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1 Introduction

Despite recent advances in observational cosmology, much of our high-redshift Universe remains unexplored. Cos-
mic Microwave Background (CMB) experiments have provided exquisite measurements of the initial conditions of
our Universe, while galaxy surveys and traditional astronomical measurements have provided a reasonably detailed
view of the z < 6 Universe. Missing from this is everything in between—from the post-recombination era known
as the Dark Ages (prior to the formation of the first luminous structures) to Cosmic Dawn (when the first stars
and galaxies were formed) to the Epoch of Reionization (EoR; when the first galaxies systematically ionized the
intergalactic medium). In the past decade, a series of first-generation experiments in 21 cm cosmology have made
considerable progress towards changing this status quo. In the next decade, 21 cm cosmology has the potential to
become a workhorse probe of the rich astrophysical and cosmological phenomena residing in the z > 6 universe.

The key idea behind 21 cm cosmology is the abundance of hydrogen in our Universe across a wide range of
redshifts, coupled with the existence of the optically thin 21 cm hyperfine transition spectral line. This in principle
enables radio telescopes to perform a systematic, large-scale mapping of our Universe through the brightness
temperature of the 21 cm line. Encoded in this line is the density, velocity, ionization state, and spin temperature
of hydrogen across a broad range of length scales. This provides a sensitive probe of not only the astrophysics
of early galaxy formation, but also of fundamental cosmology.1 21 cm cosmology builds on the foundations of
observational cosmology provided by galaxy surveys and the Cosmic Microwave Background (CMB) along several
frontiers (Tegmark & Zaldarriaga, 2009):

• The redshift frontier. The 21 cm line is one of the only probes of our Universe at redshifts between re-
combination and the formation of the first luminous objects. Opening new redshift windows will provide
direct constraints on the properties of these objects, and may also provide tantalizing hints of new physical
phenomenology (see Section 2).

• The sensitivity frontier. Hydrogen is omnipresent in our Universe, allowing large volumes to be mapped
in 3D, with the line-of-sight distance automatically given by the redshift of the line. The 21 cm line can in
principle access orders of magnitude more cosmological modes than galaxy surveys or the CMB (Cosmic
Visions 21 cm Collaboration et al., 2018).

• The scale frontier. The 21 cm line can also access small scales. Unlike the CMB, small scales are not Silk
damped, allowing measurements down to the Jeans scale. Additionally, at high redshifts the modes remain
linear to smaller scales, simplifying theoretical analyses. Finally, the wide-field nature of low-frequency
observations allow access to the largest scales.

2 The Current Landscape for 21 cm Cosmology at z > 6

Of course, any observational probe is only as successful as our ability to control experimental systematics and
achieve design sensitivities. In 21 cm cosmology, this is a challenging problem, although current-generation exper-
iments have made considerable progress. Chief amongst the challenges is the problem of foreground contamination.
At redshifts z > 6, the 21 cm line falls into the low-frequency radio regime, where (for example) Galactic syn-
chrotron radiation is orders of magnitude brighter than the cosmological signal that one seeks. A large dynamic
range is therefore required for any measurement of the cosmological signal, which in turn places extremely strin-
gent requirements on systematic effects such as mismodellings of one’s telescope beams or cable reflections in
one’s hardware.

Because 21 cm cosmology is so technically challenging, there has yet to be a definitive detection of the cosmo-
logical signal at z > 6. However, in the case of the 21 cm global signal (where one averages the 21 cm emission
over all angles of the sky to produce a single curve as a function of redshift), there has been a claimed tentative

1As is conventional in the field, in this white paper we use the phrase “21 cm cosmology” even when we are referring to galaxy formation
astrophysics that one might not traditionally deem “cosmology”.
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detection by the Experiment to Detect the Global EoR Signature (EDGES). Like most other global signal exper-
iments, EDGES is a well-calibrated single-antenna experiment placed in a radio-quiet environment. In Bowman
et al. (2018), the EDGES team reported a 21 cm absorption trough at z ⇠ 17. This was a remarkable claim because
the detailed shape of the trough was unexpected, both in its timing and depth (see Section 3 for more discussion).

