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ABSTRACT 

 

At particle colliders, more data are produced than what the experiments can store for further analysis. 
This is why the incoming collisions are processed in real time by a so-called trigger system. At the 
Large Hadron Collider (LHC), trigger systems are structured as a combination of two hierarchical 
layers: the first trigger level (or L1 trigger) operates with latency of O(10 μec), selecting the ~100K 
events/sec to be passed to the second stage. The second stage, called high-level trigger, runs a faster 
and coarser version of the offline reconstruction, to select the final 1000 events to be stored for 
analysis. The L1 trigger selection algorithms are deployed as signal processing through electronic 
circuits, usually implemented though ASICs or FPGAs. The HLT runs on a CPU farm, supposed to be 
powered by GPUs or FPGAs in the future. 
 
Recently, an effort to deploy neural network on the L1 FPGAs was started, resulting in a Deep-learning-
to-FPGA firmware deployment (HLS4ML) being developed specifically for low-latency inference. This 
is only the first step into an R&D program aiming to explore new computing architecture to process 
LHC data in real time. In this respect, we are interested to explore emerging technologies for fast 
inference. Neuromorphic chips are clearly part of this R&D program, being a natural environment to 
implement Spiking Neural Networks (SNNs).  
 
Neuromorphic computing is an interesting candidate for signal processing at the High-Luminosity LHC, 
the next stage of the LHC upgrade (scheduled to start in 2025). For HL-LHC, existing particle detectors 
will be upgraded, that will allow to take a time-sequence of snapshots for a given collision. This 
additional information will allow to separate the signal belonging to the interesting collision from those 
generated parasitic collisions occurring at the same time (in-time pileup) or before/after the interesting 
one (out-of-time pileup). By powering the LHC real-time processing with SNNs, one could be able to 
apply advance and accurate signal-to-noise discrimination algorithms in real time, without affecting the 
overall system latency beyond the given tolerance.  
 
We propose to investigate the potential of SNNs deployed on neuromorphic chips as a technological 
solution to increase the precision of the upgraded CMS detector for HL-LHC. This includes the 
characterization of a particle type (classification) based on the recorded features or image 
representation. These information can be used to solve a classic LHC problem and eventually lead to 
determine whether a particle belongs to the interesting collision or to one of the parasitic events. The 
study is based on simulations and real data collected during tests at particle beams, collected in the 
context of the upgrade studies for the CMS detector.  
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1. INTRODUCTION 

In recent years deep learning technologies have contributed to many spectacular successes of Artificial 
Intelligence (AI). Architectural principles behind Deep Neural Networks (DNNs) were strongly inspired 
by neuroscience, however at the implementation level, widely used models have only marginal 
similarities between the brain-like calculations [1]. One of the main reasons is absence of the time 
factor in operations of Artificial Neural Networks (ANNs). Computation in biology is whereas performed 
thanks to the asynchronous spikes, what allows to distinguish the appearance of some characteristic 
events by the level of action potential in each neuron. This phenomenon was utilized in neuromorphic 
computing using Spiking Neural Networks (SNNs) [2], which mimic the functioning of human brains 
and allow to bridge a gap between the artificial and biological intelligence. 

Operations in SNNs are complex and their simulation involves factors such as fine-time-grained 
computation of the action potential of all neurons, signal propagation or extracting gradient information 
from discrete events in the learning process [3]. Because of these difficulties, SNNs achieve the most 
promising results on the dedicated neuromorphic hardware. They exhibit favourable properties such 
as low power consumption, fast inference, and an event-driven processing of information in a massively 
parallel fashion. In this project we participate in the Intel Neuromorphic Community and use the Loihi 
chip [4], which is considered a current state-of-the-art in the neuromorphic hardware. Due to a lack of 
publicly available training algorithms, losses during conversion processes of networks and mostly 
conventional frame-based datasets [5], SNNs do not reach the same levels of accuracy as ANNs on 
most tasks. We expect that stronger development of technologies in this domain will allow to overcome 
these limitations and take an advantage of various benefits of neuromorphic computing.  

