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Abstract

Cyber security is a concern of each citizen, especially when it comes
to novel technologies surrounding us in our daily lives. Fighting a cyber
battle while enjoying your cup of coffee and observing gentle lights
dimming when you move from the kitchen to the sitting room to review
your today’s running training, is no longer science fiction. A multitude
of the cyber security solutions are currently under development to
satisfy the increasing demand on threats and vulnerabilities
identification and private data leakage detection tools. Within this
domain, ubiquitous decision making to facilitate the life of the regular
end-users is a key feature here. In this paper we present an approach
called Negative to Positive modelling to automate the threat-based risk
assessment process, tailored specifically to the smart home
environments. The calculation model application is demonstrated on
derived threat-triggered evaluation scenarios, which were established
from analysing the historical evidence of data communication within the
smarthome context. The main features of the proposed risk management
are identification of the existing risks, estimation of the consequences on
possible positive and negative actions and embedding of the mitigation
strategies. The application of this modelling approach for automation of
risk assessment would lead to a deep understanding on the extent to
which decision making could be automated while tracking and
controlling the cyber risks within the end-user’s accepted level. Through
the proposed risk assessment process, common factors and variables are
extracted and integrated into a quantified risk model before being
embedded in the automated decision making process. This research falls
within the GHOST (Safe-Guarding Home IoT Environments with
Personalised Real-time Risk Control) project, aiming to provide a cyber
security solution targeted at the regular citizens.
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1 Introduction

The goal of the GHOST project [1] is to provide a cyber security solution
targeted at the regular citizens by raising their awareness and understanding



of the cyber security risks associated with all aspects of cyber security from
threats and vulnerabilities identification and private data leakage detection up
to making informed decisions affecting their cyber-physical smart home
security. GHOST aims to transform smart home occupants’ decisions into
reliable automated security service, promoting user-friendly end-user habits
through usable security.

The Risk Engine (RE) is a central component of the GHOST software
implementation focused on the context-aware real-time risk assessment of the
ongoing activities on the network. It gathers information about the current
risks, analyses in real-time current network traffic flows and correlates them
with the normal behaviour of the smart home. RE is responsible for
determining at multiple stages in the processing of the data what the current
Risk Level is. This Risk Level is associated with a particular action a device or
an end-user is about to take. It validates real-time communication context
using the behaviour device profiles, entailing the processing of the
communication context properties. The fusion of the permitted risk levels
according to user preferences and typical behaviour stored in safety patterns
allows an automatic decision making, where risk levels matching and
comparison indicates the appropriate security action: allowing or blocking the
whole communication stream, or propagating the intervention to the user
interface for the end-user approval or correction.

The structure of this paper is as follows. The research method followed for
this paper is presented in Section 2. The recent advancements in the field of
Behaviour Analysis (BA), Risk Prediction and Estimation (RPE) and
Mitigation Techniques (MT) are presented in Section 3. Section 4 explains the
Risk Assessment and Modelling (RAM) approach, whereas its model for risk
levels calculation are demonstrated in Section 5. The application of the RAM
in a selected scenarios is presented in Section 6. Finally, conclusions are
summarised in Section 7 to give direction to the further work work.

2 Research Method

Design Science Research Method (DSRM) has been followed for this paper. It
relies on the creation of “knowledge and understanding of a design problem,
and its solution is acquired in the building and application of an artefact” [2].
Johannesson and Perjons [3] presented a DSRM Framework, which consists of
five main activities namely: Explicate Problem, Design Requirements; Design
and Development of Artefact, Demonstration, and Evaluation of Artefact.
Offermann et al. classified the artefacts into eight categories: System
Design, Method, Language/Notation, Algorithm, Guideline, Requirements,
Pattern, and Metric [4]. According to that classification of artefacts, this
paper presents a “Method - Defines the activities to create or interact with a
system” and “Metric - A mathematical model that can be used to measure the
aspects of systems or methods”. The work presented in this paper
corresponding to the DSRM activities is presented in the Table 1.



