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AN ENTROPIC OPTIMAL TRANSPORT NUMERICAL APPROACH TO THE REFLECTOR
PROBLEM

JEAN-DAVID BENAMOU, WILBERT L. IJZERMAN, AND GIORGI RUKHAIA

ABSTRACT. The point source far field reflector design problem is one of the main classic optimal
transport problems with a non-euclidean displacement cost [Wang, 2004] [Glimm and Oliker, 2003].
This work describes the use of Entropic Optimal Transport and the associated Sinkhorn algorithm
[Cuturi, 2013] to solve it numerically. As the reflector modelling is based on the Kantorovich poten-
tials, several questions arise. First, on the convergence of the discrete entropic approximation and
here we follow the recent work of [Berman, 2017] and in particular the imposed discretization require-
ments therein. Secondly, the correction of the Entropic bias induced by the Entropic OT, as discussed in
particular in [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018], is another important tool
to achieve reasonable results. The paper reviews the necessary mathematical and numerical tools
needed to produce and discuss the obtained numerical results. We find that Sinkhorn algorithm may be
adapted, at least in simple academic cases, to the resolution of the far field reflector problem. Sinkhorn
canonical extension to continuous potentials is needed to generate continuous reflector approximations.
The use of Sinkhorn divergences [Feydy et al., 2018] is useful to mitigate the entropic bias.
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1. INTRODUCTION

1.1. The optical reflector design problem and its optimal transportation formulation. A light
source, also called “illuminance”, is sufficiently small compared to the reflecting surface so that
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htdp

FIGURE 1.1. Reflector problem from Point source O to Far Field.

it can be regarded as a point in space. It can therefore be modelled as a probability distribution
on the sphere, it will be denoted µ in this paper. The light hits a perfect mirror and we are also
given a desired target light distribution, the “illumination” in the far field. From the far field the
reflecting surface can be regarded as a point and the illumination again modelled as a probability
distribution, denoted ν, on the sphere. Total light conservation is assumed. The design problem is
to determine the shape of the mirror which produces the specular reflection from the source to the
target distribution. This can be interpreted as the inverse problem of generating some illumination
given an illuminance and a reflector (see figure 1.1).

This problem has an elegant mathematical modelization and solution based on the optimal trans-
portation (OT) theory due to [Glimm and Oliker, 2003] and [Wang, 2004]. We briefly recall the main
result as presented in [Wang, 2004]. In its Kantorovich primal and dual form (see [Villani, 2008]) :

Theorem 1 (Kantorovich duality). Given two compact manifold X and Y endowed with a continuous,
bounded from below cost function c : X × X → R and two borel probability measures (µ, ν) ∈ P(X)×
P(Y). Then, Kantorovich problem in primal and dual forms (1.1) has solutions.

(1.1) OT(µ, ν) := min
γ∈Π(µ,ν)

〈c, γ〉X×Y = max
f ,g∈C
〈 f , µ〉X + 〈g, ν〉Y

with respectively primal :

Π(µ, ν) := {γ ∈ P(X×Y), 〈1X , γ〉Y = ν 〈1Y, γ〉X = µ},

and dual :
C = {( f , g) ∈ C(X)× C(Y), f ⊕ g ≤ c},

constraints sets

The notation 〈 f , α〉Ω stands for the duality product
∫

Ω f dα between bounded continuous func-
tions f ∈ C(Ω) and probability measures α ∈ P(Ω), { f ⊕ g}(x, y) = f (x) + g(y) is the direct sum
and µ⊗ ν ∈ P(X×Y) the tensor product. Finally 1Ω is the characteristic function, i.e. a constant 1
on Ω.

Under suitable hypothesis c (as they are technical and satisfied for the costs in this paper, we skip
this part), the OT problem is well posed and the the optimal transference plan γ is concentrated on
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a graph of the OT map y = T(x) implicitely defined by the saturation of the dual constraint :

(1.2) f (x) + g(T(x)) = c(x, T(x)), µ a.e.

The pair ( f , g) are called the Kantorovich potentials and is unique up to a constant .

By construction T is a measure preserving map characterizing the transport. The measure pre-
serving property is usually denoted ν = T#µ (T pushes forward µ to ν). The pushforward of µ is
the measure defined as

(1.3) ν(A) = T#µ(A) = µ(T−1(A)) for all ν measurable subset A

Remark 1 (Lp Wasserstein metric). For complete separable metric space X and Lp costs c := 1/pdp(x, y),
this OT problems defines a separable metric on the set of probability measures with finite second moments:
the “Wasserstein” distance, which is given by W p

p (µ, ν) := OT(µ, ν).
This metric metrizes weak convergence of measures is a fundamential tool in image processing (see

[Peyré and Cuturi, 2018]).

In [Wang, 2004], Wang showed that the point source reflector model can be translated to an OT
problem. More precisely, he proved the following theorem :

Theorem 2. Let S0 ∈ Sd−1 and S∞ ∈ Sd−1 be connected domains in northern and southern hemispheres
respectively, µ and ν which represent the given illuminance and illumination probability distributions. Then
theorem 1 applies to the cost function

(1.4) c(x, y) = − log(1− x · y).

A transport map T satisfying (1.2) exists and the solution of the corresponding OT problem can be used to
build the desired reflector.

The construction of the reflector can be summarized as follows : Taking the exponential of the
dual constraints and the saturation property (1.2) we get

(1.5)
e−g(T(x))

1− x · T(x)
= e f (x) ≤ e−g(y)

1− x · y , µ⊗ ν a.e.

We now define in Rd a family of parabolic reflectors with axis y ∈ S∞ : x ∈ S0 → Py(x) :=
e−g(y)

1− x · y .

And directly infer that the reflector shape parameterized over the directions in S0 and given as :

(1.6) R = {x e f (x)| x ∈ S0}.