Conventional machine learning approaches and SNNs should not be considered as two solutions to 
the same classes of problems. It is possible to identify and exploit their task-specific advantages and 
in some applications also connect the work of both. Deep SNNs offer great opportunities to be used 
with new types of sensors, and thanks to their event-based processing can be the perfect candidates 
also in High Energy Physics (HEP) [6]. We find their significant potential in this domain and present 
the first successful application at CERN, the European Organization of Nuclear Research. 
Furthermore, we compare and discuss different software approaches, basing on selected examples. 
Finally, we develop an own model of SNN and successfully solve a Jet Tagging Task. Our results are 
also compared with currently used DNNs and debated in terms of different computation possibilities. 
In conclusion, we discuss the future opportunities of neuromorphic computing in HEP and present 
several ideas for further applications in this domain. 
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2. SPIKING NEURAL NETWORKS 

Structure of SNNs is asynchronous, which means that their neurons do not fire at each propagation 
cycle, as it happens with typical multi-layer ANNs [7]. Instead, neurons are activated only when a 
potential of their membrane reaches a specific value (Fig. 1). When a neuron fires, it generates a signal 
that travels to other neurons which, in turn, increase or decrease their potentials in accordance with 
this signal [8]. 

 Membrane potential of a single spiking neuron. The neuron is firing when the action potential 
      achieves a specific threshold. After activation the signal returns to the low, regular value. 

 

SNNs allow to perform a bio-inspired learning (weight modification) that depends on the relative 
timing of spikes between pairs of directly connected neurons. The spike trains are represented formally 
by sums of Dirac delta functions (Fig. 2). 

 Neural response of spike trains that shows a discrete output of different neurons over time. 

Because spiking topologies are not differentiable, we cannot train SNNs using gradient descent. 
Numerous methods to extract the learning information from discrete outputs are being developed [9], 
however this approach still remains a field of exploration. To circumvent the problem, conventionally 
trained DNNs can be converted into deep SNNs by adapting weights and parameters of the spiking 
neurons [10]. Moreover, neuroscientists have identified many variants of direct learning rules that fall 
under the term spike-timing-dependent plasticity (STDP) [11]. The key feature of this process is an 
adjustment of strengths of the connections between pre- and post-synaptic neurons, basing on relative 
timing of a particular neuron's output and input action potentials.  
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3. LOIHI – INTEL NEUROMORPHIC RESEARCH COMMUNITY 

Simulating SNNs on von Neumann machines is typically inefficient due to an asynchronous activity of 
the networks. Ideally, each spiking neuron is an own processor without central clock, which is the 
design principle of neuromorphic hardware. To implement SNNs in a functional way, we use Loihi chip 
(Fig. 3), which is a fifth-generation of a self-learning neuromorphic processor introduced by Intel Labs 
in 2017. 

 

 Intel Loihi neuromorphic hardware 

Loihi includes a total of 130,000 neurons fabricated in 14nm process technology and supports both, 
training and inference of SNNs in a very efficient asynchronous way [12]. Because the hardware is 
optimized specifically for spiking topologies, it is also characterized by extremely low power 
consumption and impressive performance. Thanks to the highly parallel structure, sparse 
communication, and possibilities of scaling, Loihi is a big step forward in the work on neuromorphic 
hardware. 

Access to the scalable Loihi-based infrastructure is provided thanks to the cloud platform being part of 
Intel Neuromorphic Research Community (INRC). This collaborative research group brings together 
various scientific and industry entities for further development of neuromorphic computing technologies. 
Members of the community agree to share the outcomes of their research and participate in common 
scientific activities. 