Beyond global signal experiments like EDGES are efforts targeting the spatial fluctuations of the 21 cm line. To
this end, large interferometric facilities with unparalleled digital processing capacities, enormous collecting areas,
and unprecedented sensitivities have been built and are now in operation. These include the Giant Metrewave
Radio Telescope Epoch of Reionzation project (GMRT; Paciga et al. 2013); Murchison Widefield Array (MWA;
Bowman et al. 2013; Tingay et al. 2013), the Low Frequency Array (LOFAR; van Haarlem et al. 2013), the Donald
C. Backer Precision Array for Probing the Epoch of Reionization (PAPER; Parsons et al. 2010), the Hydrogen
Epoch of Reionization Array (HERA; DeBoer et al. 2017), the Owens Valley Radio Observatory Long Wavelength
Array (OVRO-LWA; Eastwood et al. 2018), and the Large-aperture Experiment to Detect the Dark Age (LEDA;
Greenhill & Bernardi 2012). While a positive detection of the spatially fluctuating 21 cm signal at z > 6 remains
elusive, considerable progress has been made in the form of increasingly stringent upper limits.

Figure 1: A summary of current upper limits from spatial fluctuation experiments, expressed in terms of the “di-
mensionless” power spectrum �2(k). For each experiment, we pick the k scale for which the results are the most
competitive. Except for the LOFAR constraints, this typically means 0.1hMpc�1 < k < 1.0hMpc�1.

3 Frontiers in 21 cm Cosmology at z > 6

The next decade will almost certainly see a surge in activity in 21 cm cosmology at z > 6, driven initially by
observations made by instruments that are already built or are nearing completion.

3.1 Learning from the data

The field of 21 cm cosmology will soon enter a new phase, where a large number of funded experiments will have
been constructed and will have the sensitivity to make high-significance measurements of spatial fluctuations—in
principle. In practice, instrumental systematics and foreground contaminants need to be overcome in order to make
this a reality. Fortunately, with the large amounts of data now available, these effects can be studied—and hopefully
eliminated—in real data. Already there have been considerable advances in this area (e.g., see Kern et al. 2019a,b
for examples of new techniques for removing the effect of cable reflections and cross-talk in 21 cm interferometric
data), and this will only improve as datasets get deeper.
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3.2 A first detection and characterization of spatial fluctuations

Should instrumental systematics be surmountable, current instruments like the MWA and HERA possess sufficient
sensitivity to make a first positive detection of spatial 21 cm fluctuations at z > 6 within the next few years. With
full seasons of observations, these instruments will not simply make a detection, but will perform high-significance
characterizations of the signal. Figure 2 shows that such measurements will be highly sensitive to the exact nature
of first-generation galaxies. This includes parameters that govern the mass function of these galaxies, the nature of
their X-ray and UV emission, and the clumpiness of the IGM.

Figure 2: Example power spectra at z = 9, with forecasted sensitivities for LOFAR, HERA, and the SKA. Each
panel shows the effects of varying a crucial property of our high-redshift Universe. In the top left, the ionizing
efficiency (a measure of the ionizing flux of first-generation galaxies) is varied; in the bottom left, the minimum
virial temperature of galaxies; in the top right, the mean free path of UV photons (a measure of IGM absorption);
in the bottom right, a combined variation of the aforementioned parameters. From Greig & Mesinger (2015).

