-delta values.

3.4. Feature Selection

Feature selection was a crucial step for the first AED approach, since we

wanted to have a framework that detects activities in real-time.

3.4.1. Feature Aggregation255

Out of the 5,985 recordings (original=1,995 and two augmented=3,990), we

extracted the following features: 173×16 (DWT) + 2 (ZCR) + 2 (SR) + 2 (SC)

+ 173×39 (GFCC) + 173×39 (MFCC). Aggregating all the features into a single

vector is an important step before passing it to the sequential backward search

algorithms and applying principal component analysis. Feature extraction and260

classification (using the first AED approach) ran on a Raspberry Pi 3 Model B

platform.
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3.4.2. SBS: Sequential Backward Selection

SBS starts from the whole feature set X = {xi | i = 1, . . . , N} and discards

the “worst” feature (x′) at each step, such that the reduced set X−{x′} gives the265

maximum value of an objective function J(X −{x′}). Given a feature set, SBS

gives better results but is computationally more complex than other statistical

feature selection methods [44]. With SBS, we reduced the number of features

to 17 per recording.

3.4.3. PCA: Principal Component Analysis270

The central idea of PCA is to reduce the dimensionality of a dataset that

consists of many interrelated variables, while retaining as much as possible the

variation present in the dataset. We applied PCA to the features given by SBS

to reduce the feature space down to two principal components. The principal

components were used as input to the classifier.275

3.5. Activity Classification

For the first AED approach, we compared the performance of a kNN classi-

fier with 5 nearest neighbors, an SVM with a linear and a Radial Basis Function

(RBF) kernel, an Extra Trees classifier, a Random Forest and a Gradient Boost-

ing classifier.280

For the second AED approach, we implemented a CNN based on a modified

AlexNet [45] architecture. The CNN was trained on an NVIDIA GeForce GTX

1080 Ti.

Mono channel 
mel- spectrogram 

Convolution 3x3 Max pooling 2x2 Convolution 3x3 Convolution 3x3 
Max pooling 2x2 

Convolution 3x3 
Max pooling 2x2 

Fully Connected

.

.

.

.

.

Softmax

Figure 5: Second proposed AED approach
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The CNN consists of 4 convolutional layers (Figure 5). The number of filters

at each layer increases as a power of two. Specifically the first layer has 8 filters,285

the second 16, the third 32 and the fourth one 64. The first layer performs

convolutions over the spectrogram of the input segment, using 3×3 kernels. The

output is fed to a second convolutional layer which is identical to the first. A 2×2

max pooling operation follows the second layer and the subsampled feature maps

are fed to two consecutive convolutional layers, each followed by max pooling290

operations. Each convolution operation is followed by batch normalization [46]

of its outputs, before the element-wise application of the exponential linear unit

(ELU) activation function [47] to facilitate training and improve convergence

time. We selected the ELU activation function based on the results obtained

by Clevert et al. [47], where it outperformed other commonly used activation295

functions (e.g., rectified linear unit (ReLU)), when tested on image datasets

using deep neural networks with more than five layers. After each max pooling

operation, we apply dropout [48] with an input dropout rate of 0.2. The number

of kernels in all convolutional layers is 5. The resulting feature maps of the

consecutive convolution-max pooling operations are then fed as input to a fully-300

connected layer with 128 logistic sigmoid units to which we also apply dropout

with a rate of 0.2, followed by the output layer which computes the softmax

function. Classification is obtained through hard assignment of the normalized

output of the softmax function

c = arg max
i=1,...,N

yi (4)

yi =
expxi∑N
j=1 expxj

(5)

where N is the number of classes and xi is the probability for the i-th class.305

We used the Adam optimizer [49] and trained our network with an initial learn-

ing rate lr=0.001, which was reduced by a factor of 0.01 when there was no vali-

dation loss (categorical cross-entropy) improvement for five consecutive epochs.