Under this choice the map x → T(x) can be interpreted as the specular reflection of an optical ray at
R(x) onto a parabola of axis T(x) while the illumination and illuminance constraints are enforced
by (1.3).

1.2. Numerical resolution of (1). A good overview of the available numerical methods applying
to the general problem (1) are described in [Peyré and Cuturi, 2018]. We summarize the general
classes of methods which can be used, in particular, to tackle the reflector cost (1.4).

Linear Programming. The first and obvious one, as already suggested in [Wang, 2004] is the linear
programming approach. This assumes that the data in discrete form is given by

(1.7) µN =
N

∑
i=1

piδxi , νN =
N

∑
j=1

qjδyj , where
N

∑
i=1

pi =
N

∑
j=1

qj = 1.

Of course the number of discrete points for µ and ν may differ, we keep N for both to simplify
the presentation.
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This discretisation provides a natural discretization of of the OT problem (1). Settting XN =
{xi}i=1..N and YN = {yj}j=1..N we can again use the 〈., .〉. notation :

(1.8) OTN(p, q) := min
γN∈Π(p,q)

〈cN , γN〉XN⊗YN

where

(1.9) Π(p, q) :=
{

γN ∈ RN×N
+ |〈1XN , γN〉YN = p, 〈1YN , γN〉XN = q

}
Here cN = {c(xi, yj)}i,j=1..N , q = {qj}j=1..N and p = {pi}i=1..N .

(1.8) is a discrete linear programming problem which can be solved numerically using standard
linear programming solvers. The main drawback of this method is it’s high dimensionality. It
is a linear problem with N × N unknowns and 2 N constraints. Numerical resolution with lin-
ear solvers which have cubic complexity in the number of unknowns is therefore out of reach for
reasonable discretizations (typically N > 100). For more details see [Peyré and Cuturi, 2018].

A Partial Differential Approach. At least formally, taking the gradient of (1.2) gives the OT map as a
function of f :

(1.10) T(x) = {y 7→ ∇xc(x, y)}−1(∇ f (x))

Assuming sufficient smoothness to interpret (1.3) in a pointwise sense and plugging this ex-
pression gives a Monge-Ampère PDE for L2 cost. This formulation has been studied in detail by
Urbas [Urbas, 1997]. For the reflector cost (1.4) the PDE (see equation (1.5) in [Wang, 2004]) is even
more non-linear and there is no available numerical approximation theory. A B-spline colloca-
tion method was nevertheless proposed and implemented in [Brix et al., 2014], [Brix et al., 2015]
with convincing numerical results. An alternative solution method of the Monge-Ampere prob-
lem based on a least square approach is presented [Romijn et al., 2020] [Romijn et al., 2019]. Wu
[Wu et al., 2013] derives the Monge-Ampere equation for a lens surface and solve the equations
using standard finite differences and Newton iteration.

Semi-discrete OT. Semi-discrete OT deals with the special case where µ has continuous density and
the other νN is discrete as in (1.7). Then the dual formulation in 1) can be reduced to discrete
optimisation problem through the elimination of the constraints replacing f by its c-transform :

(1.11) f (x) = gc(x) = min
y

(c(x, y)− g(y)) = min
j

(
c(x, yj)− g(yj)

)
and optimizing over the vector {g(yj)}j=1..N .

For the L2 cost, It is now well understood that a Newton method can be used [Mérigot, 2011].
The implementation relies on fast (linear time) computations of a tesselation of the target domain
called Laguerre cells :

Lagj = {x, s.t. c(x, yj)− g(yj) < c(x, yi)− g(yi), ∀i = 1..N} ∀j = 1..N

. The method was applied to the reflector cost (1.4) in [Machado Manhães De Castro et al., 2016] but
the Laguerre cells can be only computed in Rd and not on Sd−1 thus lifting by one the dimension
of the problem. Solvers in dimension 2 and 3 are available [Leclerc, 2019] [Lévy, 2015]. See also the
pioneering work of [Kochengin and Oliker, 2003] using this methods on the reflector problem.

1.3. Our contribution. Our contribution is based on a strict convexification of the OT problem
called “entropic regularization”. In a nutshell :

It has been introduced for OT computations in [Cuturi, 2013] (see [Peyré and Cuturi, 2018] for a
comprehensive review). This topic has been very active since for two reasons : first, the method
comes with a simple computational method call Sinkhorn algorithm for which there are now count-
less variants and acceleration techniques. It can be applied to discretization on the order of N = 106.
Secondly, it can be applied to a wide range of costs but does not seem to have been investigated yet
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for the reflector cost. The “entropic regularization” of the Kantorovich problem (1) is based on the
following KullBack-Leibler divergence or “relative entropy” (KL) penalization :

(1.12)
OTε(µ, ν) := minγε∈Π(µ,ν)〈c, γε〉X×Y + ε KL(γε | µ⊗ ν) =

max fε ,gε
〈 f , µ〉X + 〈gε, ν〉Y − ε 〈exp( 1

ε ( fε ⊕ gε − c))− 1, µ⊗ ν〉X×Y

where ε > 0 is a small “temperature” parameter (see [Léonard, 2013] for a Statistical Physics
interpretation of this problem due to Schroedinger) and

KL(γ | µ⊗ ν) :=
∫

X×Y
log(

dγ

dµ⊗ dν
) dγ if γ is absolutely continuous w.r.t to µ⊗ ν and +∞ else.

The primal-dual optimality condition is given by

(1.13) γε = exp(
1
ε
( fε ⊕ gε − c)) µ⊗ ν.

The optimal entropic plan is therefore the scaling by the Kantorovich potentials of a fixed Kernel
exp(− 1

ε c). It is diffuse, i.e. not concentrated on a map, ε can be interpreted as a bandwidth under
which transport is blurred.

Numerical solutions are produced under the discretization (1.7) of this problem, i.e. replacing
(X, Y , c , µ, ν) by (XN , YN , cN , µN νN) in the above formula. The resulting discrete non-linear sys-
tem of optimality is solvable in particular with Sinkhorn algorithm.