Until now, Intel has developed a series of systems based on Loihi which scale to large number of 
neurons and synapses [13]. The main platform used in the project is named Nahuku and carries up to 
32 bare Loihi chips. Nahuku is not an independent processor but a scalable Arria10 FPGA (host) 
expansion board. It communicates with a standard “super host” (CPU) which can be used to send 
commands to the board and to the management core on the chips themselves. Connection with the 
super host is available through INRC using the dedicated research cloud. 
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4. SOFTWARE OVERVIEW 

Brain-inspired computing systems require substantial and very complex software for various aspects 
of their operation. Tools which are commonly used in conventional machine learning usually do not 
satisfy these needs, hence dedicated software packages play a key role in computations with SNNs. 
Rapid developments in this area and the following integration with neuromorphic hardware allow to 
verify new methods of training and thus achieve groundbreaking results in this field. To explore different 
opportunities, we use several software packages for various purposes in the project.  

a. NxSDK 

The Neuromorphic (Nx) Software Development Kit is a complete toolchain developed by Intel for 
working with Loihi platform. It is an intuitive set of APIs allowing algorithms developers and application 
engineers to quickly program Intel's Neuromorphic Hardware with support for different programming 
paradigms. 

b. Nengo  

Nengo is a graphical and scripting based Python framework working on the top of Tensorflow [14]. It 
allows to define own types of neurons, learning rules, optimization methods and reusable subnetworks. 
Simulation of large-scale neural networks with optimization of model parameters is possible in the 
framework thanks to the Nengo-DL package.  

While the main part of Nengo is based on Tensorflow, the big advantage of this framework is an 
extension package named Nengo-Loihi, which allows to run SNNs on the neuromorphic boards. It 
contains an emulator backend for fast model development and easier debugging, and a hardware 
backend for executing code on the chip. In the background, it uses Intel’s NxSDK API to interact with 
the host and configure the Loihi board. 

c. SNN Toolbox 

The SNN conversion toolbox contains functions to transform rate-based ANNs into SNNs and to 
simulate them [15]. It automates the conversion of pre-trained models and provides tools for testing 
SNNs in a spiking neuron simulator. Current support for input networks incudes Keras, Lasagne, 
and Caffe, however for the moment interface to NxSDK is not available, hence deployment of SNNs 
with toolbox on the Loihi chip is not possible [16]. 

 

 

 

 

 

 

 

https://keras.io/
https://lasagne.readthedocs.io/en/latest/
http://caffe.berkeleyvision.org/
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5. JET TAGGING TASK 

Jets are collimated showers of particles that result from the decay and hadronization of quarks and 
gluons [17]. At the LHC, due to the high collision energy, a particularly interesting jet signature emerges 
from overlapping quark-initiated showers produced in decays of heavy standard model particles. Jet 
substructure at the LHC has been a particularly active field for machine learning techniques as jets 
contain O(100) particles whose properties and correlations may be exploited to identify physics signals. 
The high dimensionality and highly correlated nature of the phase space makes this task an interesting 
testbed for machine learning techniques. There are many studies that explore this possibility, both in 
experiment and theory. One of them is the Jet Tagging Task, where five types of particles are being 
classified: gluon (g), quark (q), W boson (w), Z boson (z), top quark (t). This research is a part of 
HLS4ML, which presents a case study for neural network inference in FPGAs [18]. The classifier for 
jet substructure would enable, among many other physics scenarios, searches for new dark sector 
particles and novel measurements of the Higgs boson. 

A dataset for this problem consists of a set of physics-motivated high-level features. Jets could be 
represented as an image or as a list of particles. These different representations are used to train 
different kinds of networks while solving the same classification problem. 

An effort to train a deep neural network for Jet Tagging Task has been made, resulting in two simple 
network architectures (Fig. 4). The fully-connected neural network with three hidden layers (left) is 
characterized by categorical cross-entropy loss function, which is minimized using the Adam algorithm 
with an initial learning rate of 10−4 and a minibatch size of 1024. Moreover, a simpler architecture with 
one hidden layer (right) was considered, when identifying top quarks. Models were trained with Keras, 
resulting in the accuracy discussed in Sec. 6. 