This ensured that there was no overfitting in the training. We trained the CNN
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for 20 epochs.310

4. Experimental Setup

We recorded sounds of activities using the kitchen setup of Figure 6 (a),

where there was no background noise and Figure 6 (b, c) that included back-

ground speech sounds and ambient noise of a fan and refrigerator. We also

collected sounds for seven classes from Freesound [50].315

(a) Home Kitchen Environment Setup

(b) CERTH Smart Home (KRIPIS)

setup

(c) AKTIOS Kitchen Environment Setup

Figure 6: Experimental Setup

The first recordings were made in the kitchen of the first author (Figure

6 (a)). Only one person was present at the time of the recordings.For this

environment, two smartphones (Samsung Galaxy S5 & ZTE Nubia Z11 miniS)
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were placed on the kitchen counter above the dishwasher at an identical position.

The main reason for using two smartphones was to capture the same source from320

two different, off the shelf, microphones. The smartphones were 50 cm away

from the faucet, approximately 50 cm from the mixer, 1 m from the oven and

approximately 2 m from the kitchen drawer. For the second set of recordings,

the setup was as follows (Figure 6 (b)):

1. we used a Raspberry Pi 3 Model B with an MEMS DSP board to record325

the audio signals

2. the environment was noisier than for the first set of recordings because

other researchers were present and speech or other environmental noises

were captured more frequently

3. the MEMS board was placed at 1.2 m from the dishwasher, 1.4 m from the330

mixer, 40 cm from the kitchen faucet and 1.6 m from the oven. Compared

to the first recordings, the distances to the appliances were larger to reduce

the SNR

Finally, for the third set of recordings (Figure 6 (c)), we classified the audio

signals in real-time using a laptop and an MEMS microphone board. For this335

environment there was a background noise of a fan and a refrigerator. We used

the MEMS board to manually adjust the microphone gain (+6 dB; maximum

threshold to avoid clipping when placed within 50 cm from the cutting board to

detect the activity of bread cutting) for the recordings and the laptop to perform

real-time classification. The MEMS board was placed in a fixed position on top340

of the laptop and 3 m from the kitchen faucet, 3 m from the dishwasher, 6 m

from the mixer, and 50 cm from the cutting board.

A total of 1,995 audio signals from different activities were collected from

the three kitchen environments (285 kitchen faucet, 285 boiling, 285 frying, 285

dishwasher, 285 mixer, 285 doing dishes and 285 cutting bread). All signals had345

a duration of 5 s. The setup included the following steps:

• we used data augmentation techniques as described in Section 3.2 to in-

crease the total number of recordings in each class to 855

16



Table 1: Number of recordings of each class from different sources

Classes

Kitchen

Environment

Figure 6(a)

Kitchen

Environment

Figure 6(b)

Kitchen

Environment

Figure 6(c)

Freesound

Frying 160 85 - 40

Boiling 160 85 - 40

Mixer 160 40 45 40

Doing the

dishes
160 85 - 40

Kitchen sink 160 34 51 40

Dishwasher 160 20 65 40

Cutting bread - - 285 -

• Monte Carlo cross-validation was used to randomly split the dataset into

training and testing data (80% training and 20% testing) and the results350

(accuracy, precision, recall, F1-score) were averaged over the splits

The number of recordings for each class is summarized in Table 1.

5. Results

In this section, we present experiments to assess the performance of our two

AED systems. In all experiments, we used 80% of the dataset for training and355

20% for testing. For all classifiers, the split between training set and testing

set was identical, as is common in the literature [51]. In Section 3.5.1, we

compare several classifiers for the first system, we select the one with the highest

F1-score and recognition accuracy and compare the performance to that of

the second system. In Section 3.5.2, we study the effect of feature fusion on360

the recognition rate of the best classifier identified in Section 3.5.1 (Gradient

Boosting). In Section 3.5.3, we study the recognition accuracy as a function

of signal duration. In Section 3.5.4, we analyze the effect of both the SNR

and distance between the microphone and event on the recognition accuracy in

an “untrained” environment. In Section 3.5.5, we examine the response of the365

second AED system for an activity that was not included in the training set.
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5.1. Selection of a traditional classifier for the first AED system and comparison

with the second AED system

Table 2 compares the performance of various classifiers for the selected fea-

tures. For all classifiers, we used the implementations in the scikit-learn [52]370

library. The signals used for this experiment were all the recordings from the

three environments mentioned in Section 3.4 in addition to the Freesound record-

ings.

