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Abstract— Dynamic control of soft robotic manipulators
is an open problem, yet to be well explored and analyzed.
Most of the current applications of soft robotic manipula-
tors utilize static controllers or quasi-dynamic controllers
based on kinematic models or linearity in the joint space.
However, such approaches are not truly exploiting the
rich dynamics of a soft-bodied system. In this paper
we present a model based policy learning algorithm for
closed-loop predictive control of a soft robotic manipu-
lator. The forward dynamic model is represented using a
recurrent neural network. The closed loop policy is derived
using trajectory optimization and supervised learning.
The approach is verified first on a simulated piecewise
constant strain model of a cable driven under-actuated
soft manipulator. Further, we experimentally demonstrate
on a soft pneumatically actuated manipulator how closed
loop control policies can be derived, that can accommodate
variable frequency control and unmodeled external loads.

I. INTRODUCTION

The complexity involved with modeling and control
of soft robots is a well known problem which has
limited the application of soft robots in real-world
scenarios. The widely used method is based on static
controllers that rely on the kinematic models of these
high dimensional manipulators [1], [2]. However, they
rely on the steady state assumption which limits their
speed, efficiency and reachability of the manipulator
[3], [4]. An alternate approach would be to use dynamic
controllers which can plan and exploit the complex
dynamics of the system. However, this is not straight-
forward as the complexity involved with developing an
accurate dynamic model is much more than developing
a kinematic model.

The earliest usage of a dynamic controller for a con-
tinuum robot was executed using a model-free method
[5]. The developed closed loop joint space controller
was composed of a model-free feedback component
based on a continuous asymptotic tracking control
strategy for uncertain nonlinear systems and a feed-
forward neural network component for compensating
for the actuator dynamics. An extended dynamic model
for the same variable length multisection manipulator
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was described in [6]. One of the first model-based
approaches, aimed for curvature space control, relied
on a dynamic model represented in Euler-Lagrangian
form using lumped dynamic parameters [7], [8]. Based
on this an experimental evaluation of a sliding mode
controller in the configuration space was proposed in
[9], however only on a planar manipulator. Along the
same lines, a joint space controller that considers the
dynamics of pneumatic actuators was proposed in [10].
The control law is based on a decoupled PD computed
torque controller.

Another interesting work for the task space control
of a completely soft manipulator was described in
[11] using a methodically developed dynamic model
and trajectory optimization. However all these model-
based approaches still rely on the constant curvature
approximation which is, theoretically, valid only in
the steady state condition. Nonetheless, even with this
approximation, dynamic reaching of steady targets was
achieved in [11], although only for a planar manipula-
tor and by including an iterative learning scheme.

An implementation of a model predictive controller
(MPC) was described in [12] using decoupled dynamic
models. Due to the simplicity of the dynamic model
and the distinct design of the arm, a MPC could be run
at high control frequencies. In [13], the development
of a model free dynamic controller directly from the
actuator space to task space was proposed. The forward
model of the soft manipulator was learned using a
recurrent neural network and trajectory optimization
was performed to obtain open loop control policies. For
more complex dynamic models it is difficult to develop
a MPC that can run at the required control cycle for
closed loop control as observed in [12] and [13] . One
way to solve this would be to directly learn the closed
loop control policies. However, learning closed loop
policies directly on the real platform is time intensive
and prone to falling into poor local optima. On the
other hand, learning directly from a simulated model
would amplify the inaccuracies already present.

This paper presents an application of model based
reinforcement learning for closed loop dynamic control
of soft robotic manipulators. The forward dynamic
model is learned using a type of recurrent neural
network due to the computational cost of analytical
models like in [13]. Using the learned model and a
single-shooting trajectory optimization algorithm, open



loop control policies are sampled on the real platform.
The newly obtained experimental trajectories are used
to learn, in a supervised way, a closed loop predictive
controller using a multilayer perceptron. We test and
validate our controller on a simulated tendon driven
soft manipulator and experimentally on a two section
under-actuated pneumatically driven soft manipulator.
To the best of our knowledge this is the first imple-
mentation of a closed loop predictive controller for a
soft robotic manipulator. The method is easy to apply,
requires a short training time and has no exploration
phase. Additionally, the learned policies are highly
robust to change in control frequency and addition of
unmodeled external loads.