 

 Two neural network architectures for jet substructure classification.  
(Left) A three-hidden-layer model used to categorize five classes of jets (q, g, W, Z, and t). 

 (Right) A one-hidden-layer model used to identify top quarks. 
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6. NEUROMORPHIC IMPLEMENTATIONS AND RESULTS 

Performance of the current deep neural network classifier for the the Jet Tagging Task 
(Sec. 5) is presented in the confusion matrix (Fig. 5). The average accuracy of this model over five 
classes is 75.2%. We propose an alternative approach to solve this task with neuromorphic computing 
and present successful implementations of corresponding SNNs which achieve comparable results 
with present conventional machine learning state-of-the-art in terms of accuracy. We use different 
software possibilities (Sec. 4) and deploy the model on the Loihi chip (Sec. 3), that allows for dramatic 
energy savings, increased speed of inference and gives new perspectives for further research in this 
domain. 

 

 The normalized confusion matrix of accuracy with DNNs at the Jet Tagging Task. 

a. Conversion and Simulation 

As a first attempt, we propose to train and convert the DNN presented in Sec. 5. (Fig. 4. left). This 
approach allows to eliminate the problems of gradient descent in SNNs by adapting weights and 
parameters of the spiking neurons. The goal is to achieve the same input-ouput mapping with a deep 
SNN as the original DNN. The main advantage of this method is that conventional model can be trained 
without considering the later conversion process. Once the parameters of the DNN are known, 
conversion consists only of parsing and simple transformations, and thus adds only negligible training 
overhead. For this process we use SNN Toolbox (Sec. 3.c) with INIsim and Brian2 backends [19], 
which as input takes the exported Keras model with pre-trained weights in the h5 format. We prove in 
simulation that classifying jets with neuromorphic computing is possible and present our results in the 
Fig. 6. This straightforward way works very well for testing and research purposes. Nevertheless, the 
method comes with its flaws: first of all, at the moment SNN Toolbox does not support deployment of 
SNNs on the Loihi hardware. Secondly, the converted network directly depends on the conventional 
model, hence its performance could not be improved due to the mapping inaccuracies. 
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 Both normalized confusion matrices of accuracy at the Jet Tagging Task presented for simple comparison:  
Converted SNNs simulated with SNN Toolbox (left). 

ANNs ran on conventional hardware with Keras (right). 

The best accuracy over five classes achieved with converted network in SNN Toolbox is equal to 
69.72%. This result can be already considered imposing seeing that it proves that implementation of 
spiking models for jet classification can be done with satisfactory level of precision. Mapping process 
between the networks can lead to a small loss of information, however novel techniques that ensure 
that the actual SNN operation is in the loop during the conversion phase have been recently developed 
[20]. We hope that these possibilities will be also available in SNN Toolbox in the future and expect its 
integration with Loihi platform. 

b. Deployment on dedicated hardware 

Besides the simulation, we explore various possibilities for training of SNNs and running their inference 
on the neuromorphic hardware. We use the Nengo framework (Sec. 4.b) to develop our own spiking 
models, and NxSDK (Sec. 4.a) which manages the inference via Loihi board. 

Training of the model happens within Nengo-DL in rate (artificial) neurons, and is further used by 
Nengo-Loihi, which allows to simulate or run the inference in the neuromorphic chip through the 
NxSDK. There are no changes to the network when it becomes spiking, other than the neurons emit 
discrete spikes rather than continuous rates. Information in the network is transmitted by the firing rates 
of spiking neurons, which are analogous to the rates that were used during training. 