3.3 Cross-correlations

That the 21 cm line is one of the few ways to probe the high-redshift universe is both a blessing and a curse. It is a
blessing because it is almost unique in its ability to directly observe the EoR and the immediately preceding epochs.
It is a curse in that there are very few observations that one can cross correlate against. Fortunately, this situation is
rapidly changing with experiments such as COMAP, CCAT-p and TIME, which are targeting the highly redshifted
CO rotational lines and the ionized carbon [CII] fine structure line. Intensity mapping with [CII] can potentially
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reach z ⇠ 9, enabling direct cross correlations. (CO measurements may be possible too, but there is considerable
uncertainty as to whether photodissociations will destroy enough CO molecules at high redshifts to render the
signal unobservably small). Since [CII] emission originates from within galaxies, whereas the 21 cm line primarily
probes the IGM, the two lines provide a complementary view of our Universe; the former probes the causes of
reionization, whereas the latter probes the effects. Moreover, such cross correlations will be crucial in confirming
a first detection of the cosmological 21 cm signal, since any systematics that are instrument-specific should (on
average) vanish in cross correlation.

3.4 Confirmation and refutation of the EDGES signal

With the unexpected nature of the EDGES result, it is imperative that purported absorption signature be confirmed
or refuted. The timing and narrowness of the measured absorption trough implies that star formation rates must
evolve much more rapidly at z > 10 than expected (Mirocha & Furlanetto, 2019). Moreover, the amplitude of the
trough is approximately a factor of 2 larger than is allowable under ⇤CDM unless there exists a previously unknown
population of radio loud sources at high redshifts (Feng & Holder, 2018; Ewall-Wice et al., 2018; Sharma, 2018;
Jana et al., 2019; Fialkov & Barkana, 2019). This has generated a large number of theoretical interpretations,
including those that involve exotic new physics such as dark matter-baryon scattering (Slatyer & Wu, 2018; Hirano
& Bromm, 2018; Barkana, 2018).

3.5 Fundamental physics with 21 cm cosmology

As 21 cm experiments move beyond an initial detection and into higher redshift and sensitivity regimes, oppor-
tunities will arise to move beyond constraints on the astrophysics of galaxy formation and into constraints on
fundamental physics. There are a number of ways to go about this:

• Modelling the astrophysics. The simplest way to access fundamental physics is to fit the data to parametrized
models that include both the astrophysics and the fundamental physics. The weakness of this approach is
that it is unclear whether or not our models of Cosmic Dawn and the EoR are good enough to avoid errors.
Luckily, a recent breakthrough in the theoretical modelling of reionization has shown that, contrary to pre-
vious expectations, ionization fluctuations during the EoR may be efficiently describable using perturbation
theory (Hoffmann et al., 2018; McQuinn & D’Aloisio, 2018), enabling 21 cm fluctuations to be described
as a bias expansion of the matter density field, expressible with a relatively small number of free parameters
that can be marginalized out. This provides a statistically disciplined and unbiased way to account for the
messy astrophysics of our high-redshift Universe.

• Look for robust signatures. Another avenue for accessing cosmology is to take advantage of signatures
that are expected to be relatively robust in the face of astrophysics. One such possibility is to use redshift
space distortions, which are directly sourced by the matter density field and thus bypass the complicated
astrophysics governing ionization or spin temperature fluctuations (Barkana & Loeb, 2005; McQuinn et al.,
2006). Early theoretical forecasts of this effect were based on linear theory, but detailed non-linear simula-
tions have recently confirmed the promise of pursuing this type of measurement, at least in the early stages of
reionization (when the neutral fraction is less than ⇠ 40%) (Shapiro et al., 2013). Another intriguing possi-
bility was recently suggested by Muñoz (2019), who identified a standard ruler the scale of Velocity-induced
Acoustic Oscillations (VAOs), which are sourced by the relative velocities of dark matter and baryons fol-
lowing recombination (Tseliakhovich & Hirata, 2010). Instruments like HERA are capable of measuring the
VAO standard ruler at z ⇠ 15 to 20, resulting in percent-level constraints on the Hubble parameter at those
redshifts. This opens up kinematical cosmological constratins in an hitherto unexplored redshift regime.

