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Abstract—The focus and novelty of this work is the derivation
of tight upper bounds on the min-entropy of several physically
unclonable funcions (PUFs), i.e., Ring Oscillator Sum, Arbiter,
Feed-Forward Arbiter, and S-ArbRO PUFs. This constrains their
usability for the fuzzy extraction of a secret key, as an alternative
to storing keys in non-volatile memory. For example, it is shown
that an ideal Arbiter PUF with 64 stages cannot provide more
than 197 bits of min-entropy. At Financial Cryptography 2012,
Van Herrewege et al. assume that 1785 bits of min-entropy can
be extracted, which renders their 128-bit key generator instantly
insecure. We also derive upper bounds that comply with non-
ideal PUFs, attributed to, e.g., manufacturing in silicon. As a side
contribution hereby, we refute the claim that S-ArbRO PUFs are
highly resistant against machine learning.

I. INTRODUCTION

Physically unclonable functions (PUFs) are electrical cir-
cuits that are designed to be prone to manufacturing variations
while remaining fairly robust against noise. From a black-
box perspective, a binary input, i.e., the challenge, is mapped
to a binary device-specific and slightly noisy output, i.e., the
response. For so-called strong PUFs, the number of challenges
scales exponentially with the circuit area. Although the latter
type of PUF is most frequently used within an entity au-
thentication protocol [1], key generation comprehends another
application of interest.

Unfortunately, concatenating the responses to a list of
publicly known challenges does not immediately result in
a device-unique secret key. Apart from the noisiness, non-
uniformities are bound to occur. Most notably, challenge-
response pairs (CRPs) are far from independent. One man-
ifestation thereof is that machine learning algorithms allow
for the construction of an accurate predictive model, given
a relatively small training set of CRPs [2]. A fuzzy ex-
tractor [3] nevertheless provides an information-theoretically
secure mechanism to transform the response bits into a stable
secret key. However, to guarantee that the key is indeed
uniformly distributed, a tight lower bound on the ingoing
min-entropy needs to be evaluated, which might very well be
infeasible for strong PUFs [4].

Deriving tight upper bounds on the min-entropy of a strong
PUF is a more feasible alternative. Although not usable for the
secure instantiation of a key generator, it nevertheless results
in valuable insights. To the best of our knowledge, feeding

response bits into a lossless compression algorithm is the only
tool available so far. The average number of retained bits
comprehends an upper bound on the min-entropy. However,
challenges and therefore also functional correlations among
CRPs are not taken into account. The produced upper bound
is hence not so very tight. Katzenbeisser et al. [5] nevertheless
observe a considerable compression rate for the 65nm arbiter
PUFs that were manufactured in the European research project
UNIQUE. This can mainly be attributed to bias though, i.e.,
an imbalance in the number of zeros and ones, and hence not
to functional correlations.

A. Contribution

We are the first to derive tight upper bounds on the min-
entropy of various strong PUFs, hereby incorporating the
highly correlated functional behavior. Although techniques are
not necessarily limited thereto, we focus on Ring Oscillator
(RO) Sum [6], S-ArbRO-2 [7], S-ArbRO-4 [7], Arbiter [8],
and Arbiter Feed-Forward [8] PUFs. Two newly developed
methods produce bounds via a black-box and white-box
approach respectively, i.e., the internal mechanisms of the
PUF are disregarded and explicitly incorporated respectively.
Both approaches demonstrate that designers are often too
optimistic about the min-entropy provided. The key generator
implemented by Van Herrewege et al. [9] does not meet its
intended 128-bit security level, for instance.

The black-box approach relies on easy-to-obtain machine
learning results in order to evaluate the bound. PUFs simulated
in software as well as hardware implementations on either
a field-programmable gate array (FPGA) or an application-
specific integrated circuit (ASIC) can be modeled and are
therefore supported. The more effective the learning algorithm,
the tighter the bound on the min-entropy. As a side contribu-
tion of independent interest, we refute the claim that S-ArbRO
PUFs are highly resistant against machine learning.

The white-box approach requires mathematical analysis of
the PUF internals. We rely on a commonly used variability
model in order to render this approach feasible. Although
hardware implementations do not necessarily comply with the
latter assumptions, it still reflects the ideal-case behavior of
the PUF as intended by their designers. Compared to the



black-box approach, bounds on the min-entropy are further
improved.