In section 2 we recall basic convergence properties of this approximation when ε → 0 and how
N and ε are connected. We also discuss the resulting bias when ε > 0 and how the notion of
Sinkhorn Divergence introduced in [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018]
can produce a correction.

We then adapt this framework and Sinkhorn algorithm in section 3 to the reflector cost OT prob-
lem and discuss specifics that need to be addressed for this transition, such as de-biasing for reflec-
tor cost, choice of discretization and interpolation. We present several example of re-simulations
using ray tracing.

Wasserstein distances is a natural distance to measure discrepancies between measures. In sec-
tion 4 we therefore propose to evaluate it between the illumination ν and a sampling of the com-
puted approximation. The sampling is obtained via ray tracing reflections on a continuous inter-
polation of the reflector as a residual error. We use this setting to study the convergence with N
and ε. We also show how the continuous approximation of the reflector behaves when the number
of rays used for the resimulation increase.

2. ENTROPIC OT

2.1. Entropic OT and Sinkhorn algorithm. We will restrict from now on to the discrete case (see
(1.7)) and the dual optimal transport problem :

(2.1) OTε,N := max
fε ,gε

〈 fε, µN〉XN + 〈gε, νN〉YN − ε 〈exp(
1
ε
( fε ⊕ gε − cN))− 1, µN ⊗ νN〉XN×YN .

where we use the same notation ( fε, gε) for discrete vectors in RN .
We solve (2.1) with Sinkhorn algorithm. It corresponds to a block coordinate ( fε and gε) ascent :

Initialize with g0
ε = 0Y and then iterate (in k) :

(2.2)
f k+1
ε = −ε log(〈exp( 1

ε (gk
ε − cN)), νN〉YN )

gk+1
ε = −ε log(〈exp( 1

ε ( f k+1
ε − cN)), µN〉XN )

Sinkhorn linear convergence for fixed ε has been largely studied (see [Peyré and Cuturi, 2018])
again). Its numerical stability depends on typical transport scale of the data τ = supx∈X c(x, T(x))
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and ε. The computer hits overflows or underflows when the ratio τ/ε is too large. A good re-
view of existing hacks and methods to mitigate this problem can be found in [Schmitzer, 2016].
The convergence as ε → 0 of OTε(µ, ν) toward OT(µ, ν) is also well understood in the continuous
[Léonard, 2013] and discrete setting [Cominetti and Martin, 1994].

The potentials computed using the iterations (2.2) are defined on the discrete sets XN and YN
but they admit a canonical extention by replacing cN(xi, yj) respectively by c(x, yj), x ∈ X and
c(xi, y), y ∈ Y. Omitting the iteration index :

(2.3) f [gε](x) = −ε log( ∑
j=1..N

exp(
1
ε
(gε(yj)− c(x, yj)))νN(yj)), ∀x ∈ X

As our goal is to form the reflector (1.6) from the discrete numerical potential fε, we are interested
in the convergence of fε as ε → 0 and N → ∞. To the best of our knowledge the joint convergence
in N and ε has only be studied in [Berman, 2017], we reproduce partially his results :

Theorem 3 (Berman joint convergence - corollary 1.3 [Berman, 2017] ). We assume µ and ν are in
C2,α and positive, and that N and ε are dependent parameters : N = (1/ε)d where d is the dimension of
the problem. A technical condition on the sequence of discretization (XN , YN , cN , µN νN) called “density
propery” (see remark 3 below) is also necessary. Then there exists a positive constant A0 such that for any
A > A0 the folowing holds : setting mε = [−A log(ε)/ε] the continuous interpolation provided by f [gmε

ε ],
built using the cannonical extension (2.3) from the discrete Sinkhorn iterate at k = mε, satisfies the estimate

(2.4) sup
X
| f [gmε

ε ]− f | ≤ −Cε log(ε)

for some constant C (depending on A) and f is an optimal potential for (1).

The following remarks can also be extracted from [Berman, 2017] :

Remark 2 (Domains and Cost ). Theorem 3 holds for compact manifold X and Y and in particular the
Euclidean torus endowed with the periodic L2 Euclidean costs. But it also on the sphere for the reflector cost
(see section 6.3.3 [Berman, 2017] ).

Remark 3 ( Density property Lemma 3.1 [Berman, 2017] ). For any given open set U intersecting the
support X of µ (same for Y and ν)

lim inf
ε→0

ε log(µN(U)) = 0

For the flat space X ⊂ Rd, this condition is enough. For curved surfaces, a technical generalization is
required. But in both cases, this density property ensures the discretization of X and µ (1.7) is such that, for
U the sequence of approximations µN(U) never converges faster to 0 than ε (remember that N = (1/ε)d).
For X = Rd, uniform grids are fine. See section 3.2 for the reflector case.

Remark 4 (Domains and Cost ). Theorem 3 holds for compa particular for the torus and the L2 Euclidean
costs but also on the sphere for the reflector cost (see section 6.3.3 [Berman, 2017] ).

Remark 5 (Transportation plan convergence). The support of the entropic transportation plan γε (see
(1.13)), built trough the interpolation procedure in theorem (3), converges exponentially fast to the graph of
the non entropic OT map when ε→ 0.

Remark 6 (Gradient convergence). The convergence rate in (2.4) is sublinear in ε. As ε is the “edge”
length of the discretization, discrete approximations of the derivative of f may be non convergent.

2.2. Entropic bias and Sinkhorn Divergence. From now on, the potentials computed using Sinkhorn
iterations (2.2) are denoted by fOTε

and gOTε
.