II. RELATED WORKS

Direct policy learning for robot control is an effective
method for situations where the dynamic modeling is
hard or when the environment is unstructured. Al-
ternatively, this approach could be employed in high
dimensional systems where traditional model based
controllers are not fast enough [14]. The key limitations
of policy learning are the high data requirement (for
model-free reinforcement learning) or the model bias
that deteriorates the performance of the policy (for
model-based reinforcement learning) [15]. Additionally
for both methods, there are local minima and explo-
ration issues especially for high dimensional policies.
Our focus is on model-based reinforcement learning,
since it can generate more sample efficient policy learn-
ing.

In [16], an algorithm called probabilistic inference
for learning control (PILCO) was used for model based
policy search. It takes into account the model un-
certainties of the learned dynamic model (provided
by non-parametric Gaussian process) for long term
planning. Recently there has been a substantial inter-
est in using traditional trajectory optimization meth-
ods for generating samples for policy learning [17].
Furthermore it could be combined with the function
approximation abilities of neural networks to learn and
represent these policies [18], [19]. The state of the art
approaches using variations of this idea are concerned
with using learned local models [20], compound multi-
step controllers [21] and deep representation of the
control policies [22].

We employ a similar, but simplified, approach like
the guided policy search for learning the closed loop
control policies. A policy independent trajectory op-
timization process generates the required samples for
policy learning. The samples are obtained from the
real system. Finally an offline policy approximation is
learned using a simple feedforward neural network.

III. PRELIMINARIES

In this section we give a brief description about
the simulation model and experimental setup we are
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Fig. 1: Schematic of the tendon driven soft manipulator.

using for this study and the technique for learning
the forward dynamics. The simulation platform is pri-
marily used to numerically quantify the robustness of
the controller to external disturbances and change in
control frequency.

A. Piecewise Constant Strain Model

The discrete Cosserat model is a recently developed
approach to model continuum, soft manipulator that
make use of the intrinsic parametrization of the con-
tinuous Cosserat model [23] by discretizing it under the
assumption of piecewise-constant deformation along
the robot arm [24], [25]. This model has several ad-
vantages with respect to the other existing approaches.
First of all, while maintaining the computationally
efficient piecewise-constant discretization of the more
popular constant curvature approach, it allows to
model the torsion of the manipulator, as profited in the
continuous Cosserat case, which is fundamental to cope
with non-negligible external loads. Furthermore, due
to its intrinsic parameterization, the discrete Cosserat
model shows a uniform geometric structure based on
the Special Euclidean group SE(3) that turns out to be
a generalization for soft robotics of the fundamental
geometric theory of robotics developed since Brocketts
[26].

For this study we are using a two section tendon
driven soft manipulator. A schematic of the manipu-
lator is shown in Figure 1. The first section is driven
by three cables and the second section is passive and
the arrangement of the cables is shown in Figure 1.
Throughout this paper we will refer to sections without
any internal actuation as passive. Some of the impor-
tant physical parameters used for the simulation are
shown in Table I. The geometric parameters in Table I
are in reference to Figure 1.

B. Experimental Setup

The controller is also validated experimentally on a
two section pneumatically actuated soft manipulator



TABLE I: Parameters of the simulation model.

Parameter Value
Rmax 15 mm
Rmin 4 mm
L1 98 mm
L2 203 mm

Young Modulus 110 K.Pa
Shear Viscosity Modulus 300 Pa.s

Poisson Ratio 0.5
d1,d2,d3 9 mm
Gravity 9.81m/s2

Drag Coefficient x 0.01
Drag Coefficient y 2.5
Drag Coefficient z 2.5
Density of Water 1020 kg/m3

Density of Arm 1080 kg/m3

[27], [28]. The manipulator is cylindrical with each sec-
tion having three radially symmetric pneumatic cham-
bers (see Figure 2). The distal section is kept passive.
So the manipulator has only three active actuators in
the proximal module. The main reason for using pneu-
matic actuation for the experiments is because we could
directly control the forces acting on the manipulator
using a simple low-level pressure controller. Tendons
on the other hand would require additional sensors
for tension measurement and a more complicated low-
level controller. In simulations, we are not constrained
by this.

