
A practical approach to slicing Wi-Fi RANs
in future 5G networks

Joan Josep Aleixendri∗, August Betzler∗, and Daniel Camps-Mur∗
∗i2CAT Foundation

joan.aleixendri@i2cat.net, august.betzler@i2cat.net, daniel.camps@i2cat.net

Abstract—To deliver on the vision of network slicing, future
5G networks will have to provide virtualization and isolation for
a variety of Radio Access Network (RAN) technologies. In this
paper we study how to implement RAN slicing in Wi-Fi networks.
In particular, we present a scheduling algorithm that allocates
airtime through a set of virtual Wi-Fi interfaces executing on
the same or different physical radios, in order to fulfill each
tenant’s Service Level Agreement. We demonstrate a practical
implementation of our scheduler on Linux systems based on
the mac80211 driver that contrary to other existing solutions
is independent from underlying hardware drivers. Finally, we
experimentally evaluate the performance of our scheme through
a set of realistic experiments.

Index Terms—Slicing, Wi-Fi, Airtime, SDN

I. INTRODUCTION

Network slicing, introduced by the NGMN in [1], is one
of the main principles guiding the design of 5G networks.
Network slicing requires the instantiation of multiple virtual
networks over a single shared physical infrastructure, which
can then be controlled by different tenants. An important
aspect of network slicing is its end to end nature, whereby
a slice spans from the Radio Access Network (RAN) to the
core network. Slicing the core network is addressed through
the decomposition of core network functions and the execution
of these functions inside virtual machines, and can leverage
all the isolation mechanisms developed for IT virtualization.
However, RAN slicing is in an earlier stage, and it is for
example not yet clear how to isolate RAN virtual functions
[2], [3]. In addition, 5G will integrate different types of radio
technologies such as evolution of LTE, the 5G New Radio
(NR) and Wi-Fi based technologies. Hence, RAN slicing needs
to be supported for each technology, and in this context this
paper focuses on implementing Wi-Fi RAN slicing.

The problem of virtualizing Wi-Fi networks has been
extensively studied in the literature [4]. The main idea is
to execute upper Media Access Layer (MAC) functions in
software, running on the platform’s CPU, while time sensitive
operations are offloaded to the Wi-Fi modem. Upper MAC
functions include, among others, the generation of Beacon
frames, which convey the identity of the Wi-Fi network, or
per-client state related to security operations. This approach
is already supported in mainstream operative systems such as
Linux, which allow to instantiate multiple virtual interfaces
(vifs) over a single physical Wi-Fi radio [5]. Each vif is a
separate process representing an upper MAC, which can be
configured to operate in different modes, e.g. access point

(AP) mode, or mesh point (MP) mode. Virtual interfaces have
been leveraged in [6] to introduce the abstraction of per-client
lightweight APs, which can be associated to a per-client slice
and easily transferred between physical APs to aid mobility.
However, neither Linux nor [6] provide any means to isolate
the wireless resources consumed by each vif. This is the main
problem addressed in this paper.

The problem of isolating vifs is related to the problem
of resource allocation in Wi-Fi. An approach that has been
extensively studied in the past is tuning the contention param-
eters of different traffic classes in order to provide prioritized
QoS [7]. This approach however, has only been addressed
for small number of traffic classes (IEEE 802.11e supports
four traffic classes) and for a single AP, and fails to guarantee
that a tenant can, regardless of the network conditions, hold a
given percentage of the available resources. On the other hand,
Wi-Fi networks are known to suffer from the rate anomaly
problem [8], whereby slow clients can capture an excessive
amount of network resources, i.e. airtime. Therefore, solutions
are required that can properly allocate the airtime resource
among different vifs in order to provide hard guarantees to a
given slice. In [9] a variant of Deficit Round Robin (DRR)
is proposed that can allocate airtime to different classes in
Wi-Fi. However, [9] does not discuss practical implementation
aspects, and the proposed solution fails to orchestrate resources
among vifs that operate on specific physical interfaces. The
implementation in [8] proposes a solution supporting multiple
vifs over a single AP, but it only works for a specific driver.

The main contribution of this paper is an architecture
and practical, hardware-independent implementation, of an
airtime based scheduler implementing isolation between vifs
belonging to different network slices, and contemplating the
case of having vifs running over different physical interfaces.
To the best of our knowledge, ours is the first contribution
where Wi-Fi RAN slicing over a set of APs is experimentally
demonstrated.