Entropic OT is popular to approximate transport distances between probability measures. The
Entropic cost OTε(µ, ν) is know to converge exponentially fast to OT(µ, ν) = OT0(µ, ν) with ε
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[Cominetti and Martin, 1994]. Regarding the reflector problem, we are not interested in the trans-
port cost but in fOTε

itself, the approximation of f . As can be seen formally on the dual for-
mulations of (1) and (1.12) the gradient of the transport and entropic transport costs as a func-
tion of measures µ and ν are given by the Kantorovich potentials : ∇µ,νOT(µ, ν) = ( f , g) and
∇µ,νOTε(µ, ν) = ( fOTε

, gOTε
) (see also Proposition 2 [Feydy et al., 2018]). The convergence rate in

theorem 3 with an infinite slope at ε = 0 and the numerical stability limit imposed when decreasing
ε is a difficulty. The pollution of the potential by the entropy induced bias is well known issue.

It arises for instance when using the L2 Wasserstein distance as a loss over the space of probabil-
ity measures. Using the easier to compute fε as a gradient proxy for f to minimize µ → OT(µ, ν)
will therefore be biased by the entropy. This problem is discussed in depth in [Feydy et al., 2018]
where it is proposed, in order to correct the bias, to add “diagonal terms” to correct the entropic
cost :

(2.5) Sε(µ, ν) = OTε(µ, ν)− 1
2
(OTε(µ, µ) + OTε(ν, ν)).

Quite remarkably, the authors show that this quantity, called Sinkhorn divergence, remains positive
and is convex. It also obviously vanishes for µ = ν wich is not the case for OTε. Thanks to the
symmetry, there is only one dual potentials for each of diagonal problems. We denote them f µ

ε and
f ν
ε . They can be computed using independent Sinkhorn iterations :

(2.6)
f µ,k+1
OTε

= −ε log(〈exp( 1
ε ( f µ,k

OTε
− cN)), µ〉X)

f ν,k+1
OTε

= −ε log(〈exp( 1
ε ( f ν,k

OTε
− cN)), ν〉Y)

The µ gradient of Sε, denoted fSε
may be formed by a simple substraction. An open question is

whether this correction :

(2.7) fSε
= fOTε

− f µ
OTε

is a better approximation to f than fOTε
. Numerical simulations of gradient flows in [Feydy et al., 2018]

do indicate this is the case.

Remark 7 (Asymptotics of OTε). The entropic bias may be related formally to asymptotic results on the
difference between OT and OTε, see [Conforti and Tamanini, 2019] [Pal, 2019] for recent publications on
this subject. For the L2 cost (Theorem 1 [Pal, 2019] treats more costs in the form c := g(x − y), g convex
which includes the 1D reflector cost), it gives the following assymptotic behavior for small ε :

(2.8)
1
ε
{OTε(µ, ν)−OT(µ, ν)} ' 1

2

{∫
Y

log(ν) dν−
∫

X
log(µ) dµ)

}
This result is for continuous and compactly supported densities µ and ν with respect to L(Rd), the

Lebesgue measure. Formally taking the gradient in µ of (2.8) we get for small ε :

(2.9) fOTε
' f − ε

2
log(µ)

In a smooth continuous setting and after convergence of Sinkhorn (2.6) we get

(2.10) f µ
OTε

(x) = −ε log(
∫

X
exp(

1
ε
( f µ

OTε
(x′)− c(x, x′)))dµ(x′))

Assuming that f µ
OTε

(x′)− c(x, x′) has maximum at x′ = x. This is expected to be asymptotically true as
ε → 0 (remark that T(x) = x in (1.2) for µ = ν). Then, the Laplace method (also used in [Berman, 2017]
and [Pal, 2019]) gives for ε→ 0

f µ
OTε

(x) ' −ε log{(C ε)
1
2 exp(

1
ε
( f µ

OTε
(x)µ(x)}
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FIGURE 3.1. Polar plot of a 1D computation. In blue and red are µ and ν. Solid and
dashed black curves are Rε and R. Also shown are rays traced. The bottom and
middle rays are reflected if the exaxt opposite “identity” directon. The top rays,
reflecting on the biased entropic reflector will send light strictly inside the support
of ν.

for some constant C depending on x and the hessian of f µ
OTε

. It gives :

f µ
OTε

(x) ' − ε

2
log(µ(x))− ε

4
log(C ε)

which shows that the Sinkhorn divergence de-biasing (2.7) is consistent with (2.9).
This correction can also be observed on the numerical simulation presented in section 3.1.
Remark finally that the density property discussed in remark 3 is requiring for the first order bias terms

to converge to 0 when discrete mesures µN converge to original measure µ.

3. APPLICATION OF ENTROPIC REGULARIZATION TO THE REFLECTOR PROBLEM

3.1. Entropic Bias and de-biasing. The Entropic bias may be observed on numerical solutions. In
the simplest identity reflector case for example, where each ray is reflected in its opposite direction,
i.e. when ν(x) = µ(x + π), x ∈ S, the exact potentials f and g are constant and the reflector
R = {x e f (x)|x ∈ X} is a portion of circle. It is represented, for the plane problem (d = 2), in dashed
line in figure 3.1. The solid line is the entropic reflector Rε = {x e fOTε (x)|x ∈ X} computed with
Sinkhorn algorithm. The discretization is N = 128 and ε = 0.1 is chosen large enough to see the
bias. Remember that the potentials are defined up to a constant, we therefore adjust the plot such
that the reflectors superimpose at x = 0. The illuminance and illumination µ and ν are perfect
centered Gaussians and represented respectively in blue and red. This example shows the effect
of the entropic bias (2.9). We also trace rays : the bottom and middle rays are reflected if the exact
opposite “identity” direction. The top rays, reflecting on the biased entropic reflector will send light
strictly inside the support of ν. This shrinking effect of the re-simulation offers a former explanation
of the third plot of figure (5.1) where the density is a characteristic function which decreases to 0 at
the boundary.
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In order to deal with this bias, the notion of Sinkhorn divergences (2.5) is required. When the
spaces X and Y are different and a for a general cost c(x, y), we suggest the following extension :

(3.1) Sε(µ, ν) = OTε(µ, ν)− 1
2
(OTε(µ, µ′) + OTε(ν

′, ν)).

where µ′ = argminOT(µ, ·) and ν′ = argminOT(·, ν). This is consistent with the distance costs
c(x, y) = dp

p(x, y) as µ′ = µ and ν′ = ν in this case. Simillarly, in the reflector cost case , µ′ and
ν′ correspond to the reflections of respectively µ and ν on the circular reflector mentioned above.
Indeed one has arg miny∈Y −log(1− < x, y >) = −x.

