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Abstract—A lot of enterprises are under threat of targeted
attacks causing data exfiltration. As a means of performing
the attacks, attackers and their malware have exploited DNS
tunneling in recent years. Although there are many research
efforts to detect DNS tunneling, the previously proposed methods
rely on features that the malicious entities can easily obfuscate
by mimicking legitimate ones. Therefore, this obfuscation would
result in data leakage. In order to mitigate this issue, we focus on
a trace of DNS tunneling, which cannot be easily hidden. In the
context of DNS data exfiltration, malware connects directly to the
DNS cache server, and a DNS tunneling query produces a cache
miss with absolute certainty. In this work, we propose features
derived from this cache property. Our extensive experiments
show that one of the proposed features can clearly distinguish
DNS tunneling traffic, which makes it useful to design and
implement a solid DNS firewall against DNS tunneling.

I. INTRODUCTION

There exist various protocols in the Internet, and by exploit-
ing their vulnerabilities, attackers and their malware perform
targeted attacks causing data exfiltration [1], [2]. This data
leakage puts enterprises at great disadvantage and has a drastic
negative impact on profitability. In recent years, to perform
this kind of attacks, attackers and their malware have abused
DNS tunneling [3], which is a security threat used to tunnel
data and commands by exploiting a domain name in the DNS
queries and the corresponding DNS responses. In general, an
enterprise enforces access control of ports and protocols that
are not usually utilized (e.g., Peer-to-Peer (P2P) file sharing
like BitTorrent) for the employees. However, since DNS is an
indispensable protocol to implement many services, such as
content distribution, the DNS use is not restricted. Therefore,
this DNS operation unfortunately provides attackers and their
malware with an opportunity to realize targeted attacks through
DNS tunneling.

Against DNS tunneling, several countermeasures have
been proposed [4]–[15]. Indeed, these methods are effective
to detect tunneling traffic from malware, such as Morto
worm [16], or DNS tunneling tools, such as dnscat2 [17].
However, these countermeasures are built based on features
that the malicious entities can easily obfuscate by mimicking
benign ones. For instance, steganography can hide leaked data
in a Fully Qualified Domain Name (FQDN) of the tunneling
query, which makes the FQDN look legitimate and invalidates
filters relying on features of the FQDN. Thus, this obfuscation
would result in data leakage.

To cope with this problem, we focus on the nature of DNS
tunneling, which can be observed in the DNS cache server
where malware connects directly as a source of tunneling
query. To exfiltrate successfully data attached to the domain
name of a DNS query, a source such as the one described

above must avoid producing a cache hit to the query on
the DNS cache server; otherwise, the data cannot be leaked
outside of the enterprise. In other words, leaking data through
DNS tunneling definitely produces a cache miss on the DNS
cache server. This cache miss is a “trace” of the data leakage.
We believe that this cache property is more tolerant than
the features used in the conventional methods against feature
obfuscation since a cache entry is expected to be used to
handle a future query that had been requested previously (i.e.,
a cache hit), which is directly opposed to the nature of DNS
tunneling.

Considering the above fact, this paper proposes two fea-
tures derived from the cache property: cache hit ratio (CHR)
and access hit ratio (AHR). Our extensive experiments show
that AHR addresses some shortcomings of CHR and clearly
characterizes DNS tunneling traffic. Therefore, AHR is useful
to design and implement a solid DNS firewall against DNS
tunneling. To the best of our knowledge, this is the first
research work to investigate cache-property-aware features for
DNS tunneling detection.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the basics of DNS tunneling and several
existing works about detection methods of DNS tunneling.
Section III proposes two cache-property-aware features to
detect DNS tunneling, while Section IV evaluates our pro-
posed features. Section V discusses our findings, and, finally,
Section VI concludes this paper.