B. Organization

Section II introduces notation and preliminaries. Section III
and IV derive the black-box and white-box bounds respec-
tively. Section V concludes the work.

II. PRELIMINARIES

A. Notation

Vectors are denoted by a bold lowercase character, e.g.,
x. All vectors are column vectors. Matrices are denoted by
a bold uppercase character, e.g., B. A random variable is
denoted by an uppercase character, e.g., X . Its corresponding
set of outcomes is denoted by an uppercase calligraphic
character, e.g., X . Consider the standard normal distribution
N(0, 1), having zero mean and standard deviation σ = 1.
Its probability density function and cumulative distribution
function are denoted by fnorm(·) and Fnorm(·) respectively.
Probabilities and expected values are denoted by P(·) and E[·]
respectively.

B. Min-Entropy Definitions

The min-entropy of a binary random variable X as defined
in (1) is a worst-case predictability measure. Consider now a
pair of possibly correlated binary random variables: (X,P ).
The conditional min-entropy [3] of X given P is as defined
in (2). Terms of the expectation with P(P = p) = 0 are
evaluated as 0. Both definitions quantify the probability that
an attacker guesses a secret x ← X first time right, on a
logarithmic scale.

H∞(X) = − log2

(
max
x∈X

P(X = x)
)
. (1)

H̃∞(X|P ) = − log2

(
Ep←P

[
max
x∈X

P((X = x)|(P = p))
])
.

(2)
A relevant issue in the design of cryptographic systems is

that the min-entropy of a random variable X with an unknown
distribution cannot be determined in an exhaustive experimen-
tal manner. The length of, e.g., secret keys and concatenated
PUF responses, ranges from hundreds to thousands of bits in
order to render brute-force attacks computationally infeasible.
Therefore, one cannot simply measure the probability of
occurrence of the most outcome of X . For silicon PUFs in
particular, one would have to manufacture and read-out an
infeasible number of devices for this purpose.

C. Delay-Based Strong PUFs

We specify five strong PUF designs that rely on the prop-
agation delay of logic gates, or better, the variability thereof.
Formally, we specify a function r ← PUF(c,v), with r a
single response bit, c the binary challenge, and v aggregating
the relevant delay-based quantities. For convenience, γ denotes
an invertible transformation of challenge c.

The first three PUF designs rely on an array of ring
oscillators (ROs). These are self-oscillating loops that con-
sist of an odd number of inverters, i.e., NOT gates. The
frequency of oscillation f , i.e., the reciprocal of the to-
tal propagation delay, depends on manufacturing variability.
Various experimental work shows that a normal distribution
F ∼ N(µf , σf ) captures reality quite accurately. Consider
the measurement of m pairwise frequency differences: v =(
f2 − f1 f4 − f3 . . . f2m − f2m−1

)T
.

A first design is the RO Sum PUF of Yu and Devadas [6].
Challenge c determines for each pair i ∈ [1,m] whether either
vi or its opposite value −vi is accumulated to a variable ∆f .
Written as a dot product, ∆f = vT · γ, with γi ∈ {−1, 1}.
Thresholding ∆f ≶ 0 results in a single response bit r. The
number of challenges, i.e., |C| = 2m, scales exponentially with
the circuit area.

Similarly, S-ArbRO-2 PUFs were proposed by Ganta and
Nazhandali [7]. This design generalizes an RO Sum PUF so
that only a subset of k oscillator pairs contributes to ∆f , with
k ∈ [1,m] a fixed parameter. The selection of k pairs is part
of the challenge c. Thresholding of ∆f = vT ·γ is subject to
constraints γi ∈ {−1, 0, 1} and

∑m
i=1 |γi| = k. The number

of challenges |C| equals
(
m
k

)
2k.

The same authors also proposed S-ArbRO-4 PUFs. The
set of m RO pairs, with m even, is partitioned into m/2
clusters with two pairs each. Only a subset of k clusters
contributes to ∆f , with k ∈ [1,m/2] a fixed parameter.
The selection of k clusters is again part of the challenge
c. Within each contributing cluster, either one out of two
frequency differences is accumulated to ∆f , without flipping
signs. Thresholding of ∆f = vT · γ is subject to constraints
γi ∈ {0, 1}, γ2i + γ2i−1 ∈ {0, 1} and

∑m
i=1 γi = k. The

number of challenges |C| equals
(
m/2
k

)
2k.