Table 2: Classifier Performance Comparison

MFCC+GFCC+SR+SC+ZCR+DWT (with augmented data)

Classifier PRECISION RECALL F1-SCORE ACCURACY

kNN (5 nearest neighbors) 78.4% 79.4% 78.9% 79.4%

SVM (linear kernel) 79% 81.2% 80.1% 83.5%

SVM (RBF kernel) 84.1% 90.1% 87% 90.9%

Extra Trees 83.4% 85% 84.2% 89.7%

Random Forest 88.5% 89.1% 88.8% 91%

Gradient Boosting 90.4% 90% 90.2% 91.7%

Mel-Spectrogram (with augmented data)

2D CNN /w 2D Max-pooling 94.6% 90.9% 92.7% 96%

1D CNN /w 1D Max-pooling 90% 89.7% 89.8% 91.3%

For the Random Forest classifier, we noticed, as the theory suggests, that

increasing the number of trees can give a better and more stable performance;375

hence there is a small possibility of overfitting. The number of leaves in the

tree had to be small, in order to capture noisy instances in the training dataset.

Therefore, we selected 50 samples for each leaf node. For the RBF-based SVM

classifier, the highest values for all evaluation measures were found for σ = 1

and C = 0.1. The parameter σ of the RBF kernel handles the non-linear clas-380

sification and parameter C trades off correct classification of training examples

against maximization of the decision functions margin. Finally, for Gradient

Boosting we picked 500 estimators. We used the deviance (logistic regression)

loss for classification with probabilistic outputs, since we had a multi-class prob-

lem. Another important parameter that affected the classification performance385

was the learning rate. We tried all values from 0.01 to 0.1 with a 0.01 step and

selected 0.05, as it provided the best results. We kept the rest of the parameters
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in the scikit-learn library at default settings. Additionally, as Gradient Boosting

is fairly robust to overfitting, the large number of estimators resulted in a better

performance, achieving an F1-Score of 90.2%. We obtained good results for boil-390

ing, frying, the use of the mixer, and also the use of the dishwasher. However,

the activity of the “running” kitchen faucet was “understood” by our architec-

ture as doing the dishes because some recordings were very similar due to the

timing (meaning that no dishes or utensils were “heard” from the microphone).

We also applied McNemar’s test to determine whether there was a significant395

difference between the accuracy of the classifiers. The results are summarized

in Table 3 and show in particular that the 2D CNN classifier is statistically

different from all other classifiers at the 0.05 significance level.

To further compare the performance of the classifiers, we plotted their Re-

ceiver Operating Characteristic (ROC) curves (Figure 7). We noticed that the400

boiling class was the most easily separable class for all the classifiers. The classes

of cutting the bread and operating the kitchen faucet were the hardest ones for

all the classifiers. This is because many recordings had sounds corresponding to

these two particular classes towards the last second of the 5 s-recording.

In the following experiments, the first AED system was used with the Gradi-405

ent Boosting classifier, since it achieved the highest performance characterized

by a stable relationship between precision, recall, F1-Score and recognition ac-

curacy.

In order to highlight the importance of 2D max-pooling, we compared it to

1D max-pooling with a 1D CNN. The input to the 1D CNN network were mel-410

spectrograms with 128 bins. The resulting feature matrix input vector to the

1D CNN consisted of 128 mel-band energies in 431 successive frames (number

of Fast Fourier Transform (FFT) samples = 1024 with hop length = 512, or

window size of 20 ms with a 10 ms hop size from the next one). The 1D CNN

had the same number of filters, kernels, etc. as the 2D CNN (described in415

Section 3.5). The main differences between the two networks are that kernels

change from 3×3 to 3×1, max-pooling from 2×2 to 2×1 and in the Keras [53]

library the Conv2D and MaxPooling2D layers are replaced with the Conv1D
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(a) kNN (b) SVM w/ linear kernel