The de-biased Kantorovich potentials for the Sinkhorn divergence follow the same formula as
for L2-distance cost :

(3.2)
fSε

= −ε log(〈exp( 1
ε (gOTε

− cN)), νN〉YN ) + ε log(〈exp( 1
ε ( f µ

OTε
− cN)), µ〉XN )

gSε
= −ε log(〈exp( 1

ε ( fOTε
− cN)), µN〉XN ) + ε log(〈exp( 1

ε ( f ν
OTε
− cN)), ν〉YN )

3.2. Choice of Discretization. In theorem 3, the requirement that ε is of order (1/N)
1
d and that

µN , νN satisfy the density condition (remark 3) are closely related. Intuitively this condition means
that while choosing the discretizations µN , νN with N points, it is important to make sure that they
approximate corresponding distributions µ, ν with integration error of order (1/N)

1
d for functions

which do not oscillate on finer scale then (1/N)
1
d . This density property is satisfied in particular

by Quasi Monte-Carlo point clouds ([Berman, 2017]), defined by bounding the worst case error of
integration over a desired function space W :

Definition 1. Given a Riemmanian manifold X of dimension d, a corresponding normalized vol-
ume form dV, and a discretization XN = xi{i≤N}, the worst case error of XN with respect to function
space W is:

(3.3) WCE(XN , W) = sup
f∈W

{∫
X

f dV −
N

∑
i=0

f (xi)

}

Then, XN = xi{i≤N} is a Quasi Monte-Carlo discretization of X on lengthscale (1/N)
1
d if for any

p ∈ [1, ∞) and s > d
p :

(3.4) WCE(XN , Ws
p) ≤

Cs,p(
N

1
d

)s

Where Ws
p is a Sobolev space of functions f such that all derivatives of order s are in Lp(X) and Cs,p

is a uniform constant depending only on s and p.

[Berman, 2017] shows that for a density µ which is absolutely continuous with respect to the
volume form dV with density ρµ, the discrete approximation µN which satisfies the density re-
quirements of theorem 3 can be constructed using Quasi Monte-Carlo discretization XN of X as the
empirical measure :

(3.5) µN =
1

∑xi∈XN
ρµ(xi)

∑
xi∈XN

ρµ(xi)δxi

When the space X is linear, a standard uniform square grids with step-size h is a Quasi Monte-
Carlo systems on lengthscale h. But for curved spaces, such as a sphere in the case of the reflector
problem, constructing a Quasi Monte-carlo systems is not straightforwad and usually they do not
have such simple structure.

One way of constructing such a discretization on the sphere, which was used for the simulations
in this work, is given in [Womersley, 2017].
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3.3. Ray tracing, Re-Simulation and Interpolation. The reflector problem is the inverse problem
associated to the following forward problem : Given the source illumination µ as a distribution on
the unit sphere Sd and the reflecting surface R as a radial graph over Sd, what is the distribution of
illuminance after µ is reflected from R? The geometric optics answer to this problem is the simula-
tion of the light propagation known as Ray-Tracing. It can be simply described as follows :

The distribution µ over the sphere is sampled with an empirical measure µM := ∑i=1..M piδxi .
Then M rays are shot according to their direction {xi}s and reflected in the directions {yi =
xi − 2 (xi · ni)ni}s according to Snells’s law (ni is the normal vector to R at R(xi)). The result-
ing directions provide a sample νM := ∑i=1..M piδyi of the illumination distribution in the far field
ν = T#µ. In the optics community, ray tracing is used to evaluate visually the quality of the com-
puted reflector. This procedure is called Re-Simulation. The quality of course also depends on the
sampling method and the number of samples M.

Remark 8 (Ray tracing and Push-Forward). Since by construction, the exact continuous reflector re-
flects the ray x in the direction T(x) (the associated OT map), the above described procedure is the same as
computing the empirical push-forward νM = T#µM and this is a sampling of ν = T#µ.

In order to use this procedure with our numerical approximation of the reflector, we need a
continuous extension of the reflector from its discrete version computed on the N discretization
(3.5). For standard cartesian or structured grids this is not a problem, since there are various well-
studied interpolation techniques. Our solutions on the contrary are computed on an unstructured
Quasi Monte-Carlo grid. We use the Optimal transport and entropic OT canonical continuous
extension procedures based on duality and using the g potentials (respectively (1.11) and (2.3)).

Definition 2 (c-concave interpolation). For a discrete pair of Kantorovich potentials ( fN , gN), de-
fined on the discrete grids XN and YN respectively, the c-convex interpolation of the first potential
fN is

(3.6) f̂ (x) := min
yj∈YN

{c(x, yj)− gN(yj)}, ∀x ∈ X.

As discussed in section 1.1 (see (1.5)), the continuous reflector R = {xe f̂ (x)|x ∈ X}. is the enve-
lope of N paraboloids with focal directions {yj}. This means that this approach is able to generate
a continuous reflector with discontinuous derivatives. This may be an advantage when the target
distribution is discontinuous itself. The downside is that in order to achieve continuous effect for
human eye, a very fine discretization (a large N) is needed.