• Combine 21 cm measurements with the CMB. 21 cm observations can be used to make predictions for
the optical depth to the CMB, ⌧ , which is a crucial “nuisance” parameter in CMB constraints (Liu et al.,
2016; Fialkov & Loeb, 2016). This is expected to be a limiting factor in many next-generation CMB mea-
surements taking place over the next decade (Abazajian et al., 2016). An independent constraint on ⌧ from
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21 cm cosmology enables tighter CMB measurements on the sum of the neutrino masses
P

m⌫ (to within
⇠ 12meV) or the amplitude of the primordial power spectrum As (to better than a percent; Liu et al. 2016).
Note that CMB constraints on

P
m⌫ are weakened if it is necessary to extend ⇤CDM beyond 6 parameters,

increasing the importance of independent constraints (Allison et al., 2015). Of course, our ability to cor-
rectly interpret 21 cm data in conjunction with CMB data is limited by the correctness of our models for the
astrophysics. However, we expect that this situation will improve with ongoing efforts to improve models.
Additionally, once the first high-significance measurements of the 21 cm line are available, we will be able
to test rather than assume our models of Cosmic Dawn and the EoR.

4 Canadian Involvement in the Current Landscape

In the last decade, the Canadian community has played key leadership roles in 21 cm cosmology at z > 6.

• Earliest upper limits. The earliest upper limits on spatial fluctuations at z > 6 were led by former Canadian
Institute for Theoretical Astrophysics (CITA) grad student Dr. Gregory Paciga and CITA faculty member
Prof. Ue-Li Pen (Paciga et al., 2013).

• Leadership in international collaborations. The Canadian community plays a leadership role in multiple
instruments that are expected to detect and characterize 21 cm spatial fluctuations in the next few years. Via
the sponsorship of Prof. Bryan Gaensler (University of Toronto and Dunlap Institute), Canadian scientists
are able to be a part of the MWA collaboration. McGill University is a full institutional partner of the HERA
collaboration via Prof. Adrian Liu, who as the Power Spectrum Lead Scientist is responsible for the delivery
of the project’s main goal of measuring the power spectrum of spatial 21 cm fluctuations. Finally, a large
number of Canadian scientists remain in leadership positions within the Square Kilometre Array (SKA)
Organization, enabling “lessons learned” from current instruments to be (relatively) easily incorporated into
the design and construction of the SKA.

• Common technology with 21 cm cosmology at z < 6. With the Canadian Hydrogen Intensity Mapping
Experiment (CHIME; Bandura et al. 2014) and the Hydrogen Intensity and Real-time Analysis eXperiment
(HIRAX; Newburgh et al. 2016), Canada is the undisputed leader of 21 cm cosmology at z < 6. Many of
the technologies developed for this effort (e.g., digital correlators for large radio interferometers) as well as
many of the analysis tools (e.g., high-precision foreground mitigation algorithms) are essentially identical to
the ones that are needed at z > 6.

• A diverse portfolio of global 21-cm experiments. Canada has extensive involvement in a variety of exper-
iments that are targeting the globally averaged 21-cm signal. In addition to collaborative ties with EDGES,
Canadian reseachers are also playing key roles in Shaped Antenna measurement of the background RAdio
Spectrum (SARAS; Singh et al. 2018), Mapper of the IGM Spin Temperature (MIST), and Probing Radio
Intensity at high-Z from Marion (PRIZM; Philip et al. 2018). In particular, the PRIZM leadership is based at
McGill through Profs. Cynthia Chiang and Jonathan Sievers. The above projects comprise over half of the
global 21-cm experimental efforts worldwide.

• Complimentary measures of EoR with the [CII] line. Canada has involvement in one of the major current
experiments to probe [CII], with the PI of TIME Abigail Crites joining the University of Toronto and the
Dunlap Institute. Complimentary experimental probes of EoR will be key for cross-correlations which will
allow a more robust detection of cosmology during EoR and provide additional scientific information about
the bubble size during EoR.