The Arbiter PUF of Lee et al. [8] is represented by Fig. 1.
A rising edge propagates through two reconfigurable paths
with identically designed delays. Because of manufacturing
variations however, there is a delay difference ∆t between both
paths. An arbiter decides which path ‘wins’ the race (∆t ≶ 0)
and generates a response bit r.
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cm
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Fig. 1. An Arbiter PUF with m stages.

The two paths are constructed from a series of m switching
elements. Challenge bits determine for each stage whether path
segments are either crossed or uncrossed. As shown in Fig. 2,
each stage has a unique contribution to time difference ∆t,
depending on its challenge bit. Equation (3) writes ∆t as a
dot product [2]. The number of challenges |C| equals 2m.
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Fig. 2. The delay behavior of a single stage of an Arbiter PUF.

∆t = vT γ, with v = B t,B =
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,

t =
(
δt1,0 δt1,1 δt2,0 δt2,1 . . . δtm,0 δtm,1

)T
,

and γ =


(1− 2c1)(1− 2c2) . . . (1− 2cm)

(1− 2c2) . . . (1− 2cm)
...

(1− 2cm)
1

 .

(3)

To improve the robustness against machine learning, Lee
et al. [8] also proposed the feed-forward variant in Fig. 3.
Each out of k ≥ 1 additional arbiter elements thresholds the
accumulated time difference after a stage i ∈ [1,m − 1] and
drives the challenge bit of a stage j ∈ [i+1,m]. Unfortunately,
noise effects are amplified as such. Note that |C| = 2m−k.
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Fig. 3. A Feed-Forward Arbiter PUF with m stages and k = 1 loop.

III. FIRST METHOD: BLACK-BOX BOUNDS

A first proven method to evaluate upper bounds on the min-
entropy of a strong PUF adopts a black-box approach. We rely
on machine learning results exclusively, regardless of the inter-
nals of the PUF circuit. The method can therefore be applied
to simulated PUFs and/or FPGA/ASIC implementations.

A. Theory

The accuracy of a predictive model that relies on g training
CRPs is formalized in (4), with n the source of randomness of
the possibly randomized training algorithm. Monte Carlo ex-
periments allow for an approximate evaluation of the accuracy,
i.e., each expectation deteriorates to an average of a relatively
small number of random samples. Normally, Accuracy(g) ∈
[1/2, 1] increases monotonically with g. Commonly used tech-
niques include artificial neural networks, logistic regression,

and evolution strategies. The learning performance is always
suboptimal in practice, i.e., Accuracy(g) is not the theoretical
maximum with respect to a given g, implicating that an upper
bound on the min-entropy is the best achievable.

Accuracy(g) = Ec1←C1

[
Ec2←C2

[
. . .Ecg+1←Cg+1

[
En←N

[
Ev←V

[
P(rg+1 = Predict(cg+1; c1, r1, c2, r2, . . . , cg, rg,

n)
]]]

. . .
]]
, with ∀i ∈ [1, g + 1], ri ← PUF(ci,v).

(4)

Consider the device-unique secret x = r1‖r2‖ . . . ‖rn that
consists of concatenated response bits. The min-entropy of X
obviously depends on the given list of hardcoded challenges,
i.e., c1, c2, . . . , cn. It is our goal however to assess the
quality of the PUF in a universal manner, regardless of the
implementation details of a particular challenge generator.
We therefore resort to the conditional min-entropy in (5),
averaging the probability of success of an attacker’s best
guess over a set of challenge generators. It is fair to assume
that challenges are i.i.d. uniform random variables. Challenge
generators are typically designed to produce pseudorandom
bitstreams whose properties approximate the properties of
truly random sequences.

H̃∞(X|(C1, C2, . . . , Cn))

= − log2

(
Ec1←C1

[
Ec2←C2

[
. . .Ecn←Cn

[
max
x∈X

P((X = x)|

((C1 = c1) ∩ (C2 = c2) ∩ . . . ∩ (Cn = cn)))
]
. . .
]])

.

(5)

Consider a possibly randomized procedure x̂← Guess(c1,
c2, . . . , cn, n), with n a uniform source of randomness of
arbitrary length, used by the attacker to make an educated
guess of the PUF response x. The probability of success
thereof is upper bounded by the optimal guessing procedure,
deterministically returning the most likely value of X with
respect to the given set of challenges. Performance evaluation
of Guess hence results in an upper bound on the min-entropy
that is produced by the PUF, as shown in (6).