The second approach uses either the smoothed transform (2.3) for OTε or (2.10) for Sε

Definition 3 (Entropic interpolation). For a discrete pair of Kantorovich potentials ( fOTε ,N , gOTε ,N),
defined respectively on the discrete grids XN and YN and solutions of the Sinkhorn algorithm
applied to the OTε problem, the extension of the first potential fOTε ,N is

(3.7) f̃OTε
(x) := −ε log( ∑

j=1..N
exp(

1
ε
(gOTε

(yj)− c(x, yj)))νN(yj)), ∀x ∈ X.

Note that (3.7) is the “softmin” version of the mininization (3.6).

Finally using the “‘identity” potentials ( f µ
OTε ,N , f ν

OTε ,N) computed when applying Sinkhorn algo-
rithm applied to Sε, the smooth interpolation is :

(3.8) f̃Sε
(x) := f̃OTε

+ ε log( ∑
j=1..N

exp(
1
ε
( f µ

OTε
(yj)− c(x, yj)))µ

′
N(yj))

This approach would result in a smoother reflector than in the previous case but will also blur
any sharp details in the target image.
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3.4. Summary of the numerical procedure. Our input are analytical descriptions of the illumina-
tion/illuminance µ and ν described in the test cases section below. All test cases presented in this
paper will have the same source and target domains X and Y. The source domain X ⊂ S2 will
be the inverse stereograpic projection in the northern hemisphere of the square domain centered
at the origin {(x1, x2) ∈ R2| − 0.6 ≤ x1 ≤ 0.6, −0.6 ≤ x2 ≤ 0.6}. Similarly, Y ⊂ S2 will be the
inverse stereographic projection in the southern hemisphere of same domain. The outputs are re-
simulations/RT computed according to the following procedure :

(1) Computation of fN : The potentials, optimal maps and reflectors obtained from the min-
imization of the regularized functional (2.1) will be denoted using the subscript ·OTε

, and
those obtained from the minimization of the de-biased functional (3.1) by subscript ·Sε

. The
discrete Kantorovich potentials are computed for the discretizations (µN , νN) induced by
the Quasi Monte-Carlo grids XN and YN respectively according to the formula (3.5).

(2) Interpolation/ray tracing: The choice of interpolation when building the continuous reflec-
tor for RT will be denoted with the upperscript ·̂ when using the c-concave interpolation
(3.6), and ·̃ when using the Entropic interpolation (3.7,3.8). The ray tracing/re-simulation
will be shot using a Quasi Monte-Carlo sampling of the source domain of size M.

(3) Domain of computation: The distribution of reflected directions (obtained as distribution
of directions in R3) is projected using the stereographic projection from the south pole to
the equator plane:

(x, y, z) ∈ R3 → (
x

1 + z
,

y
1 + z

) ∈ R2

Definition 4 ( Parameters and notation for the forward map). In order to discuss the numerics
we need to introduce a notation for the forward map induced by the above procedure. This is
cumbersome as many parameters are involved : ε the entropic regularization, N the discretization
of the distributions µ and ν used in the Sinkhorn algorithm. The choice of using or not the Sinkhorn
divergence correction. The choice and notation of the interpolation for the reflector has discussed
above and in section 3.3.

We will use the notation R̂N
OTε

, R̃N
OTε

, R̂N
Sε

, R̃N
Sε

for the reflectors defined using (1.6) and respec-
tively f̂ N

OTε
, f̃ N

OTε
, f̂ N

Sε
, f̃ N

Sε
.

We will denote νM = R̂N
OTε

[µM] the ray traced sampling with M rays (and a similar notation for
the other versions of the reflector). Of course νM also depends on the choice of the method and
other parameters. Finally the N and M discretizations of the domain are QMC discretizations as
explained in section 3.2.

3.5. Numerical illustration. We give here several re-simulations as an illustration of the different
approximation of the reflectors described in section 3.3. See section 3.4 and 4 for a precise descrip-
tion of the numerical procedure.

The test cases we used are described below and are set on bounded subsets of the sphere. We
are not exactly in the setting of theorem 3 and remark (2).

Test Case 1: Square To Circle. The source distribution µ will be the uniform distribution over
the set with a square stereographic projection StP(supp(µ)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤
0.5, −0.5 ≤ x2 ≤ 0.5}. The target distribution ν in the first example will be an uniform distribution
over the set with a disck (circle) stereographic projection StP(supp(µ)) = {(x1, x2) ∈ R2|x2

1 + x2
2 ≤

0.52}. Even though the densities are constant, mapping from a non smooth support geometry of
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the square to the smooth geometry of a circle is not a trivial task.

We show in figure 5.1, from left to right and from top to bottom the re-simulations using the
reflectors R̂OTε

, R̃OTε
, R̂Sε

, R̃Sε
and finally also the QMC discretization used for νN , N = 64 ∗ 64

points. The regularization parameter was taken to be ε = 1
2∗64 .

Figures 5.1 (a) and (c) correspond to the c-concave interpolations. This builds the minimal en-
velope of the family of parabolae with focal axis given by the ν discretization. All rays hitting one
parabola end up at the same position. So up to numerical errors we indeed recover (e), that is νN
even though M >> N. Also the Sε solution performs better at the boundary.

Figures 5.1 (b) and (d) correspond to the entropic interpolations. This is a smoothing of the the
c-concave interpolation. The M rays are therefore distributed more evenly over the support of the
target. We observe, for (b), at the boundary of the support, an important shrinking effect. It can be
explained by the OTε entropic bias as in section 3.1, which smoothing the density at the boundary
of the support would produce, according to formula (2.9) and the effect observed in figure 3.1. As
expected, the Sε (d) solution is effective to de-bias the solution. Except, at the corners of the square
where the the map is singular, we see extra artefacts probably induced by the smooth interpolation.

Test Case 2 : Square to Gaussian. The target distribution ν is a gaussian distribution with

density on the projected domain ρ(x1, x2) = e−
x2

1+x2
2

2 over whole target domain Y, and the source
distribution will be the same as in Test Case 1.