(c) SVM w/ RBF kernel (d) Extra Trees

(e) Random Forest (f) Gradient Boosting

(g) 1D CNN (h) 2D CNN

Figure 7: ROC curves for the selected classifiers. Classes 0, 1, 2, 3, 4, 5 and 6 correspond to

boiling, cutting bread, dishwasher, doing the dishes, frying, operating the kitchen faucet and

mixer, respectively
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and MaxPooling1D, respectively. The 2D CNN with 2D max-pooling, was able

to capture the spatio-temporal information of the given signal and achieved an420

F1-Score of 92.7%. On the other hand, the 1D CNN achieved an F1-Score of

89.8% only. This showed that the audio signals that were present in the kitchen

environment contained important information in the frequency domain.

5.2. Fusion of features for the first AED approach

Figure 8 shows how fusing features improves the performance of the first425

AED approach with the Gradient Boosting classifier. The accuracy rates were

calculated for seven feature combinations.

Figure 8: Recognition accuracy for different audio features using Gradient Boosting

Many sounds in a kitchen environment have an interchangeable pattern (big-

ger/smaller values for odd/even MFCCs). Some mechanical noises (mixer, dish-

washer) have high short-time energy on their fundamental frequency and others430

(forks, spoons, trays) have high short-time energy on higher frequencies. This

served as our motivation to test more time-frequency features in the kitchen

recordings. Specifically, when introducing the GFCCs and the DWT, the recog-

nition accuracy was significantly improved. MFCCs and ZCR achieved an accu-

racy of 71.3%. When we added the GFCCs first and DWT second, the accuracy435

improved to 79% and 85.6% respectively. GFCCs use the Equivalent Rectan-

gular Bandwidth (ERB) scale. The ERB scale has a finer resolution at low

frequencies, which were present in the kitchen environment, compared to the
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mel-scale used by the MFCCs. Additionally, the DWT was able to separate the

fine details of the input signal and increased the recognition accuracy. As for440

the classifiers, we applied McNemar’s test on the features (Table 4) to check the

statistical significance of the results.

5.3. Recognition accuracy as a function of the audio sample duration

We studied the impact of segment duration on the accuracy of activity recog-

nition within the kitchen environment. Figure 9 shows that a 3 s time duration445

of the input signal is sufficient for accurate activity recognition. For the Gradient
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Figure 9: Recognition accuracy (using the Gradient Boosting classifier and the CNN) as a

function of the sample duration

Boosting classifier, we noticed an unexpected drop-off for the activity of doing

the dishes after three seconds. Examination of the confusion matrices revealed

that there is a recognition uncertainty of the activity of doing the dishes and

the operation of the kitchen sink. After careful listening of all the recordings,450

we noticed that there were times when the faucet was turned on and only at the

last second of the recording an object (plate, utensils) was picked to be washed.

On the other hand, the performance of the CNN improved as the audio clips

became longer, since it was able to find clear patterns in the mel-spectrogram

image.455
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5.4. Dependence of recognition accuracy on certain distance and SNR in a new

environment

We trained both systems in the environments of Figure 6 (a-b) and tested

them in the environment of Figure 6 (c). Our training set consisted of 1547

recordings for the seven classes. We tested the systems on the following classes460

only: dishwasher, mixer, utensils/trays, kitchen faucet. For this experiments,

we renamed the class doing the dishes to utensils/trays, since the people in the

kitchen rinsed the utensils/trays for a very short period of time and then used

the dishwasher. 41 recordings for the activity of moving the utensils/trays were

collected in order to test the two AED systems.465

For this experiment we could not test all seven classes since, i) the record-

ings from cutting the bread were collected and trained using the setup of that

environment, ii) there was no frying activity due to dietary instructions from

the elderly care home where the experiment took place and iii) the setup was

similar to a restaurant kitchen setup and we could not detect the boiling activ-470

ity (the microphone was placed at a large distance from the stove). The results

(Table 5 and Table 6) show that even with a relatively small training dataset

and a distance of 3 m from the event to be classified, we were able to obtain

satisfactory results when testing in a new indoor environment.