5 Opportunities and Recommendations for Canada in the coming decade

• Continued strong investment in z < 6 experiments. In the large nant limit, both high- and low-z ex-
periments use similar calibration and analysis techniques. The m-mode framework for optimal mapmaking
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developed by CHIME (Shaw et al., 2014) was used to make the first all-sky maps from the LWA (Eastwood
et al., 2018). Redundant calibration (Liu et al., 2010) and derivatives thereof have become the de facto tools
to calibrate both low- and high-z arrays, with PAPER, HERA, CHIME, and HIRAX all pursuing similar
calibration strategies. As a result, new tools developed by one experiment are immediately useful to the
others. Understanding and removing foregrounds is the single largest challenge for these arrays, and so
there is synergy in the increased spectral coverage from combining low- and high-z data. Similarly, effects
of the ionosphere are a challenge for high-z arrays as well as for sub-arcsecond localization of Fast Radio
Bursts (FRBs) that will be carried out by high-frequency arrays with outriggers. While the effects are much
larger at low frequencies due to the �2 scaling of plasma dispersion, high-frequency arrays have access to
global navigational satellite system (GNSS) frequency bands, which provide high SNR, and hence high time
resolution, measurements of ionospheric delays through a limited set of pierce points. The combination of
ionospheric monitors will have more information then either redshift range by itself, which can benefit both
redshift ranges. Of course, coordination would be required to take maximal advantage.

• Continue investments in current and next-generation z > 6 experiments. Historically, Canadian invest-
ment in 21 cm spatial mapping efforts have been limited to the z < 6 regime. However, as discussed in
Section 4, Canadian astronomers have nonetheless led international collaborations from leadership positions
oriented towards analysis and theory. This is possible because spatial mapping experiments are in many ways
software telescopes, where precision analysis techniques are just as important as the hardware in making the
experiments a success. Continued Canadian leadership is therefore possible with key analysis and theory
investments over the next decade in international efforts such as the MWA, HERA, and SKA. In support of
this and in recognition of the importance of data techniques, we also recommend continued investment in
data-oriented efforts such as the Canadian Initiative for Radio Astronomy Data Analysis (CIRADA).

• Strong investment in global signal experiments. Canada is already playing a leading role in measurements
of the globally averaged 21-cm signal through through multiple experimental efforts. The reported EDGES
detection represents our first view into Cosmic Dawn, an epoch that is ripe for new exploration. Future instru-
ments aiming to make competitive measurements at these frequencies must operate from 1) remote locations
where RFI is minimized, and 2) locations with quiet ionospheric conditions—polar latitudes, especially at
night during solar minima, are excellent candidates. The high Arctic meets both of these criteria and presents
a unique Canadian geographic advantage that may allow us to open a brand new window on the radio sky.

• Lay the groundwork for future exploration of the Dark Ages. The cosmic Dark Ages are unexplored
to date and represent one of the final observational frontiers in cosmology. This epoch contains a poten-
tial wealth of cosmological information (Loeb & Zaldarriaga, 2004), but observations at frequencies of
. 30 MHz are exceptionally difficult because of bright foreground emission, interference from the iono-
sphere, and contamination from terrestrial RFI. At the very lowest frequencies, the state of the art among
ground-based measurements dates from the 1950s, when Reber and Ellis caught brief glimpses of the
⇠ 2 MHz sky at low resolution (Reber & Ellis, 1956). Despite the present-day RFI environment, low-
frequency observations may still be accessible from carefully selected locations and with new technology
developments. Preliminary observations from Marion Island show that clear interferometric fringes from
astronomical sources are visible down to ⇠10 MHz. Canada has both the leadership and expertise needed to
push these measurements to the next level and begin taking the first steps toward future exploration the Dark
Ages.