H̃∞(X|(C1, C2, . . . , Cn)) ≤ − log2

(
Ec1←C1

[
Ec2←C2

[
. . .Ecn←Cn

[
En←N

[
P((X = Guess(c1, c2, . . . , cn,n))|

((C1 = c1) ∩ (C2 = c2) ∩ . . . ∩ (Cn = cn)))
]]
. . .
]])

.

(6)

Consider the following instantiation of Guess, making use
of a machine learning algorithm. The first g ∈ [1, n] bits
of PUF response x are guessed at random, which involves
sampling a random variable that is uniform on {0, 1}g×1
whenever Predict is evaluated. The success probability thereof
is (1/2)g , regardless of the distribution of X . The resulting
set of g hopefully correct CRPs comprehends the input of a
possibly randomized training algorithm that outputs a model
of the PUF. Evaluation of the model provides the last (n− g)



bits of prospective response x̂. The upper bound on the min-
entropy produced by the PUF reduces to (7).

H̃∞(X|(C1, C2, . . . , Cn)) ≤ − log2

(
Ec1←C1

[
Ec2←C2

[
. . .Ecn←Cn

[
En←N

[
Ev←V

[(1

2

)g
n∏

i=g+1

P(Xi = Predict(ci; c1, x1, c2, x2, . . . , cg, xg,n)]]]
. . .

]])
, with ∀i ∈ [1, n], xi ← PUF(ci,v).

(7)

Given that challenges are independent, the modeling ac-
curacy as defined in (4) reappears. We hence obtain the
bound in (8). The value of g that results in the tight-
est bound is of primary interest. We emphasize that the
min-entropy of a sizable multi-bit response X is being
bounded here, as this has immediate application to a sub-
sequent fuzzy extractor [3]. A less complicated but also
less usable setting bounds the min-entropy of a single re-
sponse bit only, i.e., H̃∞(Rg+1|C1, R1, . . . , Cg, Rg, Cg+1) ≤
− log2(Accuracy(g)) [4].

H̃∞(X|(C1, C2, . . . , Cn)) ≤ g − (n− g) log2(Accuracy(g)).
(8)

B. Numerical Results

Fig. 4 plots the modeling accuracy of RO Sum, S-ArbRO-
2, S-ArbRO-4 and Arbiter PUFs with m = 64 stages as
a function of the number of training CRPs g. To enable
comparison with the white-box approach later-on, we use
simulated PUFs where frequencies f and delay differences
δt are assumed to be independent and identically distributed
(i.i.d.) normal random variables. Modeling is greatly facilitated
by using (γi, ri) as a learning input rather than (ci, ri). We use
linear regression of an indicator matrix [10] as a classification
method. The four learning curves quasi overlap, which is not
surprising given that each PUF relies on the thresholding of a
dot product.
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Fig. 4. Machine learning of simulated RO Sum, S-ArbRO-2, S-ArbRO-4
and Arbiter PUFs with m = 64. The S-ArbRO-2 and S-ArbRO-4 PUFs are
instantiated with k = 32 and k = 16 respectively, as this maximizes their
number of challenges |C|. The modeling accuracy is estimated via Monte
Carlo evaluations of size 105.

S-ArbRO-2 and S-ArbRO-4 PUFs were claimed to be highly
resistant against modeling attacks, especially in comparison

to an Arbiter PUF. Our results clearly refute this claim. The
authors wrongly assumed that it is necessary to learn a separate
model for all possible selections of k contributing stages.
Another newly revealed issue, that we do not elaborate further
here, is that S-ArbRO-4 PUFs are prone to bias, i.e., randomly
generated instances are considerably in favor of producing
either 0s or 1s.

Fig. 5 plots upper bounds on the min-entropy of our
simulated arbiter PUFs. This result clearly undermines the
security of the 128-bit key generator of Van Herrewege et
al. [9], relying on an arbiter PUF with k = 64 stages equally
well. Their 1785-bit response was assumed to be uniform,
while our bound implicates that the min-entropy does not
exceed 559 bits. Note that we consider simulated PUFs, which
differs from the 65nm ASIC manufactured in the research
project UNIQUE. Nevertheless, the conclusion hardly changes
when plugging in the learning curve of the latter [4].
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Fig. 5. An upper bound on the min-entropy H̃∞(X|(C1, C2, . . . , Cn)) of
a simulated Arbiter PUF with m = 64 stages. (a) For n = 1785 challenges,
the best bound is approximately 559 bits, hereby using g = 252 CRPs as
training set. (b) For each response length n, the optimal number of training
CRPs g can be selected.