II. BACKGROUND

A. DNS Tunneling Basics

DNS tunneling exploits the domain name in DNS queries
and the corresponding DNS responses. Data and commands
are tunneled between the malware and the attacker in the
context of targeted attacks causing data exfiltration (Fig. 1).
Assume that the malware and the attacker have already shared
a domain name attacker.com for their covert channel. To
obtain a command from the attacker to search confidential
information in the enterprise network, the malware generates
an FQDN (get command).attacker.com and sends it as a
DNS query to the DNS cache server in the enterprise network
(Step 1). Following the usual process to resolve an FQDN,
the DNS cache server iteratively asks the root (Steps 2
and 3), the com (Steps 4 and 5), and the attacker.com
DNS server (Step 6). Then, the attacker.com DNS server
obtains the request (get command), and replies with a suitable
DNS response containing the command to the malware via
the DNS cache server (Steps 7 and 8). After repeating the
process of sending an answer to the command and obtaining



a new command, eventually the malware leaks the collected
confidential information to the outside attacker in the same
manner (i.e., adding the leaked information in the domain
name). In order for the malware to send malicious DNS
queries to the attacker safely, the queries must not cause the
corresponding cache hit on the DNS cache server, which is
the characteristic of DNS tunneling. In this paper, we assume
that exfiltrated data is like credit card information (such an
attack scenario is considered also in [11], [14], [15]) and all
the generated FQDNs to leak such data are unique.
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Fig. 1. An overview of DNS tunneling.

B. Related Work
In general, there are two types of analysis for DNS tun-

neling detection: payload analysis and traffic analysis. The
payload analysis is an evaluation of a DNS query and/or
the corresponding DNS response, while the traffic analysis
is an evaluation of DNS traffic over a monitoring period
(e.g., in terms of time, number of samples, etc.). The features
of interest in payload analysis are, for example, unigram or
bigram character frequencies of domains or subdomains [4],
[5], FQDN length [11], [15], entropy [11], [13], [15], the
first 512 bytes of a DNS response [12], and the number of
labels [15]. Regarding traffic analysis, the usual features of
interest are, for example, the number of flows [6], Jensen-
Shannon divergence computed from DNS query payloads [7],
access counts of resource records [8], average time interval be-
tween a query and its response [9], a combination of Principal
Component Analysis (PCA) and mutual information [10], the
number of queries per domain [13], and average query length
per domain [14]. These features are fed to machine learning
models or used as thresholds to build countermeasures for
DNS tunneling detection. The proposed detection methods,
however, rely on features that attackers and their malware can
easily obfuscate by mimicking benign entities. For instance,
an analysis of character frequencies and entropy can be
bypassed by steganography. Therefore, this obfuscation would
accomplish data leakage.

III. CACHE-PROPERTY-AWARE FEATURES FOR DNS
TUNNELING DETECTION

Fujiwara et al. [18] report that CHR on the DNS cache
server1 inside the University of Tsukuba in November 2011
was 75.1%. When DNS tunneling is employed, a decrease of
CHR is expected since the generated malicious DNS queries to
exfiltrate data cause cache misses, as discussed in Section II-A.
To the best of our knowledge, such a characteristic of DNS
tunneling has not yet been investigated in the related works

1The authors define CHR as (Total # of client queries that do not cause
any queries to authoritative DNS servers)/(Total # of client queries).

introduced in Section II-B. In this section, we propose two
cache-property-aware features to identify DNS tunneling traf-
fic.
A. Cache Hit Ratio

The first feature we propose is the cache hit ratio CHRn on
the DNS cache server that is defined by the following formula:
CHRn = Nn

CH/n. Here, n is the number of queries under
observation (i.e., a window size), and Nn

CH is the number of
successful cache hits to the queries within n. Note that in this
paper we define the cache hit as a state in which the response
to a query of the DNS client is discovered in the connected
DNS cache server without sending any queries to authoritative
DNS servers. Experimental results regarding time series data
are reported in Section IV-B. We show plots of CHR derived
from all generated queries by using the latest n queries in a
sliding window manner.