This paper is organized as follows. Section II describes
our Wi-Fi RAN slicing solution. Section III contains an
experimental evaluation demonstrating the performance of our
solution. Finally, Section IV summarizes and concludes the
paper.

II. SYSTEM DESIGN

In this section we present our Software-Defined Networking
(SDN)-based Wi-Fi RAN slicing solution that combines dis-



B CA

Virtual interfaces 

for tenants A,B,C

SDN Controller

Node 1 Node 2 Node 3

G

Local 

scheduler

Global 

scheduler

G

L

L L L

NETCONF

modules

N

NN N

N

Tenant 

A slice 

WLAN0 WLAN1 WLA N0 WLA N1 WLA N2 WLAN0

Fig. 1: Our network architecture is composed of APs with
physical interfaces, on top of which virtual interfaces (vifs) are
instantiated for different tenants. The SDN controller manages
the vifs and configures the APs to apply the Wi-Fi slicing.

tributed and centralized mechanisms to control slicing over
a typical dense Wi-Fi deployment. Our network architec-
ture is composed of network nodes equipped with wireless
transceivers to provide radio access, on top of which vifs for
different tenants can be instantiated. The core element of our
slicing solution is what we refer to as a local scheduler, built
on top of the IEEE 802.11 Media Access Layer (MAC) of
the wireless transceivers and responsible to allocate airtime
between the active vifs running on the same physical radio.
The instantiation and management of vifs on the nodes and
each node’s configuration of the local scheduler is performed
by an SDN controller that is connected to the APs via a
backhaul infrastructure. The SDN controller takes over the
task of the global scheduler that also is responsible for
monitoring the status of the RAN and assuring that the slicing
is performed correctly. A slice is defined by a tenant selecting
the physical APs where it wants to provide connectivity via
a vif implementing a virtual AP (vap), assigning SSIDs and
security and associating a Service Level Agreement (SLA)
to the slice, consisting of the resources ratio assigned to
this tenant (defined later in detail). The SDN controller uses
NETCONF to instantiate vifs and to configure local schedulers
according to the slice. Fig. 1 shows the basic elements of our
architecture and their relations.

A. Local Scheduler Component

The local scheduler component needs to fulfill the following
two basic requirements: First, it needs to be work conserving,
i.e., the amount of unused airtime shall be minimized by
reassigning unused resources to vifs in need of airtime for
packet transmissions. Second, it needs to be independent from
any underlying Wi-Fi drivers and hardware in order to achieve
a high degree of interoperability and portability.

Slicing is performed in the time domain: each user, e.g.
a tenant or wireless operator represented as a vif on top of
a physical radio, is assigned a specific ratio of the available
airtime. This share represents a guaranteed minimum of the
available airtime during a certain time interval, but not a
maximum. In our slicing solution the real share of the airtime
assigned to each user is variable during operation and it can be
adapted in order to fully use the available airtime. We define
A to be the set of available APs, where a ∈ A is a physical

AP, the set of network slices S, where s ∈ S is a tenant’s
network slice. Further, we define µ to indicate the utilization
of a radio channel in % and ρ to indicate the airtime.

Our scheduler at the core operates on a traditional credit-
based system: We define a periodically repeating, fixed time
interval T , during which a specific airtime ρmaxa,s is calculated
for vif s in AP a. ρmaxa,s is initialized as Ta,s, which is
calculated from the desired share according to the SLA, µSLA

a,s

assigned a priori to slice s, as Ta,s = T × µSLA
a,s , and where

S∑
s=1

µa,s ≤ 1 applies for all APs. A credit represents a unit

of time within the interval T and it can adopt any granularity
supported by the operating system, e.g., microseconds. Every
vif is therefore assigned a specific number of credits ρmaxa,s (t)
it can spend during T . The operation of the scheduler can
be divided into three phases: when a packet is handed over
to our module to be transmitted, after the packet transmission
and at the end of an interval T . In the following, the scheduler
actions during each of these phases is explained.