• Invest in complementary line intensity mapping experiments that deepen our understanding of EoR
and complement the 21cm probe. To reap the benefits from the cross-correlations especially between [CII]
and 21cm, a large [CII] effort will be necessary to match the current scales of 21 cm efforts in the coming
decade. To continue to be a leader in this emerging field, Canada should invest in a large [CII] experimental
effort especially in terms of receiver cameras and investment or partnership in a large sub-mm telescope at a
sub-mm quality site (e.g. the Atacama or Antarctica).
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• Continue investment in theoretical efforts. The Canadian theoretical community has played a key role
in providing models, making predictions, running simulations, and proposing observational signatures for
21 cm cosmology. Examples of this include (but are not limited to) some of the largest-scale simulations
of reionization in the world (Alvarez & Abel, 2012) (pioneered by former CITA postdoc Marcelo Alvarez),
interpretations of surprising recent Lyman-↵ forest data and their implications for reionization (led by current
CITA postdoc Laura Keating), proposals for how 21 cm surveys can be combined with intensity mapping of
other lines to yield greater science returns (by current CITA postdoc Patrick Breysse), and constraints on
high-redshift luminosity functions implied by the EDGES result (by current McGill CITA National Fellow
Jordan Mirocha). Robust theory investments are crucial for a successful high-redshift 21 cm program, and
we strongly suggest continued investment in theory programs such as CITA.

• Maintain leadership opportunities and knowledge transfer to international partners such as the SKA.
The lessons learned from Canadian involvement in current-generation instruments will be invaluable for ex-
periments coming to the forefront in the later part of the next decade, such as the SKA. Current Canadian
efforts will strongly reduce risk in projects like the SKA, and thus it is crucial to maintain links with interna-
tional efforts. For the SKA in particular, Canada is particularly well-suited to provide technical leadership,
for while both the US and Canada are learning tremendous amounts from tightly intertwined North American
efforts, the US (unlike Canada) has no formal links to the SKA. We are therefore poised to fill a critical hole
in international knowledge transfer.

1: How does the proposed initiative result in fundamental or transformational advances in our under-
standing of the Universe?

High-redshift 21 cm cosmology opens up an entirely new redshift regime to direct observations. This provides
access to a broad range of previously unexplored astrophysical and cosmological phenomena, particularly
those connected to the formation of the first stars and galaxies. Given that key properties of these first luminous
objects are currently not known to within an order of magnitude, this would represent a significant advance in
our understanding of our Universe. Moreover, as evidenced by the tentative EDGES result, there is significant
room for surprises and unexpected physics beyond the standard paradigms. Indeed, one could argue that high-
redshift 21 cm cosmology amounts to a set of high-precision measurements in low-frequency radio, which
is a band that has historically been poorly surveyed. The potential for discovery is therefore high, given that
historically, the opening up of new wavelengths to observations has always resulted in unexpected phenomena.

2: What are the main scientific risks and how will they be mitigated?

The biggest scientific risk is the technical difficulty of 21 cm cosmology. In particular, the problems of fore-
ground contamination, systematics control, and sensitivity have meant that a definitive first detection of the
high-z 21 cm signal has been elusive.a However, there are ways in which this risk can be mitigated. First, it
is important to note that 21 cm experiments have now crossed into a new regime where there is an abundance
of science-grade data available for analysis. Exercises such as the removal of systematics are no longer hypo-
thetical ones, and the data are already providing important lessons for future analyses and future instruments.
Second, cross correlations with other lines should provide a cleaner path towards a positive detection, given
that independent systematics should vanish (on average) in a cross-correlation analysis. This underscores
the importance of investing in instruments that perform intensity mapping with lines complementary to the
21 cm line.

aUntil the EDGES signal is independently verified, we will be conservative and say that there is still work to be done before a
robust detection can be declared.
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3: Is there the expectation of and capacity for Canadian scientific, technical or strategic leadership?