IV. SECOND METHOD: WHITE-BOX BOUNDS

The white-box approach requires extensive analysis of the
PUF internals, but can result in tighter bounds and improved
insights. We derive upper bounds on the min-entropy of
the gigantesque |C|-bit concatenated response x, obtained by
evaluating all possible challenges c. The bound is hence valid
for all possible challenge generators, typically producing a
small subset of C only. The min-entropy of a random variable,
in this case X , can only decrease or remain equal when part
of its bits are discarded.

We limit ourselves to ideal PUFs, although it might be feasi-
ble to incorporate certain non-idealities that occur in hardware
implementations. Frequencies f and delay differences δt are
assumed to be i.i.d. normal random variables. Furthermore
we assume that frequencies can be measured with infinite



precision, which differs from the digital counters used in
hardware. Finally, we consider PUFs to be noiseless, which is
not necessarily a far-fetched assumption in practice. Majority
voting is a frequently used technique to suppress noise during
device enrollment, hereby facilitating key reproduction.

A. RO Sum PUFs

We carry-out the following Monte Carlo experiment on
small-scale RO sum PUFs. For a given number of stages
m ∈ [1, 5], we evaluate the 2m-bit concatenated response x of
106 randomly generated PUF instances. Test results indicate
that the 2m outcomes where exactly one vi dominates are the
most likely to occur. For instance, v1 > |v2|+|v3|+. . .+|vm|,
degenerating the thresholding procedure to γ1 v1 ≶ 0. The
min-entropy of X is hence upper-bounded as shown in (9),
regardless of whether m is small or large. For ease of
notation, the pairwise frequency differences are assumed to
be standard normal random variables, i.e., Vi ∼ N(0, 1), with
i ∈ [1,m]. The standard deviation can be chosen arbitrarily
due to thresholding with 0. We do not formally exclude that
another outcome is more likely to occur and therefore claim
to have derived a bound rather than an exact result.

H∞(X) ≤ − log2

(
P
(
V1 >

m∑
i=2

|Vi|
))

=

− log2

(∫ ∞
0

fnorm(v1)

∫ v1

0

2fnorm(v2)

∫ v1−v2

0

2fnorm(v3)

. . .

∫ v1−v2−...−vm−1

0

2fnorm(vm) dvm . . . dv3 dv2 dv1

)
.

(9)

Unfortunately, for large m, the nested integrals in (9) cannot
be evaluated in a convenient analytical manner. The distribu-
tion of the sum of zero-truncated normally distributed random
variables is non-trivial. We therefore integrate over a subre-
gion only, which remains consistent with an upper bound on
H∞(X). As illustrated in Fig. 6 for m = 3, the complete inte-
gration domain for v2 to vm is bounded by a simplex with ver-
tices

(
v1 0 . . . 0

)
to
(
0 . . . 0 v1

)
. The most straight-

forward reduction comprehends integrating in a hypercube
with vertex

(
v1/(m− 1) v1/(m− 1) . . . v1/(m− 1)

)
.

The resulting expression in (10) can be evaluated easily.

v3

v2
v1

v1√
2

v1
2

Fig. 6. Reducing the integration domain of (9), illustrated for m = 3. Both
an inscribed hypercube and an inscribed hypersphere are represented.

P
(
V1 >

m∑
i=2

|Vi|
)
≥
∫ ∞
0

fnorm(v1)(
Fnorm

( v1
m− 1

)
− Fnorm

(
− v1
m− 1

))m−1
dv1.

(10)

A tighter upper bound on H∞(X) is obtained by integrating
over the inscribed hypersphere instead. A transformation from
Cartesian coordinates

(
v2 v3 . . . vm

)
to hyperspherical

coordinates
(
r φ1 . . . φm−2

)
is defined in (11).

v2 = r cos(φ1),
v3 = r sin(φ1) cos(φ2),

...
vm−1 = r sin(φ1) . . . sin(φm−3) cos(φm−2),
vm = r sin(φ1) . . . sin(φm−3) sin(φm−2),

with φ1, . . . , φm−3 ∈ [0, π) and φm−2 ∈ [0, 2π).