The electronic proportional micro regulator Series
K8P pressure regulator is used for the low level closed
loop control of the chamber pressures. The Vicon track-
ing system is used to track the five markers attached
along the manipulator (Figure 2). These marker po-
sitions and velocities are the only state information
used for developing the forward model and the control
policy. In fact, a good approximation of the dynamic
model can be developed from just the distal markers
(Refer to the authors previous work [13], [29] for the
learning method and the performance of the forward
model on the same manipulator). Refer to [30] for
details on tracking accuracy of the Vicon system for
static and dynamic cases.

C. Forward Dynamic Model
The forward dynamic model which will later be used

for trajectory optimization is obtained through machine
learning. This is because analytical models are difficult
to formulate and develop, or are computationally ex-
pensive (as for the case of our simulated model). The
learning procedure is based on our previous work on
open loop controllers for soft manipulators [13]. A brief
introduction is given for clarity of further sections.

The forward dynamic model is represented as
a recurrent mapping: (τi ,xi ,xi−1) → xi+1. Here,
(xi−1,xi ,xi+1), is the absolute position of manipulator
states in the previous, current and next time step.
τi are the forces applied on the manipulator. It is a
discretized representation of the dynamics mapping
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Fig. 2: The pneumatically actuated soft manipulator
used for the experiments, Section 1 is pneumatically
actuated while Section 2 is completely passive. Three
markers are attached to the distal section and two to
the proximal one

with fixed time step. This allows us to construct the for-
ward model using a class of dynamic recurrent neural
networks called nonlinear autoregressive network with
exogenous inputs (NARX). This makes the model more
accurate for long term predictions [31].

Sampling is done by motor babbling. For the sim-
ulated model, 7000 samples are obtained at 100 Hz.
The cable tensions are constrained to a maximum of
3N. The training process is divided into two subparts.
Initially the training is performed with the network
in open loop mode in order to reduce single step
prediction error. The training is accomplished through
Bayesian Regularization and an early stopping method
is employed. Tan-sigmoid transfer function is used in
the input layer and a linear transfer function is used
in the output layer. A single layer network composing
of 35 neurons was sufficient to learn complete dynamic
model of the two-section soft robotic manipulator with
12 degrees of freedom (DoF).

For the real two section soft manipulator, 12000
samples were collected at 50 Hz to learn the forward
model. Only information from the last three markers
attached to section 2 was sufficient to develop a good
approximation of the forward model. The increase in
accuracy of the forward model with addition of the
base markers was not significant compared to the un-



certainties involved with tracking more markers (Refer-
ence [13] provides a detailed analysis on the accuracy of
the model with increasing dimension of the state space
representation). If the distal section of the manipulator
is also actuated, then we would need to also provide the
state of the proximal module for learning the forward
model. A NARX network with 40 hidden layer units
was used to represent the forward model. The training
procedure is the same as for the simulated model.

D. Trajectory Optimization

Once we have the forward dynamic model, tradi-
tional optimization algorithms can be used to obtain
the appropriate control inputs to drive the manipulator
to the desired states. In this work, we use a single
shooting method for solving the trajectory optimization
problem. Given the learned dynamic model, the future
states of the system can be predicted with the current
control policy:

xi+1 = f (xi ,xi−1 , τi) ∀ i = 0 ..
tf
dt

(1)

Where, τi is the current control input, dt is the step
size of the dynamic model (10 ms for the simulations
and 20 ms for the real manipulator), tf is the control
horizon and the function f represents the learned
forward model. The open loop control policy is given
by:

Π (t)=τmi ∀ m = 1 .. M (2)

i =
⌊ t
dt

⌋
∀ t = 0 .. tf

Where M is the number of actuators (three for both
cases). For dynamic reaching tasks, the objective func-
tion tries to reduce the end-effector tracking error at
the end of the control horizon. Additionally, a term
to minimize the control effort is also added. The input
weighting coefficient R is an identity matrix in our case.
The optimal policy then can be obtained by optimizing
the following nonlinear optimization problem:

Π (t)∗ = min
τ


∥∥∥∥∥∥xtasktf

dt

− xdes
∥∥∥∥∥∥2

+
∑
i

τTi R τi

 (3)

subject to 0 ≤τmi ≤τ
m
max ∀ m = 1 .. M and i =

⌊ t
dt

⌋
We use the iterative sequential quadratic programming
(SQP) algorithm for solving the optimization problem.
The obtained optimal control policy, however, works
only in open loop and depends on the initial conditions.
Therefore, it cannot accommodate modeling errors,
external disturbances during execution of the policy or
different initial conditions. Moreover, the optimization
process is not fast enough to implement a closed loop
model predictive controller, even with the computa-
tionally efficient learned model. In order to obtain a

closed form policies for the dynamic tracking problem
we employ a variant of the recently develop technique
called guided policy search [24], where trajectory op-
timization is used to direct policy learning and avoid
poor local optima.

IV. Policy Learning

In order to develop a closed loop optimal control
policy, we would need the optimal control actions for
each reachable state of the manipulator. Methods like
guided policy search [17] tries to learn the policies
directly and uses trajectory optimization to generate
samples for policy learning. The policies can then be
represented using any function approximation meth-
ods.

For this the optimization problem can be refor-
mulated to obtain multiple trajectories to the same
reaching task. This ensures that the manipulator state
space is fairly explored and serves as samples for
the policy learning. The trajectories provide samples
for the appropriate control action for each region in
the manipulator state space. To ensure that multiple
solutions to the trajectory optimization problem exists,
the control horizon has to be kept long enough. Setting
the control horizon too long could result in obtaining
redundant solutions for the same system state. For our
case, we determine this period empirically.

Given the number of trajectories to be generated N
and number of targets to be reached P, the objective
function can be modified as:

Πn
p (t)∗ =

min
τ


∥∥∥∥∥∥xtiptf

dt

− xdes
∥∥∥∥∥∥2

−αmin[dist (Xn,X) . ∗ dist (Xn,X)]


Xn ,

{
xn1 ,x

n
2 , . . . x

n
t
dt −k

}
, X ,

{
X1,X2, . . . Xn−1

}
∀ n = 1 .. N ∀ p = 1 .. P (4)

The distance function calculates the Euclidean dis-
tance from each elements of Xn to the corresponding
elements in X. By maximizing the minimum distance
(with −α), every new trajectory generated is unique
and tries to span a larger state space. By increasing
value of α, more varied trajectories can be obtained.
The constant k specifies a temporal region where the
uniqueness of the trajectory is measured .It is used to
make sure that the target position is reached at the end
of the control horizon. xtip is the end effector position
coordinates and xdes is the desired end effector position.

The generated open loop policies are executed on the
real platform/simulation model to generate samples for
training the policy. This would reduce model biases
from transferring to the policy. Now with the N trajec-
tories obtained, a simple supervised learning model can
be employed to directly learn the appropriate control
for each system state.We are using feedforward neural
networks to represent the closed loop policies. An



Algorithm 1: Learning closed loop predictive con-
trol policies
Generate samples (τ,xi−1,xi ,xi+1) for learning
dynamic model

Learn the mapping (τ,xi ,xi−1)→ xi+1 by a NARX
network to generate the forward dynamic model

for i← 0 to P do
Generate N different trajectories to reach the
target ;

Learn closed loop policy by learning the mapping:
(xi ,xi−1,x

des)→ τi
Result: policy π(xi ,xi−1,x

des)

exhaustive search in the state space is not necessary due
to the generalizing ability of neural networks. This was
validated with the experimental results (See section
VI).

The predictive controller is represented using the
mapping: (xi ,xi−1,x

des)→ τi . This discretized represen-
tation of the system state is important to make the
control policy robust to the control frequency. It is
even possible to reduce the dimensionality of the state
space and get a computationally less complex policy
but with lower accuracy. For this work, we reduce the
dimension of our state space from twenty four (simula-
tion/learned dynamic model) to twelve (for the policy)
to generate faster solutions. No changes are made for
the experimental case since the forward model itself is
low dimensional. Adding multiple targets to the same
policy not only provides us a global policy but can
also serve as samples among targets. Subsequently we
have a dynamic end-to-end policy directly relating the
system states to the actuator inputs for a particular
target. This is computationally faster since we do not
need the optimization step after the offline policy
learning. Note that this method does not explicitly
take into account the control horizon. Therefore, in the
presence of external disturbances it is not possible to
predict when the manipulator would reach the desired
target positions. It is important to keep the control
horizon as short as possible to ensure that the policy
mapping is unique.This condition is not valid in the
origin, since the same manipulator state and target can
have multiple ’correct’ actions. However, even a blind
averaging of all the possible actions can lead to the
desired motions as observed.