Credit Consumption: Whenever a packet Pi,s is being
transmitted, it traverses our scheduler, before being handed
over to the wireless driver. To determine whether the packet
can be transmitted, its expected airtime ρexpPi,s

is calculated

ρexpPi,s
= ρidealPi,s

× Fc(t), (1)

where ρidealPi,s
is the airtime of the packet in a non-congested

channel and Fc(t) is a congestion factor that indicates how
busy the medium is. Notice that accounting for congestion
allows to distribute the available bandwidth between local
vifs, in case other transmitters are contending for the channel.
For the calculation of ρidealPi,s

, the packet length, the current
Modulation Coding Scheme (MCS), and additional timings are
taken into account when calculating the duration of a packet
transmission. However, the real duration of a transmission may
vary because of backoffs, collisions and retransmissions. In
our scheduler, we keep track of the congestion by estimating
the available bandwidth and adjusting Fc(t) (which is updated
after the packet transmission, see below). The expected airtime
ρexpPi,s

is checked against the credits available for vif s during
the current time interval T . If enough credits are available for
the transmission, the packet is handed over to the MAC layer
to be transmitted and the available credits are reduced by ρexpPi,s

.
Otherwise, the packet is enqueued again.

Tracking Medium Congestion: After a transmission, the
MAC layer generates a transmission report with the packet’s
MCS, which will be used for subsequent airtime estimations.
The transmission report also is used to calculate the actual
transmission time (ρmeasuredPi,s

) by comparing timestamps when
handing over a packet to the MAC (tsent) and receiving the
correspondent report (treceived). This allows us to calculate
Fc(t) (with Fc(0) = 1) using a filter based on weighted
moving averages that allows us to quickly follow channel
congestion. First, ρmeasuredPi,s

is computed as

ρmeasuredPi,s
= (treceived − tsent) ∗ Fprocess (2)



Fprocess is a constant < 1 used to compensate for the
duration of internal packet processing in the lower layers of
the stack which are not part of the actual packet transmission.
For our configuration, we determine Fprocess to be 0.8.

Once ρmeasuredPi,s
is calculated, the ratio RPi,s between the

real and the ideal airtime is derived RPi,s
=

ρmeasured
Pi,s

ρideal
Pi,s

.

Depending on RPi,s
, there are two ways to update Fc:

Fc(t+ 1) =

{
Winc(Fc(t)), if RPi,s

≥ (1 + θ
100 )

max(Wdec(Fc(t)), 1), otherwise

The parameter θ, is a configurable threshold in percent,
above which the wireless medium is assumed to be congested.
In the first case of the equation, if RPi,s

is exceeded by at least
θ, Fc is updated with a moving average

Winc(Fc(t)) = Fc(t)× α+RPi,s × (1− α) (3)

This represents the case where the channel is found to be
congested, i.e., the transmission of packets takes considerably
longer than the ideal time. Otherwise when the differences
between real and ideal airtime are below the threshold, the
degree of congestion is considered to be small and Fc is
decremented moving it towards a minimum of 1 with

Wdec(Fc(t)) = Fc(t)× (1− α) +RPi,s
× α (4)

A complementary weight (α) is used in the increment and
decrement filters, to allow for different speeds in estimating
increase and decrease of channel congestion. The impact of α
is evaluated in subsection II-E

Redistributing Credits: At the end of an interval T the local
scheduler in each AP calculates the usage of each vif s

µuseda,s (t) =

∑
Pi,s=1

ρexpPi,s

ρmaxa,s (t)
(5)

and determines whether the assigned limit needs to be mod-
ified. If µuseda,s of the least active vif is less than 10%, we
consider the vif to be idle and ρmaxa,s (t) for this vif is reduced:

ρmaxa,s (t) = max(ρmaxa,s (t)× µuseda,s (t), ρmina,s ) (6)

The number of credits that are subtracted in this way are split
among the remaining vifs according to their shares and added
to their ρmaxa,s (t) for the next period. ρmina,s (t) assures that a
vif is allowed to transmit a minimum of packets during an
interval. This local optimization redistributes unused airtime
among active vifs in a work conserving manner, as long as
there are inactive vifs not requiring any airtime. If µuseda,s ever
exceeds 30% for a vif with a reduced ρmaxa,s (t), the vif is
considered to be active. In this case, to assure that an active
vif can quickly obtain its full share of the network slice, a reset
is performed and for all vifs their original values of ρmaxa,s (t) =
Ta,s are restored.