CHR is quite a naive feature derived from the cache property
to identify DNS tunneling traffic, and it has two shortcomings.
The first is that caches of resource records that a client query
rarely looks up do not contribute to improve CHR. According
to [18, Table 2], 90.7% of queries from the DNS clients were
for A and AAAA records, and therefore, caching these resource
records can increase CHR. However, resource records such as
NS record, which are not often looked up by DNS clients, are
also cached to mitigate the load of authoritative DNS servers.
Such records do not contribute to detecting DNS tunneling
(i.e., unnecessary caches for DNS tunneling detection), so they
might induce a decrease of CHR.

The second is that caches are evicted based on their Time
to Live (TTL), besides caching algorithms such as Least
Recently Used (LRU). Fujiwara et al. [18] show that setting
a low TTL value (≤300), which realizes DNS-based wide-
area load balancing, decreases CHR. Moreover, the TTL itself
essentially causes a cache miss and is not a factor useful
to characterize DNS tunneling traffic. It is therefore difficult
to distinguish whether a decrease in CHR is owed to DNS
tunneling or to these inherent shortcomings.
B. Access Hit Ratio

To make up for the shortcomings of CHR described in
Section III-A, we first propose an access entry that inspects
client queries and stores only the FQDNs as minimal necessary
information. As for the entry eviction policy, the access entry
supports LRU. When an FQDN in the client query is found
in a list of access entries, this can be considered as an access
hit. Table I summarizes a comparison between the cache entry
and the access entry.

TABLE I
A COMPARISON BETWEEN A CACHE ENTRY AND AN ACCESS ENTRY

Cause of creation Stored information Entry eviction policy
Cache entry DNS response Resource record TTL + LRU
Access entry DNS query FQDN LRU

We propose now a second feature, which we call the access
hit ratio AHRn, defined by the following formula: AHRn =
Nn

AH/n. Here, n is the number of queries under observation
(i.e., a window size), and Nn

AH is the number of successful
access hits to the queries within n. Experimental results as
to time series data in Section IV-B plot AHR derived from
every generated query by using the latest n queries in a sliding
window manner.



IV. EXPERIMENTS

A. Experimental Setup
For our DNS traffic monitoring experiments, we install

a DNS cache server on the local network of our labora-
tory at Osaka Prefecture University and capture DNS traffic
generated on the cache server by laboratory members. To
produce DNS tunneling traffic in our laboratory, we set up
an authoritative DNS server, a DNS tunneling client, and a
DNS tunneling server. Note that we assume that the tunneling
client is legitimate, but unfortunately infected by malware
(i.e., installed a DNS tunneling client). So, the client produces
both legitimate and tunneling traffic. In our experiments,
while generating the tunneling traffic, the client produces
legitimate DNS traffic by performing web browsing and
launching some background applications such as Slack.
The authoritative DNS server delegates the domain name for
DNS tunneling to the DNS tunneling server, which causes
the DNS cache server to forward malicious queries generated
by the tunneling client to the tunneling server. We exploit
dnscat2 [17] as a DNS tunneling tool in the tunneling client
and the tunneling server. Note that due to the nature of DNS
tunneling (i.e., cache misses occur to exfiltrate data) we would
have obtained the same results with different tools. Before
performing tunneling experiments, we create a list of cache
entries and access entries by capturing DNS traffic from 17
clients in our laboratory for 31 days. Table II summarizes
the parameters for our tunneling experiments. We prepare
three data exfiltration scenarios in terms of tunneling query
transmission interval: scenarios 1, 2, and 3 with transmission
intervals of 1, 10, and 100 seconds, respectively. We use a
list of cache entries only for scenario 1 since this scenario
demonstrates clearly enough the effectiveness of AHR against
the shortcomings of CHR.