The complete procedure for developing the closed
loop predictive controller is described in Algorithm
1. The corresponding control architecture is shown in
Figure 3 For the two section simulated manipulator,
we generate 20 trajectories to reach 65 randomly se-
lected targets from the workspace. The workspace is
obtained from the previous motor babbling process.
The control horizon is fixed to 1s for each target and
the optimization is set to 30 iterations. An example of

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒 𝑥  , 𝑥

Fig. 3: Block diagram describing the complete proce-
dure for obtaining the closed loop control policy (top).
The learned control policy is encoded by a feedforward
neural network and provided the appropriate closed
loop actions (bottom).

different trajectories generated for an α value of 0.01
is shown in Figure 4. The policy is represented using
a multilayer perceptron with a hidden layer size of 30
units.

For the real manipulator, single trajectories to reach
200 randomly selected targets were used.Since the for-
ward model is less accurate than the simulated case,
addition of the unique trajectory generation part led to
significant accuracy depreciation. Therefore we opted
to span the state space using varied targets instead. The
control horizon is fixed to 4s for each target and the op-
timization is set to 30 iterations.The targets are picked
randomly from the dynamic workspace obtained for
the forward model. The multilayer perceptron had a
hidden layer size of 40 units. The input layer has a
tan-sigmoid transfer function and the output layer has
a linear transfer function. Training is again done with
Bayesian Regularization and early stopping method is
employed. The generation of a new policy iteration
takes 10.9±0.18 ms and 12.5±0.44 ms for the simulated
and real model respectively. All the computation is
performed on an Intel(R) Core(TM) i7-3630QM CPU
@ 2.40 GHz and 8 Gb RAM.

V. Simulation Results

Since our objective is to develop a global closed
loop predictive controller, we conduct four simulation
studies to investigate the validity of the learned control
policy. For all the tests the control policy is first exe-
cuted on the learned dynamic model and the derived
control actions are transferred to the simulation model.



Fig. 4: End effector position for twenty unique trajecto-
ries generated by the trajectory optimization algorithm
for an example target point.

A. Global Dynamic Reaching

In order to validate the ability of the controller to
dynamically reach static targets in the workspace, a
tracking task is performed to assess the accuracy of
the controller. Fifty random targets, different from the
set used for learning the policy, have been selected
for testing. The reaching performance of the controller
is then evaluated in closed loop using the learned
dynamic model. Each tasks last 2 seconds.

After obtaining the control actions for a single task,
the same control inputs are provided to the simulation.
Note that the policies are derived from the learned
model and therefore, we can expect some variations
from the simulated model. The error in the reach-
ing task at the expected reaching time (1 second) is
shown in Table II for both the learned and simulated
model. Since the controller is run without any external
disturbances and starting from the home state, the
reaching time is consistent. In the presence of external
disturbances or different initial states, the reaching
time cannot be estimated before hand. It must also
brought to the attention of the reader that the target
points are not reachable statically and hence the ma-
nipulator cannot stop once it has reached its desired
location. Therefore the control policy will continue to
drive the motion of the manipulator towards the target
repeatedly and not necessarily in the same trajectory.

TABLE II: Global tracking performance.

Model Tracking Error[m]
NARX 0.012±0.010

Simulation 0.013±0.010

B. Reaching with external disturbances

The need for a closed loop policy is more important
in the presence of heavy external disturbances which
would be considerable in the environments where soft
robots are meant to be deployed. To demonstrate that
our proposed policy learning approach is robust to
heavy external disturbances, we formulate a reaching
task with varying initial external disturbances. Fifty
random targets are selected at random for the reaching
task and varying simulated disturbances are added
during the initial 0.5s of the task. A folded normal
distribution noise is added to the inputs with the
variance of the normal distribution increasing from 0
to 9N2, amounting to a total of 10 trials. Note that the
learned dynamic model is obtained by motor babbling
with actuators inputs constrained to 3N . Since the
disturbance is for a short period, this error does not
accumulate to adversely affect the controller. For each
trial, the controller is run for 2s and the time to reach
the closest position near the target is recorded along
with the error.