AP1

vap1 vap2

AP2

vap3 vap4

PHY 0

30%

Tenant A

70%

Tenant B

Shared geographical area

SDN Controller

CH1 PHY 0 CH1

Fig. 2: Two APs sharing the wireless medium due to close
vicinity. The APs provide vaps for two tenants (A, B) that
have been assigned shares of 30% and 70%, respectively.

B. Global Scheduler Component

The local schedulers guarantee that µSLA
a,s is maintained

for each vif running on the same physical radio. However,
this condition is not sustainable if multiple devices with
independently operating local schedulers are competing for
the wireless medium, which is typical for high density deploy-
ments. In the example shown in Fig. 2, two APs with virtual
APs (vaps) for two tenants A and B are configured to have
a share of 30% and 70%, according to their respective SLAs.
Both APs operate on the same channel. Locally, on each of the
devices, the local scheduler maintains the ratios for each tenant
when operating alone. However, if both devices are operating
at the same time, the local share optimization can lead to
violations of the globally assigned shares. In this example,
if vap1 corresponding to tenant A on AP1 is transmitting
alone, the scheduler will reassign the unused airtime of vap2
belonging to tenant B to vap1. Accordingly, if vap4 of tenant
B on AP2 is the only one transmitting, the unused airtime of
vap3 is assigned to vap4. As a result, vap1 and vap4 are locally
assigned 100% of the airtime, i.e., they are only limited by the
capacity of the radio channel. Since vap1 and vap4 are on the
same radio channel and within transmission range, this results
in them sharing the medium equally at a ratio of 50%/50%,
which violates the tenants’ SLAs.

It is the task of the global scheduler running in the SDN
controller to periodically monitor µuseda,s of each vif in each
AP, and to adjust their local scheduler when SLA ratios
are violated. In this paper we propose a simple heuristic
in the global scheduler, which applies when all the APs
can see each other, as in a dense wireless deployment. At
the end of each period T , µuseda,s is collected from all APs
and the global scheduler computes the corrected values as
µcorrecteda,s =

∑
a∈A

µuseda,s (t). In our implementation, the periodic

checks are performed every second and the corrected values
are updated before the local scheduler redistributes credits
at the end of each period T. In Section III we analyze the
performance of this heuristic.

C. Uplink Traffic

While downlink traffic can be fully controlled by the local
scheduler component as described in Section II-A, uplink
traffic generated by user equipment needs to be handled in
a different way. First, any packets received by a vap are
counted towards the usage µuseda,s (t) reducing the available



10

12

14

M
b
it
/s

13

14

15

M
b
it
/s

Fig. 3: Box plots showing the throughput, with the median,
1st and 3rd quartiles (lower/upper box limits), and min. and
max. values (lower/upper whiskers) for the continuous case
(top) and with interference (bottom).

airtime for this particular slice. Second, the uplink traffic is
controlled indirectly, as the rate of downlink replies in any
bidirectional traffic (e.g. TCP that requires acknowledgement
or HTTP response packets) is controlled by the local scheduler.

D. Implementation of the local scheduler

The dynamically loadable Linux kernel module that imple-
ments our scheduling algorithm is written in C and it is placed
in between the IP module and the mac80211 module. Since
the module is very lightweight, it can even run on constrained
devices, e.g. a Raspberry Pi. The local scheduler module uses
the nftables API [10] to intercept all the outgoing traffic
and it can be loaded, unloaded and reconfigured dynamically,
which allows reconfiguration by the SDN controller. Our local
scheduler module is linked to the mac80211 module, and
hence can work with any Wi-Fi chipset, including 11n or 11ac,
supported in Linux. This in contrast to [11] that relies on low-
level drivers (ath9k) to implement airtime based scheduling.

E. Evaluation of the α parameter

The parameter α determines how quickly the local scheduler
adapts the congestion factor Fc when detecting an increase or
decrease of congestion. We determine an optimal α (Eqs. 3
and 4) from a set of options (0.8, 0.5, or 0.2). The setting α =
0.8 makes Fc slowly increase when detecting congestion but
quickly decrease, as soon as the channel is detected to be free
again. The opposite behavior is achieved by setting α = 0.2,
whereas the setting α = 0.5 represents a balanced behavior
that equally weights increases and decreases of congestion.
We perform two experiments in an indoor environment and
evaluate the parameter’s impact on the performance.