Test Case 3 : Square to Square. The source and target distribution is a uniform distribution
over the set with stereographic projection (square) StP(supp(ν)) = {(x1, x2) ∈ R2| − 0.5 ≤ x1 ≤
0.5, −0.5 ≤ x2 ≤ 0.5}.

Test Case 4 : Circle To Steep Gaussian. The source distribution µ is uniform distribution over
the set with stereographic projection (circle) StP(supp(µ)) = {(x1, x2) ∈ R2|x2

1 + x2
2 ≤ 0.52}. The

target distribution ν is gaussian distribution with density on the projected domain ρ(x1, x2) =

e−16∗(x2
1+x2

2) over whole target domain Y.
Test Case 5 : Circle To Two Steep Gaussians. The source distribution µ is the same as in the

fourth. The target distribution ν is a gaussian distribution with density on the projected domain
ρ(x1, x2) = e−16∗((x1−0.25)2+(x2−0.25)2) + e−16∗((x1−0.25)2+(x2+0.25)2) over whole target domain Y.

Figures 5.2- 5.6 show the re-simulations for the 5 test cases.

4. ERROR ESTIMATIONS AND CONVERGENCE

4.1. Wasserstein metrics as error estimator. From the OT point of view, a straightforward evalu-
ation of our numerical approach would be to build an approximate transport map Tapp obtained
by plugging the different approximations of the potential f̂ N

OTε
, f̃ N

OTε
, f̂ N

Sε
, f̃ N

Sε
into formula (1.3) and

compare it against the exact solution T. For the reflector problem, however, only trivial analytical
solutions such as the circle (identity) or a parabola (dirac target) are known. On the other hand and
from the optics application point of view, the main concern is not the shape of reflector itself (except
for designing constraints ignored here), but rather the quality of the re-simulation. As mentioned
in remark 8, mathematically this re-simulation is a sampling of the push-forward Tapp

#µ. There-
fore, in order to build an error estimator we will consider the difference between the push-forward
Tapp

#µ and the desired distribution ν. For this we will use the standard L2 Wasserstein distance
W2(Tapp

#µ, ν), or its entropic counterparts presented in section 2. They are known to provide a
smooth estimators between on empirical distributions [Peyré and Cuturi, 2018]. In order to build a
numerically computable error estimate we will use the ray traced sample µM of the source measure
µ.
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First, using the triangle inequality for the Wasserstein metrics one gets :

(4.1) W2(Tapp
#µ, ν) ≤W2(Tapp

#µ, Tapp
#µM) + W2(Tapp

#µM, ν)

The first term on the right hand side (W2(Tapp
#µ, Tapp

#µM)) can be estimated using Lemma 4
and inequality (5.3) in the appendix 5 giving :

(4.2) W2(Tapp
#µ, Tapp

#µM) ≤ K W2(µ, µM)

where K depends on the data of the problem. The convergence in W2 norm of such sampling has
been studied in [Fournier and Guillin, 2015] and is known to behave asymptotically as M−

1
2 in ex-

pectation.

The second term on the right hand side of (4.1) can be approximated using νM = R̂N
OTε

[µM] the
sample obtained using the different combinations of ray tracing and interpolation (we only show
one of these combinations there see definition 4 and remark 8) :

(4.3) W2(Tapp
#µM, ν) 'W2(ν

M, ν)

The continuous densities µ and ν still appear in estimates (4.2-4.3). The W2 distance can be
computed either using semi-discrete OT (section 1.2) which relies on a P1 discretization of the
continuous densities or again using Sinkhorn divergence but this time for the L2 cost. This is the
choice we made in this paper and µ and ν are discretized on a finer M∞ = 5122 grid.

The error estimates are therefore computed using the Sinkhorn divergence approximation of the
L2 Wasserstein distance on the projection plane with a smaller ε : W2(., .) ' Sε=1e−06(., .), but we
will keep the W2 notation below.

4.2. Numerical convergence Study in N. In this section M = 1282 the number of rays for the res-
imulation is fixed. The densities µ and ν are discretized with a finer M∞ = 5122 points orthogonal
grid on the plane.

In (4.2), for µ as in Test Cases 1,2 and 3 , we obtained with the above parameters :

(4.4) W2(µ
M, µM∞) = 2.355e− 03

For Test cases 4 and 5, we obtained

(4.5) W2(µ
M, µM∞) = 2.310e− 03

Regarding W2(ν
M, νM∞) in (4.2), we plot for different tests cases described below the conver-

gence curves in N for the different reflector approximations methods explained in definition 4 and
two values of ε : 1/2

√
N, 1/8

√
N. See figures 5.7- 5.11 for the 5 test cases. We observe :

(1) Convergence to error levels comparable to (4.4-4.5) which makes sense as νM is at best a
QMC sampling of ν.

(2) Decreasing ε improves the OTε reflectors.
(3) Sinkhorn divergence Sε de-besiasing is effective, both in the sense of obtaining lower errors,

and being less dependent on the choice of ε.
(4) As the target is smooth,the entropic interpolation of Sε solutions are less dependent on the

choice of the discretization, and moderate values of N are enough to achieve the same error
as when using the highest value of N used here.

4.3. Numerical convergence Study in M. In this section, we use the Entropic interpolation method
and generate the potential with the Sinkhorn divergence method as they seemed to performed the
best. We then fix N = 1282 and ε = 128/8 and study the dependence of the error term W2(ν

M, ν)
with M where νM = R̃N

Sε
[µM].
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In figures 5.12-5.13 we plot the error curves for Test Cases 1 and 5 in original and log scales.
The curves demonstrates that the computed continuous numerical approximation of the reflector
preserves after ray tracing the quality of the illumination/source ray sampling. In particular :

(1) The convergence curves closely are similar to the convergence curves in N obtained us-
ing the Sinkhorn divergence method with ε = 1/(8

√
N) and the c-concave interpolation.