The trajectory taken by the end-effector for a single
target is shown in Figure 6. Due to the generalization
abilities of the neural network and the global coverage
of the control policy the controller is highly robust to
disturbances and can even generate policies that are
unique from the initial samples generated in the policy
learning phase. The reaching time is also not adversely
affected, considering the fact that during the initial
0.5s, the underlying control strategy is affected. The
effect of varying noise on the performance of the con-
troller can be seen in Figure 5. It can be observed that
the simulated model has similar accuracy compared to
the learned model, even though the control policy is
derived using the learned model.
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Fig. 5: Reaching error versus external noise variance.
Note that the variance value is of the normal distribu-
tion before taking its absolute value.

C. Multi-Point Reaching

Although, the trajectory optimization procedure for
generating samples for learning the policy is always
initiated from the starting point, the controller is not



Fig. 6: End- effector trajectory for varying external disturbances during the reaching task. External disturbances
are added only for the initial 0.5s.

specifically tuned to this initial condition. Since the
control policy is dependent only on the current state
of the manipulator and not on the previous states, it
is possible to reach any desired stationary target in
the workspace from any given manipulator state as
long as the controller has sufficient time. This is of
course based on the assumption that we have obtained
adequately spaced samples during the trajectory opti-
mization step.

To demonstrate this we setup a simulation where
the manipulator is asked to track two target points
successively. The two targets are selected randomly and
50 trials have been conducted using new targets each
trial. The first target is provided as input to the policy
for only 1s and the second target is given for the next
2s. The tracking performance is summarized in Table
III and an example trial is shown in Figure 7. The
tracking error for the first target is slightly lower than
the first reaching task since we are now evaluating the
lowest distance from target and the average reaching
time. The second target needs more time to reach, with
a small increase in error. This performance is consistent
with the reaching-with-disturbance task.

TABLE III: Tracking performance for multi-point
reaching task.

Model Performance
Target 1 Target 2

Error[m] Time[s] Error[m] Time[s]
Narx 0.011±0.011 0.98±0.07 0.012±0.015 2.46±0.29
Sim. 0.011±0.011 0.96±0.07 0.014±0.014 2.39±0.20

D. Variable control frequency
An interesting property of the learned closed loop

policy was the observed robustness to the control fre-
quency. Although the control policy is learned from
samples collected at 100Hz, the same policy can be run
even at lower frequency. This was observed even for
the experimental results (See section VI). This means
that underlying control policy must be requiring only
sparse state space information. This is aided by the fact
that soft systems are low bandwidth systems with slow

Fig. 7: Manipulator configurations in the multi-point
reaching task for an example trial. The end-effector
trajectory is shown in black.

system response. Later it will also be show that this can
be extended to case where additional load is attached
to the end-effector (Section VI-C).

To see how the change in control frequency affects
the learned policy we do some preliminary tests on the
learned forward model. The forward model is always
run at 100Hz, while the controller frequency is varied
from 100Hz-5Hz. This means that the inputs to the pol-
icy are also delayed by the same amount as the control
frequency. The change in tracking error and reaching
time with the control frequency is shown in Table IV,
for fifty random targets. There is no added noise to the
system and therefore, we can see the original policy
reaching the desired targets at the expected time. The
distance from the target with time for an example case
is shown in Figure 8. The corresponding input signals
are shown in Figure 9.At lower frequencies it can be
seen that the control policy approximates to a bang-
bang controller. The simulation results indicate that the



varying the control frequency does not adversely affect
the performance of the controller. Although the track-
ing error and reaching time is not significantly affected
by changing the control frequency, the obtained control
inputs loose their smoothness, which would have more
significance in the real world.