TABLE II
PARAMETERS FOR TUNNELING EXPERIMENTS

Parameter Value
Scenario 1 Scenario 2 Scenario 3

Tunneling query transmission interval 1 sec 10 sec 100 sec
# of clients (incl. one tunneling client) 16 16 15

Monitoring period 1 day (weekday)
Tunneling traffic generation period 20 mins from 18:00 JST

Size of the list of cache entries 1 MB N/A
Size of the list of access entries 1 MB

n 10, 20, . . . , 300

B. Results
Fig. 2 shows the scatter plot of the time series data for CHR

collected from all the clients in scenario 1, and AHR collected
from all the clients in scenarios 1, 2, and 3, for n = 100. Fig. 3
shows the traffic of the tunneling client extracted from Fig. 2.
To compute CHR and AHR of all the clients, a memory to store
the latest n queries is prepared for each client, and the first
CHR and AHR are calculated after n queries arrive. The red
curve in Figs. 2 and 3 indicates that DNS tunneling traffic is
generated by the tunneling client during the tunneling traffic
generation period. These figures illustrate that both of CHR
and AHR decrease approximately when the DNS tunneling
traffic is produced.

From Figs. 2(a) and 3(a), during the monitoring period,
CHR cannot distinguish clearly whether the decrease of CHR
is caused by the tunneling because of the two drawbacks of

cache entries discussed in Section III-A. In our 31-day dataset,
99.7% of the queries from all clients were for A and AAAA
records while 51.2% of cache entries were for A and AAAA
records. Fig. 4 shows the cumulative distribution functions
(CDF) of TTL of unique A and AAAA records in our 31-day
dataset, and the CDF indicates that 43.7% of A and AAAA
records were with TTL of less than 300 sec. These statistics
are related to the two drawbacks discussed in Section III-A.

On the other hand, Figs. 2(b), 3(b), 2(c), and 3(c) clearly
identify the decrease of AHR, which is caused by the tunneling.
These figures describe that AHR can handle these draw-
backs and successfully distinguish the tunneling traffic. From
Figs. 2(d) and 3(d) we see that during the tunneling traffic
generation period AHR does not decrease drastically, so AHR
cannot distinguish the tunneling traffic when the tunneling
query transmission interval is large; this is a vulnerability of
AHR.

Fig. 5 illustrates the CDFs of query transmission interval
of the tunneling client in scenarios 1, 2, and 3, excluding the
tunneling query transmission interval. From the CDFs, 62.4%,
58.3% and 48.3% of the intervals have length less than 1 sec
in scenarios 1, 2, and 3, respectively. Considering a higher
threshold, 73.7%, 69.9%, and 61.8% of the intervals have
duration less than 10 sec, for each scenario, and also, 96.3%,
94.5% and 93.3% of the intervals have duration less than
100 sec for each scenario. Therefore, our parameter settings
generate tunneling queries with a reasonable time interval
compared to general legitimate query traffic.

Fig. 6 shows the minimum AHRn for tunneling and legit-
imate traffic in scenarios 1, 2, and 3. Here, the minimum
AHRn for tunneling traffic is calculated based on (a) the
traffic produced by the tunneling client for 20 mins during the
tunneling traffic generation period, and (b) the first n queries
after generating the last tunneling query for each scenario. The
minimum AHRn for legitimate traffic in scenarios 1, 2, and 3
is computed based on traffic from all clients except the above
traffic. The minimum AHRn for tunneling traffic in scenarios 1
and 2 is lower than the one for legitimate traffic in scenarios 1,
2, and 3, which means that these traffic can be easily classified.
We heuristically compute a detection threshold (y) from the
minimum AHR by fitting a polynomial of degree 3 between
the two curves for the legitimate traffic in scenarios 1, 2, and
3 and tunneling traffic in scenario 2:

y =
n3 − 609n2 + 125907n− 372267

12500000
, 0 < n < 300.

See Fig. 6 for an illustration. Thus, if AHR < y, the traffic
can be classified as tunneling. By contrast, in scenario 3
(large tunneling query transmission interval), it is impossible
to classify traffic as the corresponding minimum AHR values
of legitimate traffic are smaller than those of tunneling traffic.

Fig. 7 shows queried FQDN ranking versus the number
of DNS queries from all the clients, which can be obtained
by analyzing our 31-day dataset. As for the definition of the
FQDN ranking, an FQDN is ranked by the number of DNS
queries including the corresponding FQDN. Fig. 7 indicates
that popular FQDNs are repeatedly requested by the clients,
roughly following Zipf’s law, and this fact supports the results
of AHR shown in this section.