We develop an own model corresponding to previously converted DNN, with three, hidden, fully-
connected layers. We use Spiking Rectified Linear neurons, where each neuron’s activity scales 
linearly with current, unless the current is less than zero, at which point the neural activity will also stay 
at zero. Weights are initialized with Glorot method (also known as Xavier initialization) [21] and 
corresponding layers are connected by Nengo nodes. The connection between two objects is 
unidirectional, transmitting information from the first (pre), to the second (post) argument. To make 
neurons start at the same time, we adjust their max rate and intercept according to the defined signal 
amplitude (in our case 0.005): 

Jet Tagging Accuracy: Spiking Neural Networks Jet Tagging Accuracy: Artificial Neural Networks 
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net.config[nengo.Ensemble].max_rates = nengo.dists.Choice([1/amplitude]) 
net.config[nengo.Ensemble].intercepts = nengo.dists.Choice([0]) 

As an input the network takes sixteen high-level features and classifies five types of jets as an output. 

We add probes to each hidden-layer that allows to count the number of spikes over the whole 
simulation and helps in the debugging process. We want to ensure that the neurons are firing fast 
enough, but on the other hand not too fast. An average rate around 100-200 Hz is sufficient. To 
translate features into spikes, first layer of the model is defined as an off-chip: 

net.config[layer.ensemble].on_chip = False 

After implementing the model we use Nengo-DL to perform the training. As we built the network, it has 
no synaptic filters [22] on the neural connection. This works well during training, however generates a 
significant error at the evaluation process. The achieved accuracy after training is equal to 46.83%. 
We can improve this performance by adding synaptic filters, which optimize our trained model and are 
particularly useful for layers with lower firing rates [23]: 

for conn in model.all connections: 
 conn.synapse = 0.005 

For data evaluation we are running the network over time using spiking neurons. For this purpose we 
repeat the input/output data for a number of timesteps, basing on the defined presentation time (in our 
case 0.1). Final accuracy of the optimized model over classes is equal to 65.08%. Thanks to a vector 
of times which matches the probed output, discrete results of spikes can be interpolated to continuous 
functions for every specific event. Initially, the potential of all neurons is equal and their increasing 
activity decides about final classification. A plot of an output activity of spiking neurons that classify a 
gluon (g) is presented in the Fig. 7.  

 

 Discrete output activity of spiking neurons that classify a gluon (g). Initially, all neurons start at the same 
level. Their increased firing after time demonstrates the final characterization of specific classes.  
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By using the benefits of Nengo framework, after training and evaluating the model, we are finally able 
to load it to the Nengo-Loihi package and deploy on the neuromorphic hardware. To do so, we also 
increase the maximum number of input spikes per step: 

if ‘loihi’ in sim.sims: 
 sim.sims[‘loihi’].snip_max_spikes_per_step = 120 

We finally obtain 69.8% of accuracy over classes, as presented in the Fig. 8. 

 

 

 Both normalized confusion matrices of accuracy at the Jet Tagging Task presented for simple comparison: 
SNNs deployed on the neuromorphic chip with Nengo-Loihi (left). 

ANNs ran on conventional hardware with Keras (right). 

The overall error of this result is only 5% bigger than the best performance of conventional DNNs on 
the task. It is worth to outline that only one class of particles (Z boson) is significantly misclassified, 
whereas the other types perform satisfactory if not better than in classical approach. The Z boson 
achieves the lowest accuracy in both cases, however its error with SNNs is clearly bigger. 
Nevertheless, the results of two classes (W boson and quark) were improved by over 10%, which can 
be considered as an impressive proof of work. We expect that rapid developments in this domain will 
allow to achieve even better results thanks to utilization of new computing possibilities in direct training 
of SNNs. Integration between software and neuromorphic hardware will also allow to implement bigger, 
more complex spiking topologies and result in an outstanding performance of SNNs trained on the 
event-based data. 

It is important to remember about numerous advantages of neuromorphic computing such as 
significant energy efficiency and impressive speed of inference. Even though recent results are 
comparable with DNNs in terms of accuracy, we can still benefit from these advantages and outperform 
currently used solutions thanks to the dramatic energy savings and lower time of data processing. 
These aspects are important especially in the context of triggering system at LHC, where the speed of 
filtering is crucial and could have the highest priority when a satisfactory level of accuracy is achieved. 