In the first experiment, we launch a UDP iperf transmission
with a data rate of 15 Mbit/s from an AP to a client device,
while allowing the devices to consume 100% of the airtime.
Apart from sporadic transmissions on the radio channel, it can
be assumed to be free of interference. In the second experiment
we set up the same transmission between AP and client,
while interfering the connection with another, independent
transmission on the same channel with a load of 3 Mbit/s that
turns on and off every 2 s. This generates cycles of network
congestion where the scheduler needs to adapt the airtime cost
estimation. In both experiments we measure the throughput
between AP and client every 0.5 s. The experiments are

performed for each setting of α with a duration of 10 minutes,
setting an empirically determined θ to 30%.

Figure 3 reveals that in both the continuous and interfered
traffic cases the median throughput achieved with α = 0.8 is
the highest. The larger variations observed in the experiment
with interference are the result of the transmissions adapting
to low and high congestion phases. If α is set to a lower value,
i.e., the system reacts more quickly to larger observed packet
transmission durations, we observe a tendency to overestimate
congestion which reduces the overall data throughput when in
fact the channel would allow for more data to be transmitted.
This reflects in the results obtained with α = 0.5 and even
at a higher degree with α = 0.2. Based on these results, we
choose α = 0.8 for the evaluations of our slicing solution.

III. PERFORMANCE EVALUATION

In order to validate the scheduler and to measure its per-
formance, we define and execute a total of 4 experiments in
a physical setup in our office premises. The setup consists of
a PC running a Linux environment with our local scheduler
kernel module and it is equipped with two IEEE 802.11 a/b/g/n
transceivers. The SDN controller runs on a separate machine.
During the setup phase, the two Wi-Fi interfaces are set up as
APs on the least interfered channel 4 in the 2.4 GHz Band. On
top of each Wi-Fi physical interface, 2 vaps are instantiated
for two tenants A and B. The vaps are configured according to
their Service Level Agreement (SLA) with predefined slicing
ratios of 30% (tenant A) and 70% (tenant B). Further, one
client is attached to each of the vaps. The parameter T is set to
250 ms and θ to 30%. During each experiment, a UDP-based
data stream generated with iperf is launched from each of the
vaps towards its attached client device. This type of traffic
represents a typical use case with a downstream connection
where the client device requested a stream of media content
or a large file. The throughput and airtime measured for each
of the tenants are used as performance metrics for these
evaluations. The experiments are performed during the late
evening or night in order to minimize external interference.

In the first 3 experiments only one wireless transceiver is
used, whereas the 4th experiment evolves around the example
introduced in Section II-B (Fig. 2) with two competing Wi-
Fi APs. In the following subsections, a description of each
experiment is given, along with the obtained results.

Local Scheduler: Constant Load and Dynamic SLA

In this experiment it is shown how the scheduler applies
network slicing for two tenants and how it can update an SLA
(change slicing ratios) during runtime. At the beginning of the
experiment, the scheduler maintains the predefined ratios of
30%/70% for two constant, unbounded data streams generated
by vap1 and vap2, respectively. After 30 s, the ratio is inverted,
i.e., tenant A is assigned 70% of the airtime, whereas tenant B
is assigned the remaining 30%. The scheduler is notified about
the change and it readjusts the rate for each vap in order to
fulfill the new network slicing ratios. Figure 4 shows how the



0 10 20 30 40 50 60

Time (seconds)

0

5

10

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

vap
1

vap
2 Total

0 10 20 30 40 50 60

Time (seconds)

0

50

100

A
ir
ti
m

e
 u

s
e

d
 (

%
)

Fig. 4: Per-tenant throughput and airtime in the constant load
and dynamic SLA experiment.

throughput and the (measured) busy airtime evolve for the two
vaps during the experiment.

The MAC layer in average reports a MCS corresponding
to 18 Mbit/s between the vaps and their clients. The real
overall throughput of the vaps approximates 13.5 Mbit/s,
split between tenants A and B in a ratio of 33% and 67%,
respectively. The minor deviation of 3% from the ideal shares
can be assigned to the non-ideal radio channel behavior. Small
fluctuations in MCS or even minor external interference can
lead to inaccuracies in the calculations performed by the
local scheduler, resulting in non-ideal slicing. As soon as
the ratios are inverted at second 30 of the experiment, the
throughput inversion of the two vaps can be observed. There
is a short transition phase during which the scheduler readjusts
the shares of the two vaps that lasts approximately 1 to 2 s.