TABLE IV: Controller performance with changing con-
trol frequency

Frequency Performance
Tracking Error[m] Reaching Time[s]

100 Hz 0.0085±0.007 0.995±0.094
50 Hz 0.0080±0.005 1.040±0.117

33.3 Hz 0.0097±0.008 1.135±0.130
20 Hz 0.0134±0.010 1.387±0.270
10 Hz 0.0254±0.017 1.559±0.321
5 Hz 0.0226±0.011 1.85±0.252
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Fig. 8: The distance of the end-effector from the target
with varying control frequency.

VI. Experimental Results

The experiments are conducted on the two section
pneumatic manipulator with the passive distal section.
The closed loop policy is learned from samples col-
lected at 50 Hz as described in section IV. However
due to the overhead computational cost for acquir-
ing sensors values and the communication between
arduino and the MATLAB environment the highest
control frequency we would achieve was at 20 Hz. The
dynamic workspace of the soft manipulator obtained
by motor babbling is shown in Figure 10 along with the
static workspace boundaries. The static workspace is
obtained by actuating each chambers to the maximum
pressure and letting the manipulator settle. The static
workspace becomes almost negligible with the addition
of load to the end effector (check the supplementary
video attachment). We show in section VI-C, how the
learned policy is robust to even such drastic changes.
All the experimental plots are shown only in the XY
plane. This is because we observed that the motion of
the end effector largely progresses along the surface of
the ellipsoid. Therefore the manipulator can only reach

a particular position in XY plane within a small range
in the Z axis coordinate. All the quantitative results are
given in three dimensional space.

A. Global Dynamic Reaching

The reaching performance of the controller is sum-
marized in table V. An example case of how the tra-
jectories evolve for two different targets are shown in
figure 11. Note that for targets that are along the di-
rection of actuation, a more linear reaching behavior is
observed while targets that are not along the direction
of actuation adopts a circular trajectory to reach. These
trajectories are dictated by the design and the actuation
of the manipulator.

The evaluation period is defined as the time period
after the initialization of the control policy in which
the reaching error is evaluated. It is clear that with
a larger window of the evaluation period, the tracking
error is lower but with higher variances in the reaching
time. Without the presence of external disturbances,
sensory losses and the appropriate control frequency
the expected time of reaching is 4 seconds for all points
in the workspace. Due to the reduction in control
frequency (20Hz) with respect from the prescribed
value (50Hz), there is a shift in the average reaching
time. This behavior is similar to what we observed
for the simulation case. However, the reaching time
has more uncertainties than the simulation case. This
could also indicate that there are significant stochastic
factors in the dynamics of the system. A simple way to
confirm this is to observe the behavior of the controller
for reaching the same target from the same initial
configuration as shown in Figure 12. Indeed, the vari-
ability in motion is very high even from the starting of
the controller. A possible explanation could be highly
nonlinear and stochastic friction effects that we incur
due to the external braided structure. Hysteresis effects
due to the soft chambers could be another factor.
This is also reflected by the variability in the home
(starting) position (Table VI). In the simulated model
the trajectories would be exactly matching, since there
is no source of variability.

TABLE V: Tracking performance.

Performance
Evaluation Period Tracking Error[m] Reaching Time[s]

3-6 seconds 0.017±0.014 4.3±0.77
3-8 seconds 0.009±0.008 5.1±1.46

TABLE VI: Variability in the home position.

Range[mm] Std.[mm]
X 6.8 1.1
Y 8.3 1.7
Z 2.2 0.3
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Fig. 9: Input forces from the three tendon actuators with varying control frequency for the simulation.
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Fig. 10: The dynamic workspace of the manipulator
compared to the static boundaries.

B. Low Frequency reaching

The derived closed loop policy also exhibited ro-
bustness to the control frequency for the experimental
tests. For this we add fixed delays to the control loop
to reduce the control frequency. The controller perfor-
mance for a 10 Hz controller is shown in table VII.
Similar to the simulation results we observe an increase
in the tracking error with a shifted expected reaching
time. There are also instances where the targets are not
reachable at lower control frequencies (Figure 13).

TABLE VII: Tracking performance with reduced control
frequency .