Indeed, with this interpolation method and a good approximation of the potential, the re-
flector will send all the rays onto νN wich is also discretized using a QMC system (see also
section 3.3). So increasing N there and increasing M here results in the same empirical
measure νM = R̃N

Sε
[µM].

(2) In logarithmic scales the curves agree with the M−
1
2 rate predicted by the theory

[Fournier and Guillin, 2015].

5. CONCLUSION

We have studied numerically the use of entropic regularization to solve the OT/Reflector prob-
lem. Based on theorem 3 [Berman, 2017] we checked the convergence on the method the entropic
regularization and space discretization parameter. Error quantities on the reflector shape itself are
not available. We therefore defined and used an error criterium based on re-simulations/ray trac-
ing and the Wasserstein 2 distance, a standard tool to compare images and empirical distribution.
We also tested a novel approach [Feydy et al., 2018] called Sinkhorn Divergence to correct the bias
induced by the entropic regularization.

Our experiments indicate first that the method converges. It also shows that the combination of
a QMC discretization satisfying the density property (remark 3) the entropic interpolation (2.1) and
correcting the Entropic bias with the Sinkhorn divergence technique produce the best results.
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FIGURES



16 JEAN-DAVID BENAMOU, WILBERT L. IJZERMAN, AND GIORGI RUKHAIA

(a) R̂OTε (b) R̃OTε

(c) R̂Sε (d) R̃Sε

(e) νN

FIGURE 5.1. Test Case 1 : From left to right and from top to bottom the re-
simulations of µM (M=128*128) using the reflectors R̂OTε

, R̃OTε
, R̂Sε

, R̃Sε
(check

definition 4 for explanation of the notations) and finally also the QMC discretiza-
tion used for νN , N = 64 ∗ 64 points. The regularization parameter was taken to be
ε = 1

2∗64 for all four solutions.
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FIGURE 5.2. Test Case 1 : Re-simulation of R̃S1/8
√

N
(point cloud) together with the

exact desired distribution (color graph)

FIGURE 5.3. Test Case 2 : Re-simulation of R̃S1/8
√

N
(point cloud) together with the

exact desired distribution (color graph)
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FIGURE 5.4. Test Case 3 : Re-simulation of R̃S1/8
√

N
(point cloud) together with the

exact desired distribution (color graph)

FIGURE 5.5. Test Case 4 : Re-simulation of R̃S1/8
√

N
(point cloud) together with the

exact desired distribution (color graph)
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FIGURE 5.6. Test Case 5 : Re-simulation of R̃S1/8
√

N
(point cloud) together with the

exact desired distribution (color graph)
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FIGURE 5.7. Test Case 1 (h :=
√

N) : W2 distance between Re-simulated Push-
Forward with 1282 points and exact target.
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FIGURE 5.8. Test Case 2 (h =
√

N) : W2 distance between Re-simulated Push-
Forward with 1282 points and exact target.
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FIGURE 5.9. Test Case 3 (h =
√

N) : W2 distance between Re-simulated Push-
Forward with 1282 points and exact target.
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FIGURE 5.10. Test Case 4 (h =
√

N) : W2 distance between Re-simulated Push-
Forward with 1282 points and exact target.
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FIGURE 5.11. Test Case 5 (h =
√

N) : W2 distance between Re-simulated Push-
Forward with 1282 points and exact target.
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FIGURE 5.12. Test Case 1 : Convergence of error terms W2(µ
M, µ), W2(ν

M, ν), orig-
inal (top) and logarithmic (bottom) scales.
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FIGURE 5.13. Test Case 5 : Convergence of error terms W2(µ
M, µ), W2(ν

M, ν), orig-
inal (top) and logarithmic (bottom) scales.
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APPENDIX A

Lemma 4. Given two Polish spaces (X, dY) and (Y, dY), with Borel probability measures µ1, µ2 on X and
Lipschitz continuous map T : X → Y with Lipschitz constant Lip(T), Then

(5.1) Wp(T#µ1, T#µ2) ≤ Lip(T)Wp(µ1, µ2)

Proof. Let ( f , g) be optimal pair of Kantorovich potentials for Wp(T#µ1, T#µ2). Then, for all x, x′ ∈ X

(5.2) f (T(x)) + g(T(x′)) ≤ dp
Y(T(x), T(x′)) ≤ Lip(T)pdp

X(x, x′)

Where first inequality holds due to fact that admissible pairs for maximization in Kantorovich
duality approach cost function from below.

Inequality (5.2) implies that functions f (T(·))
Lip(T)p and g(T(·))

Lip(T)p are admissible pair in the dual form of
Wp(µ1, µ2). This leads to following:

Wp
p (T#µ1, T#µ2) = min

γ

∫
Y×Y

dp
Y((T#µ1, T#µ2)dγ

=
∫

Y
f (y)dT#µ1(y) +

∫
Y

g(y′)T#µ2(y′)

=
∫

X
f (T(x))dµ1(x) +

∫
X

g(T(x′))µ2(x′)

= Lip(T)p
∫

X

f (T(x))
Lip(T)p dµ1(x) +

∫
X

g(T(x′))
Lip(T)p dµ2(x′)

≤ Lip(T)pWp
2 (µ1, µ2)

Taking p-th root on both sides leads to the desired inequality.
�

When the target support Y is convex and the densities of µ and ν smooth enough (C1,α is
enough) and bounded below and above by positive constants, a classic regularity result by Caf-
farelli [Caffarelli, 1992] gives sufficient regularity to get

(5.3) Lip(T) ≤ K

where the constant K only depends on the dimension d and the the data µ and ν. See [Philippis and Figalli, 2014]
for further refinements and discussions.
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[Léonard, 2013] Léonard, C. (2013). A survey of the schrödinger problem and some of its connections with optimal trans-

port.
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