The overall busy airtime measured with the wireshark tool
for both vaps is 80%. Packet drops, collisions, and inter frames
spacing are not accounted for in the busy airtime. Taking the
80% busy time as a reference, tenant A is assigned 31% of
the airtime in the first half of the experiment, whereas tenant
B is assigned 69%. The shares are inverted in the second half
of the experiment. These values are very close to the ideal
values, showing that the scheduler works very accurately.

Local Scheduler: Dynamic Load

In this experiment we show how the local scheduler opti-
mizes slicing by redistributing unused airtime. At the begin-
ning of the experiment only vap1 of tenant A is transmitting a
continuous bulk of data as an unbounded UDP stream. After
20 s, vap2 of tenant B transmits for a period of 10 s, after
which it stops transmitting. This burst-type transmission is
repeated from seconds 40 to 50.

In Fig. 5 it can be seen how vap1, even though only assigned
30% of the airtime, uses the full capacity of the channel during
the initial 20 s of the experiment. In this situation the scheduler
behaves in a work conserving manner and redistributes the
airtime from idle tenant B to tenant A. As soon as tenant B

0 10 20 30 40 50 60

Time (seconds)

0

5

10

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

vap
1

vap
2

Total

0 10 20 30 40 50 60

Time (seconds)

0

50

100

A
ir
ti
m

e
 u

s
e

d
 (

%
)

Fig. 5: Per-tenant throughput and airtime in the dynamic load
experiment.

requires its share of 70% of the airtime (seconds 20 and 40),
the scheduler detects the increment in the usage of vap2 and
resets the credits assigned to vap1 to 30%. For the duration
of the bursts, the assigned per-tenant ratios are maintained.
The transition phases are clearly visible as a slight drop of
the overall throughput before and after the burst. The busy
airtime measured during the experiment shows how tenant A
maintains a high usage, except for the durations of the bursts,
where tenant B is assigned the greater part of the available
airtime. The slicing ratios are applied correctly, except for the
short transition phases, when the scheduler readjusts the slices.

Local Scheduler: Varying MCS

The last experiment with a single AP shows how the local
scheduler is capable of maintaining airtime ratios in the case
that the radio transmission rates vary during operation. This
is a typical phenomenon observable in mobility use cases or
in dynamic radio environments. For this experiment, we fix
the MCS between each vap and their attached client to a
transmission rate of 18 Mbit/s and generate unbounded data
streams for tenants A and B at the same time. After 30 s,
we fix the MCS of vap2 to 12 Mbit/s, while maintaining the
MCS with 18 Mbit/s for vap1. The scheduler is notified by the
driver that the MCS has changed and dynamically calculates
different credit usage for the two vaps, while maintaining the
assigned airtime slices for each tenant.

As can be seen in Fig. 6, the throughput reflects the correct
application of the network slices for both tenants in the initial
phase, as already observed in the previous experiments. At
second 30, the MCS drop from vap2 towards its attached
client has a significant impact on its own and the overall
throughput. The scheduler now adapts the credit estimation for
vap2 to these new circumstances. This results in vap2 reducing
its throughput, while vap1 maintains it, proving the isolation
properties of the scheduler. The busy airtime before and after
the transmission rate change is constant for both vaps.



0 10 20 30 40 50 60

Time (seconds)

0

5

10
T

h
ro

u
g
h
p
u
t 
(M

b
it
/s

)
vap

1

vap
2

Total

0 10 20 30 40 50 60

Time (seconds)

0

50

100

A
ir
ti
m

e
 u

s
e
d
 (

%
)

Fig. 6: Per-tenant throughput and airtime in the varying MCS
experiment.