Performance
Evaluation Period Tracking Error[m] Reaching Time[s]

3-8 seconds 0.026±0.032 5.9±1.28

C. Reaching with load

Another advantage we obtain with our proposed
direct policy learning method is the ability to accom-
modate changes in manipulator dynamics itself. We
demonstrate this by attaching a 105 grams load to the
tip of the manipulator. Even without any adaptation
phase the initial closed loop policy is able to perform
the reaching task. The tracking error and reaching time
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Fig. 11: The trajectory of the end-effector generated
to reach two example targets using the proposed con-
troller.
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Fig. 12: Variability of the trajectories in reaching the
same target without any external disturbances.

is given in table VIII. The reaching time is significantly
increased as expected. This is because the controller
needs several ’energy pumping’ phases to provide
enough kinetic energy to the system (See Figure 14
for an example). It is also noteworthy that the added
mass is not symmetric. This ensures a disproportionate
modification of the manipulator dynamics. Therefore
the ensuing reaching motion has a skewness associated
with its motion.
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Fig. 13: Reaching error evolution with varying fre-
quency for a target at the dynamic workspace bound-
ary. For this case, timing becomes crucial and hence at
low frequencies the target cannot be reached.

Although soft robots have intrinsic compliance that
cannot be emulated through control approaches [32], it
does not necessarily make them safe. Given sufficient
time, our experiments show that soft robotic manipu-
lators can build up significant momentum by storing
energy in their complaint elements. Due to the absence
of powerful internal actuators, sudden changes in the
direction of motion is not achievable. Gravitational
forces play the major role for changing the momentum
of the load in our case. The velocity of the end-effector
during the reaching task with the added load is shown
in Figure 15 for reference.

TABLE VIII: Tracking performance with added load.

Performance
Evaluation Period Tracking Error[m] Reaching Time[s]

10-20 seconds 0.022±0.022 15.5±3
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Fig. 14: The trajectory of the end-effector with added
load. Note the increase in reaching time and skewness
in the trajectory.
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Fig. 15: Velocity of the end-effector for an example case
with the added load.

VII. Conclusion and Discussions

This paper presents a direct policy method for closed
loop dynamic control of a soft robotic manipulator.
This purely data driven approach consists of a three
stages; learning the forward dynamic model, gener-
ating trajectories as samples for the policy and the
final policy learning phase. This way it is possible to
directly learn closed loop control policies without the
need of an analytical model while being data efficient.
For the experiments, the forward model required a
sampling period of 240 seconds while the closed loop
policy required an additional 8000 seconds. Hence the
approach only requires real-world data for approxi-
mately 2 hours to develop a closed loop controller
from scratch. Moreover, due to the representation of
the policy architecture, the derived controller can ac-
commodate changes in control frequency, sensory noise
and dynamic changes. For the simulation and experi-
mental case, reasonable accuracy could be maintained
up to a five fold decrease in control frequency. This
is because the underlying policy is represented like a
MPC framework making it more robust to unmodeled
factors.

The dynamically reachable workspace is strikingly
dissimilar from the static/kinematic workspace. This
has its own utility and disadvantages. For one, it allows
us to expand the reachable workspace even if external
loads are added (see multimedia material), however, it
becomes impossible for the manipulator to stop at the
desired targets. An interesting solution would be to use
variable stiffness mechanisms [33] to freeze the ma-
nipulator once the target is reached.The experimental
results showed higher variability in the trajectories and
reaching time. This could be attributed to stochastic
factors affecting the dynamics of the system like fric-
tion and hysteresis. This could be improved by better
design methodologies and material selection. The draw
back of our data driven approach is that it does not im-
part any insights into the relation between manipulator
deign and dynamics. So it becomes difficult to identify
the sources of modeling error or in developing optimal
design strategies [30].

The feedback control strategy we employ and
demonstrated for dynamic reaching tasks is suited



for dynamically grabbing and placing static objects of
unknown masses. In such cases scenarios timing is not
as important as accuracy, robustness and conformance
to the environment. Other tasks would have to adopt
different control strategies. For trajectory following,
purely feedforward strategies has proven to provide
stable motion [29]. Feedforward strategies are more
desirable for energy efficient motion without affecting
natural dynamics of the system . In fact it was shown
that higher feedback gains leads to higher perceived
stiffness [34]. Feedback controllers become more im-
portant in presence of external disturbances or when
the manipulator interacts with the environment [35].
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