(a) CHR100 of all the clients in scenario 1. (b) AHR100 of all the clients in scenario 1.

(c) AHR100 of all the clients in scenario 2. (d) AHR100 of all the clients in scenario 3.

Fig. 2. Time series data of CHR100 of all the clients in scenario 1 and AHR100 of all the clients in scenarios 1, 2, and 3.
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(a) CHR100 of the tunneling client in scenario 1.
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(b) AHR100 of the tunneling client in scenario 1.
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(c) AHR100 of the tunneling client in scenario 2.
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(d) AHR100 of the tunneling client in scenario 3.

Fig. 3. Time series data of CHR100 of the tunneling client in scenario 1 and AHR100 of the tunneling clients in scenarios 1, 2, and 3.
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Fig. 4. CDF of TTL (sec) of unique A and AAAA records in our 31-day
dataset.

V. DISCUSSION

From Figs. 2(b), 2(c), 2(d), 3(b), 3(c), and 3(d), we can see
a decrease of AHR even when only the legitimate traffic was
generated. This was caused by new web access that has not
occurred at all during capturing our DNS traffic for 31 days.
Specifically, such new web access sends a certain number of
queries not included in the list of access entries for a short term
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Fig. 5. CDFs of query transmission interval (sec) of the tunneling client in
scenarios 1, 2, and 3, which exclude the tunneling query transmission interval.

and this makes AHR drastically decrease, especially, in case of
smaller n cases by definition. For instance, a client accessing
www.amazon.com sent out 78 queries within 5 seconds from
the beginning of the access. A naive filter derived from AHR
might give a false alarm for this kind of new web access.

From malware’s point of view, malware can send tunneling
queries without decreasing AHR drastically (i.e., circumven-
tion of a filter using AHR) in the following two ways. The first
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Fig. 7. FQDN ranking vs. the number of DNS queries.

is for malware to send tunneling queries as well as frequent
DNS ones whose FQDNs are normally expected to be stored in
access entries, which can intentionally increase AHR. Indeed,
from Figs. 2(b), 2(c), 2(d), 3(b), 3(c), we can observe that an
instantaneous increase of AHR occurs during the tunneling
traffic generation term, which is mainly derived from web
browsing (see our assumption about the tunneling client in
Section IV-A), though the tunneling traffic is successfully
characterized in scenarios 1 and 2. This phenomenon might
be exploited for the circumvention by malware. However,
we believe that this malware’s counterattack cannot improve
tunneling throughput. If malware tries to send such previously
sent queries frequently, this behavior itself should be identified
as anomalous by, for example, a feature of frequency of
sending DNS queries. This anomaly should be exposed thanks
to our proposed feature, and obfuscation of this anomaly
results in low tunneling throughput.

The second is for malware to send tunneling queries very
slowly. According to our experiments, when the tunneling
query transmission interval is too large, it should be extremely
difficult for AHR to characterize the tunneling, which is a
limitation of our proposed feature. To mitigate the limitation,
we need to investigate another cache-property-aware feature
(e.g., focusing on access misses themselves, not ratio of access
hits) toward proposing a rare event detection method, which
is our future work.

VI. CONCLUSION

Various countermeasures against DNS tunneling have been
proposed, but these are built based on DNS tunneling features

that the malicious entities can easily obfuscate by mimick-
ing benign ones. Therefore, conventional approaches are not
tolerant against feature obfuscation. To solve the issue, we
focused on the nature of DNS tunneling: when a tunneling
client sends a malicious query to the tunneling server, the
query definitely causes a cache miss on the DNS cache server
where the client connects. Based on this observation, we
proposed cache-property-aware features for DNS tunneling
detection. Our extensive experiments showed that access hit
ratio could clearly characterize DNS tunneling traffic that
generates tunneling queries with a reasonable time interval
compared to general legitimate query traffic. As a next step,
we will implement a solid DNS firewall against DNS tunneling
by utilizing access hit ratio.
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