Canadian astronomers are well-positioned to maintain and expand their leadership roles in 21 cm cosmology.
Gaensler and Liu are part of the MWA and HERA executive boards, respectively. Chiang and Sievers are
the PIs of PRIZM, and Crites is the PI of the TIME experiment. The Canadian community also provides
scientific leadership despite the fact that many high-redshift 21 cm experiments are located out of Canada.
This is possible because in many ways the relevant telescopes are software telescopes, where high-precision
analyses are just as important as high-precision hardware. Many members of the Canadian community are
deeply embedded in the current hardware, analysis, and theory efforts in the US. These efforts are not only
scientifically interesting in their own right, but may also inform the SKA project. This places Canada in a
unique position for strategic leadership, given that the US has no formal involvement with the SKA.

4: Is there support from, involvement from, and coordination within the relevant Canadian community
and more broadly?

The strong Canadian presence in the low redshift 21 cm landscape (via projects like CHIME, HIRAX, and
CHORD), provides significant support, involvement, and coordination within the Canadian community. For
example, most of of the scientists engaged in high redshift 21 cm science are also part of a low-redshift ef-
fort, enabling relatively easy coordination and support (including but not limited to technical support with
shared techniques and instrumentation). In addition, many experiments targeting complementary lines have
cross correlation as an explicit goal in their design, highlighting the coordination of the relevant communities.
Finally, Canada has the infrastructure to support data analysis-intensive ventures like 21 cm cosmology, with
data centres such as CIRADA.

5: Will this program position Canadian astronomy for future opportunities and returns in 2020-2030
or beyond 2030?

High-redshift 21 cm cosmology will continue to provide opportunities throughout the next decade and beyond.
Beyond the opportunities outlined in this proposal, future instruments will push to yet higher redshifts, finer
scales, and greater sensitivities. This will enable even higher precision explorations of the nature of the first
stars and galaxies, and potentially even lead to observations of the treasure trove of cosmological modes at
truly high redshifts, i.e., the Dark Ages. The technical knowledge accrued from obtaining a first detection of
the highly redshifted 21 cm signal will be invaluable for this effort, and will mitigate risk in future experiments.
A prime example of this would be the second phase of the SKA, which will become increasingly relevant as
one approaches 2030.

6: In what ways is the cost-benefit ratio, including existing investments and future operating costs,
favourable?

In general, 21 cm cosmology is an extremely cost-effective venture, requiring relatively inexpensive hardware
for a large-scale cosmology experiment that is designed to map spatial fluctuations. Moreover, the extreme
importance of software/analysis in 21 cm cosmology means that relatively inexpensive investments in Cana-
dian analysis teams can produce a magnified influence on international experiments. In addition, global signal
experiments provide an avenue for small research groups (at the individual university/PI level) to have a large
impact on the field.
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7: What are the main programmatic risks and how will they be mitigated?

While many 21 cm efforts have been funded for the next few years, the situation is less certain for experiments
targeting complementary lines such as [CII] or CO. Many such experiments are funded for just their pilot
phases, rather than the full instruments (and surveys) needed for high-significance cross correlation measure-
ments. An additional risk is the fact that large-scale spatial mapping 21 cm experiments are primarily funded
by non-Canadian sources, and thus the availability of appropriate observational facilities beyond the next few
years will depend on the results of processes like the US Decadal Survey.

8: Does the proposed initiative offer specific tangible benefits to Canadians, including but not limited
to interdisciplinary research, industry opportunities, HQP training, EDI, outreach or education?

Hardware experience is becoming increasingly difficult for HQP to come by, given the trend towards larger
facilities and large collaborations. The fact that 21 cm cosmology is a relatively young field means that many
experimental efforts (e.g., global 21 cm signal experiments and non-21 cm intensity mapping experiments)
are still relatively small hardware projects that can be done in-house by a faculty member’s research group
within an HQP’s time with a group. On the software/analysis side, the large datasets that are routinely gener-
ated by 21 cm experiments provide an attractive venue for interdisciplinary research with computer scientists,
particularly those that come from the machine learning community. Finally, the fact that many experiments
are located at remote sites such as South Africa provides an opportunity for outreach to communities that
Canadians would otherwise not have contact with.
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