Moreover, it is worth to mention that representation of convolutional layers with spiking neurons is 
likewise possible [24]. In this case we also tested a classification of particles on the pictures, however 

Jet Tagging Accuracy: Spiking Neural Networks Jet Tagging Accuracy: Artificial Neural Networks 
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the densely-connected model was used in the project as an ideal implementation for the natural 
representation of jets. Recently, SNNs are also successfully applied on most common image datasets 
such as MNIST or CIFAR. Their improving performance on these tasks sheds new light on applications 
of neuromorphic computing in classification of real image data. 

Because the current study was realized on the Loihi chip through the remote (cloud) connection, we 
are unable to present benchmarks of the chip on energy efficiency. Nevertheless, we would like to refer 
to the analysis presented by the Applied Brain Research titled ‘Benchmarking Keyword Spotting 
Efficiency on Neuromorphic Hardware’ [25]. We were likewise able to reproduce presented results on 
the Keyword Spotting Task with Nengo and run the model on the Loihi chip. Due to the very close 
construction of our model on the Jet Tagging Task, we expect similar results in performance of the 
networks in terms of energy cost and average inference speed. The selected benchmarks are 
presented in the Fig. 9. 

                         

 Benchmark on the Loihi chip at the Keyword Spotting Task presented by Applied Brain Research.  
(Left) A Dynamic Energy Cost Per Inference between five devices. 

 (Right) Average Inference Speed between Intel Movidius and Intel Loihi.  

We observe massive differences in the cost of energy per inference (Fig. 9. left). It is worth to outline 
that Loihi chip consumes over one hundred times less power in comparison to GPU on the same task. 
Moreover, SNNs are also very scalable, which means that their speed of inference on the 
neuromorphic hardware does not dramatically change with an increased number of neurons in a 
topology. This is also their advantage over classical networks, what can be presented on the 
benchmark (Fig. 9. right) with Intel Movidius Stick, which is known for its fast computations on  
matrices [26]. Various advantages of SNNs can be a very important and promising field of research in 
the following years, thus we believe that HEP can be a perfect place for testing and exploring upcoming 
cutting-edge technologies in this domain. 
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7. CONCLUSION 

Currently transistors are around 10-15 nanometers in scale and are expected to shrink to around 3-5 
nanometers in the next few years, but that is seemed to be about far as we can go [27]. At that 
point, transistors are so small that physical limits prevent them from working properly. This challenge 
is also one of the reasons to explore novel possibilities of computations. Neuromorphic computing is 
certainly a part of this research and can become the future of computing not only at the European 
Organization for Nuclear Research, but the future of computing in general. We hope that our first 
implementation of SNNs in this domain using Loihi chip will lead to intense developments of 
neuromorphic technologies during the High-Luminosity LHC upgrade. We see significant potential in 
characterization of particle types basing on their signals and prove its correctness in the Jet Tagging 
Task.  

High Energy Physics is a promising field of future work and an interesting candidate of applications for 
SNNs due to the number of event-based sensors and thus spike-friendly datasets. Various utilizations 
of time series and a crucial problem of signal-to-noise discrimination are just few examples for further 
research in this domain. We expect a stronger integration between the leading conventional deep 
learning frameworks, such as PyTorch and Tensorflow/Keras with dedicated neuromorphic software. 
Moreover, we hope that novel computing possibilities for direct training of SNNs, such as Spike Layer 
Error Reassignment in Time [28], Evolutionary Optimization Frameworks [29], or Surrogate Gradient 
Learning [30] as well as a close cooperation between hardware and software producers will allow to 
benefit from various advantages of SNNs and achieve even more innovative results. Collaborative 
research groups such as INRC or The Human Brain Project [31] can lead to better cooperation between 
scientists and result in more structured technological developments. All these factors show that 
although conventional AI approaches are effective and widely-spread, neuromorphic computing is still 
a very important field of science. 

The repository of this project is public and fully-accessible at: github.com/borzyszkowski/SNN-CMS 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/borzyszkowski/SNN-CMS
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