(11)

As can be derived from the Jacobian determinant, the
volume element for integration is dv2 dv3 . . . dvm = rm−2

sinm−3(φ1) sinm−4(φ2) . . . sin(φm−3)dr dφ1 dφ2 . . . dφm−2.
We hence obtain (12), valid for m ≥ 3.

P
(
V1 >

m∑
i=2

|Vi|
)
≥
∫ π

0

sinm−3(φ1) dφ1∫ π

0

sinm−4(φ2) dφ2 . . .

∫ π

0

sin(φm−3) dφm−3

∫ 2π

0

dφm−2∫ ∞
0

fnorm(v1)

(∫ v1√
m−1

0

rm−2

(
√

2π)m−1
exp

(
−r

2

2

)
dr

)
dv1.

(12)
The latter product of integrals can be fully elaborated. First,

observe the recurrence relation in (13).

∫ π

0

sini(φ) dφ =


2 if i = 1,
π

2
if i = 2,

i− 1

i

∫ π

0

sini−2(φ) dφ if i > 2.

(13)

For m odd, (14) hence holds.

m−3∏
i=1

(∫ π

0

sini(φ) dφ

)
=
π(m−3)/2

(m−32 )!
. (14)

Combined with repeated partial integration, we obtain the
bound in (15), valid for m odd.

H∞(X) ≤ − log2

(
1

2

(
1−

√
m− 1

m

(m−3)/2∑
i=0

(2i)!

(i!)2(4m)i

))
.

(15)
Fig. 7 plots upper bounds on min-entropy using the in-

scribed hypercube and the inscribed hypersphere respectively.
As an additional validation of the latter case, we compute (12)
and (15) with MATLAB and Maple respectively, i.e., the same
numerical results are produced by two different tools.
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Fig. 7. Upper bounds on the min-entropy of an ideal RO sum PUF as function
of the number of stages m. Top and bottom curves correspond to integration
via an inscribed hypercube and hypersphere respectively.

B. Arbiter PUF

The upper bound on the min-entropy of an RO Sum
PUF with m + 1 stages applies to an Arbiter PUF with m
stages equally well. If v = B t is a linear transformation
of T ∼ N(µ,Σ), then V ∼ N(Bµ,BΣBT ). With B
defined in (3) and T ∼ N(0, I2m), it hence holds that
V ∼ N(0, diag(1/2, 1, . . . , 1, 1/2)). As all m + 1 variables
are independent, we evaluate a lower-bound on the probability
P(V2 > |V1| + |V3| + |Vm+1|) similar to (12). Compared to
black-box approach in Fig. 5, the upper bound on the min-
entropy is considerable improved. The bound on the 1785-bit
response of an arbiter PUF with m = 64 stages is reduced
from approximately 559 bits to approximately 197 bits.

C. Feed-Forward Arbiter PUF

The upper bound on the min-entropy of an Arbiter PUF
with m stages applies to its feed-forward variant with an
equal number of stages m stages as well, regardless of the
number of loops k and the corresponding tap positions. The
main insight is that the feed-forward variant covers only a
subset of 2m−k out of 2m transformed challenges γ, i.e., part
of the gigantesque concatenated response x can be discarded.
Despite being more resistant to machine learning [2], the
min-entropy hence does not increase, which highlights the
superiority of the white-box approach over the black-box
approach.

D. S-ArbRO-4 PUF

There is a trivial upper bound on the min-entropy of an
S-ArbRO-4 PUF, i.e., H∞(X) ≤ m. This corresponds to the
probability that the signs of all m frequency differences vi
are either all negative or all positive, making concatenated
response x either all-zeros or all-ones. Despite outputting up
to
(
m/2
k

)
2k response bits, the produced min-entropy is hence

not larger than for the most basic RO PUF design, outputting
a short m-bit uniformly distributed response where each vi is
thresholded individually. As a side note, the latter design is a
weak PUF rather than a strong PUF.

V. CONCLUSION

The main novelty of this work is the derivation of tight
upper bounds on the min-entropy of several strong PUFs.
Although not directly usable for the secure instantiation of

future key generators, it can show that instantiations from the
past are certainly insecure. A side contribution of this work
is that S-ArbRO PUFs are shown to be an easy target for
machine learning, despite the proposing authors’ claim.

VI. FUTURE WORK

A suggestion for future work is the security evaluation
of the 256-bit key generator of Francq and Parlier [11],
using techniques similar to what has been developed in this
manuscript. The 440-bit response of a Loop PUF with 64
stages is assumed to provide 418 bits of entropy.
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