The distance between the activity and the microphone affected the recogni-475

tion accuracy. Table 7 shows the SNR and the classification accuracy, using the

Gradient Boosting and the CNN, of a set of activities at various distances. The

ambient noise of the kitchen at AKTIOS (fan and refrigerator at -32 dB) oper-

ating at the time of the experiment dropped the performance of the approaches

when increasing the distance from the microphone. The CNN outperformed the480

Gradient Boosting except when the mixer was used and the microphone was

placed 6 m and 3 m away or when the dishwasher was used and the microphone

was placed 1 m away.
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5.5. Tests with activity that was not included in the training set (coffee machine)

using the second AED system485

For this experiment, we used the MEMS microphone board and a laptop

50 cm away from a coffee machine to collect 25 recordings of 5 s each. Out of

the 25 recordings, 8 were classified as boiling, since it was the closest match in

terms of the audio characteristics of the filter coffee machine. For the remaining

17, the classifier output was discarded because the output probability for each490

class was below the minimum threshold, set for this experiment to 0.7. More

precisely, the class probability was between 0.5 and 0.6 for the boiling class and

randomly distributed among the other classes.

6. Conclusions

We proposed two systems for AED in real-world conditions. The first one495

relies on feature extraction, selection, and classification, while the second one

uses a CNN to learn from mel spectrogram images without the need for human-

crafted features. Adding more audio features does not necessarily increase the

recognition accuracy of the first system. However, feature selection methods

and feature dimensionality reduction techniques, are critical to the success of500

the system. GFCCs and DWT coefficients significantly increased the recognition

accuracy. They outperformed other well-known time-frequency features in the

presence of background noise. Furthermore, we found that a signal duration

of 3 s provided a good trade-off between time delay and recognition accuracy.

The two systems were tested in a new environment and provided recognition505

accuracies above 90% for appliances that were up to 6 m away. This is a positive

result since in most commercial kitchen environments, the distance between the

microphone and the target appliance will be smaller.

Finally, in order to check the robustness of our second AED system, we

tested it on an activity that was not included in the training set. The system510

correctly rejected the recording in 68% of the cases and misclassified it as boiling

in the remaining cases.
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The main limitation of the proposed systems is their inability to distinguish

between overlapping events. Since only one acoustic sensor was used, only the

loudest event was identified. For instance, when the microphone was placed 6 m515

away from the mixer and at the same time 3 m away from the kitchen faucet, the

systems were able to correctly classify only the activity of the mixer, since the

sound of the mixer masked entirely the sound of the running tap water. As fu-

ture work, we will investigate to which extent multi-channel acoustic recordings

are beneficial for the detection of domestic activities in different home environ-520

ments. To this end, we will use the SINS database [54] which contains more

than 200 hours of multi-channel recordings from different rooms (living room,

kitchen, bathroom, bedroom). Additionally, we plan to keep collecting data

in different rooms (e.g., living room, bathroom, etc.), introduce more effects

such as reverberation and echo, and make the collected feature dataset pub-525

licly available, in order to help researchers working in this field evaluate their

algorithms.
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Table 3: McNemar’s test results

Classifiers p-value

Statistically

Significant

(p <0.05)