Global Scheduler
To analyze the global scheduler we consider the case

discussed in Section II-B and depicted in Fig. 2 with two
APs providing vaps for tenants A and B operating on the
same channel. This experiment shows how the SDN controller
detects and addresses violations of slicing ratios in a geo-
graphical area. The experiment can be broken down into 3
phases. In the initial phase, vap1 and vap4 are transmitting an
unbounded data stream, using a MCS with a transmission rate
of 54 Mbit/s. Since the vaps are managed by different local
schedulers, each local scheduler assigns the unused share of
the inactive vaps (vap2 on AP1, vap3 on AP2) to the active
ones. As a result, vap1 and vap4 are competing equally for
the channel, splitting the available airtime equally among each
other. This behavior can be seen in Fig. 7 from the start of
the experiment to second 20, during which the throughput and
airtime are the same for vap1 and vap4. This, however, violates
the SLAs accorded by tenant A (30%) and tenant B (70%).

The global scheduler component in the SDN controller is
activated at second 20 and it detects the violation of the
assigned shares. The controller reacts by telling the scheduler
running in AP1 to locally reduce the allowed share for tenant
A (vap1). This initiates the second phase, during which the
ratios are maintained for vap1 and vap4. In Fig. 7, this second
phase corresponds to seconds 20 to 30. In the third and last
phase of the experiment (second 30 to the end), vap2 and vap3

are activated, transmitting an unbounded stream of data. In
this phase, the local schedulers of AP1 and AP2 manage the
slicing locally and as a result, the correct shares are assigned to
each tenant. This last phase shows that the shares defined for
multiple tenants are applied correctly across several devices in
a geographical area while all are transmitting at the same time.
The throughput and the airtime ratios are maintained as defined
in the SLAs, assigning the vaps of tenant A approximately
30% of airtime and the vaps of tenant B the remaining 70%.

IV. CONCLUSIONS

This paper presents a practical solution to slice Wi-Fi
RANs in future 5G networks. This work provides in-depth

Fig. 7: Per-tenant throughput and airtime in the experiment
showing interaction of the global scheduler.

details about its two main components, the centralized global
and local scheduler mechanisms, and validates the correct
operation of the slicing solution in a set of experiments. The
designed solution fulfills 3 main requirements, namely being
work conserving, having a high degree of portability, and
enforcing the correct network slicing on a local level, but
also in a geographical area with multiple Wi-Fi devices. As
future work we consider porting our solution to IEEE 802.11ac
compliant wireless radios, and to design global scheduler
algorithms for situations where not all APs see each other.

V. ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Union under grant agreements
762057 (H2020 5G-PICTURE), 761508 (H2020 5GCITY),
and from the Spanish Ministry of Economy and Competitive-
ness (MINECO), through project TEC2016-76795-C6-2-R and
FEDER.

REFERENCES

[1] NGMN Alliance, NGMN 5G White Paper, White paper, Feb. 2015.
[2] Marsch, P., et al. ”5G Radio Access Network Architecture: Design

Guidelines and Key Considerations.” IEEE ComMag 54, no. 11 (2016).
[3] O. Sallent; J. Perez-Romero; R. Ferrus; R. Agusti, ”On Radio Access

Network Slicing from a Radio Resource Management Perspective” in
IEEE Wireless Communications , vol.PP, no.99, (pp.2-10)

[4] Xia, L., et al. ”Virtual WiFi: bring virtualization from wired to wireless.”
In ACM SIGPLAN Notices, vol. 46, no. 7, pp. 181-192. ACM, 2011.

[5] Vipin, M., and Srikanth, S. (2010, January). ”Analysis of open source
drivers for IEEE 802.11 WLANs.” In ICWCSC, 2010. (pp. 1-5). IEEE.

[6] Schulz-Zander, J., et al. (2014, June). ”Programmatic Orchestration of
WiFi Networks.” In USENIX Annual Technical Conference.

[7] Banchs, A., and Vollero, L. ”Throughput analysis and optimal configura-
tion of 802.11 e EDCA.” Computer Networks 50, no. 11 (2006).

[8] Tan, G., and Guttag, J. V. (2004, June). ”Time-based Fairness Improves
Performance in Multi-Rate WLANs.” In USENIX Annual Technical
Conference, General Track (pp. 269-282).

[9] Riggio, R., Miorandi, D., and Chlamtac, I. (2008, September). ”Airtime
deficit round robin (ADRR) packet scheduling algorithm.” MASS 2008.
5th IEEE International Conference on (pp. 647-652).

[10] Nftables project, https://netfilter.org/projects/nftables/
[11] Høiland-Jørgensen, T., et al. ”Ending the Anomaly: Achieving Low

Latency and Airtime Fairness in WiFi.” USENIX 2017