kNN vs SVM Linear

kNN vs SVM RBF

kNN vs Extra Trees

kNN vs Random Forest

kNN vs Gradient Boosting

kNN vs 2D CNN

kNN vs 1D CNN

0.01337

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

Yes

Yes

Yes

Yes

Yes

Yes

Yes

SVM linear vs SVM RBF

SVM linear vs Extra Trees

SVM linear vs Random Forest

SVM linear vs Gradient Boosting

SVM linear vs 2D CNN

SVM linear vs 1D CNN

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

Yes

Yes

Yes

Yes

Yes

Yes

SVM RBF vs Extra Trees

SVM RBF vs Random Forest

SVM RBF vs Gradient Boosting

SVM RBF vs 2D CNN

SVM RBF vs 1D CNN

0.52239

0.86793

0.51137

<0.001

0.74282

No

No

No

Yes

No

Extra Trees vs Random Forest

Extra Trees vs Gradient Boosting

Extra Trees vs 2D CNN

Extra Trees vs 1D CNN

0.24778

0.05247

<0.001

0.21532

No

No

Yes

No

Random Forest vs Gradient Boosting

Random Forest vs 2D CNN

Random Forest vs 1D CNN

0.62905

<0.001

1

No

Yes

No

Gradient Boosting vs 2D CNN

Gradient Boosting vs 1D CNN

0.00259

0.82380

Yes

No

2D CNN vs 1D CNN <0.001 Yes
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Table 4: McNemar’s test on the features

Features p-value

Statistically

Significant

(p <0.05)

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + GFCCs + DWT + ZCR + SR

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + GFCCs + DWT + ZCR + SC

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + GFCCs + DWT + ZCR

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + GFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SC + SR vs

MFCCs + DWT + ZCR

0.23788

0.14346

0.01612

<0.001

<0.001

<0.001

No

No

Yes

Yes

Yes

Yes

MFCCs + GFCCs + DWT + ZCR + SR vs

MFCCs + GFCCs + DWT + ZCR + SC

MFCCs + GFCCs + DWT + ZCR + SR vs

MFCCs + GFCCs + DWT + ZCR

MFCCs + GFCCs + DWT + ZCR + SR vs

MFCCs + GFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SR vs

MFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SR vs

MFCCs + DWT + ZCR

1

0.24778

<0.001

<0.001

0.01609

No

No

Yes

Yes

Yes

MFCCs + GFCCs + DWT + ZCR + SC vs

MFCCs + GFCCs + DWT + ZCR

MFCCs + GFCCs + DWT + ZCR + SC vs

MFCCs + GFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SC vs

MFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR + SC vs

MFCCs + DWT + ZCR

0.16863

<0.001

<0.001

0.00642

No

Yes

Yes

Yes

MFCCs + GFCCs + DWT + ZCR vs

MFCCs + GFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR vs

MFCCs + ZCR

MFCCs + GFCCs + DWT + ZCR vs

MFCCs + DWT + ZCR

<0.001

<0.001

0.15385

Yes

Yes

No

MFCCs + GFCCs + ZCR vs

MFCCs + ZCR

MFCCs + GFCCs+ ZCR vs

MFCCs + DWT + ZCR

0.00239

0.00254

Yes

Yes

MFCCs + ZCR vs

MFCCs + DWT + ZCR
<0.001 Yes
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Table 5: Confusion matrix using Gradient Boosting for the classes of the framework in a new

environment (not included in the training dataset). The distance between the microphone

and each activity was 3 m

Mixer Dishwasher Utensils/Trays Kitchen Faucet

Mixer 45 11 0 1

Dishwasher 0 48 2 10

Utensils/Trays 0 1 39 0

Kitchen Faucet 0 5 0 40

Table 6: Confusion matrix using CNN for the classes of the framework in a new environment

(not included in the training dataset). The distance between the microphone and each activity

was 3 m

Mixer Dishwasher Utensils/Trays Kitchen Faucet

Mixer 45 11 0 0

Dishwasher 0 46 0 5

Utensils/Trays 0 2 41 0

Kitchen Faucet 0 6 0 46

Table 7: Recognition accuracy of Gradient Boosting and CNN according to distances and

SNRs

Activities
Distance

(m)

SNR

(dB)

Accuracy

with

Gradient

Boosting

(%)

Accuracy

with

CNN

(%)

Using the

Kitchen Sink

3 -27 90.2 93.4

0.4 -10 94 98.8

Using the

Mixer

6 -11 98.5 97.1

3 -8 100 100

Moving the

Utensils/Trays

6 -16 91.1 95

3 -13 96.8 100

Using the

Dishwasher

3 -30 90.2 89.9

1 -25 93 91.7
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