Design Science Activity | Corresponding Section in this Paper
Explicate Problem Introduction

Design Requirements Introduction and Related Work

Design and Development of | Proposed Risk Assessment Model and Risk
Artefact Level Modelling and Exposure Calculation
Demonstration of Artefact | Demonstration and Evaluation
Evaluation of Artefact Demonstration and Evaluation

Table 1: DSRM and Paper’s correlation

3 Related Work

Schiefer [5] demonstrates the challenges of a Risk Assessment (RA) analysis in
a smart home installation due to the heterogeneous nature of the IoT devices.
The spectrum of the threats for smart homes is twofold, namely privacy and
security related. However, in most cases, the attacks are targeting to exploit
both vectors. Unfortunately, the biggest problem still relies in primitive security
settings that are ignored by unaware users. According to [6], multiple security
incidents involving IoT devices exploit primitive attack vectors such as the use
of default passwords or weak communication protocols. The most notorious
example is the break out of the Mirai botnet [7], taking over at least 100,000
IoT devices. From the previous, it is evident that a regular user has no way
to perceive the full picture of the potential risks involved in the smart home
she is living in, and that an automatic monitoring solution is essential. In the
followings, we present the recent advancements in the field of BA, RPE and MT
tailored for the case of IoT environments.

3.1 Behaviour Analysis

One of the approaches widely used in proactively managing security incidents
is behaviour analysis. In the case of smart home security, behaviour analysis
can be applied directly on any existing network at the router/gateway
entry/exit point of any smart home installation. In terms of the approaches
used in behaviour analysis, Machine Learning (ML) is the most common
method used for anomaly detection. For example, Saad et al., [8] successfully
identified malicious behaviour on the network by comparing application of
several existing ML classifiers. Zhao et al., [9] expanded the existing method
with the use of the decision trees, allowing zero-day detection of the
involvement in botnet activities. The framework proposed by Nari and
Ghorbani [10], aimed at detecting malware, is using behaviour graphs,
improving the accuracy and false positive detection by incorporating graph
attributes. The use of behaviour analysis in cyber security solutions is crucial,
as a way to provide additional analysis vector in anomalies detection. GHOST
is incorporating this approach in RA layer, by extracting the communication
context and searching for the anomalies in RE component.



3.2 Risk Prediction and Estimation

In [11] Kitchin and Dodge provide a risk overview for the case of smart cities.
This survey can be considered the closest and more recent survey on the risk
analysis, vulnerability and mitigation techniques identification on the field of
Cyber-Physical System (CPS) security. There, the authors determine five main
vulnerability categories for threat modelling: a) Weak software security and data
encryption, b) Use of insecure legacy systems and poor ongoing maintenance,
¢) Many inter-dependencies and large and complex attack surfaces, d) Cascade
effects and e) Human error. These five categories are also applicable to the case
of a smart home environment.

Furthermore, Almohri et al., [12] suggest to incorporate threat modelling
for risk assessment directly at the IoT device design stage, distinguishing three
main approaches: attacker-, system- and asset-centric [13]. Rao, et al., [14]
present a very promising approach based on the execution time of the processes
in a CPS environment. This approach is the closest to GHOST work in terms
of dynamic real-time risk assessment.

3.3 Mitigation Techniques

Current research in the mitigation techniques does not spread much further
than providing generic recommendations for formal risk evaluation processes.
The closest work presented in [11], provides guidelines for smart cities
environment. The authors recognise three main categories of mitigation
techniques: a) Security by design, b) Traditional security mitigation, and c)
Formation of the core security teams within the administrative staff
supporting infrastructure installations. However, no further dynamic and
automatic solutions are presented in the relevant literature.

4 Proposed Risk Assessment Model

The management of large amount of personal and device data is one of the key
challenges and adequate risk management process is to be adopted for the same.
One of the potential methods to use for risk level definition in GHOST is to
adopt the “Negative to Positive Model” [15]. The ”Negative to Positive Model”
is based on the four quadrants namely positive value gained from an activity
done; positive value if the corresponding activity is not done; negative value if
the activity is done; and the negative value if the activity is not done. These
four quadrants of Negative to Positive Model have been classified as the four
risk levels in the GHOST architecture, as follows:

e Risk Level 1: What will the positive value be if an activity is done? (e.g.
compliance with privacy laws thus at the lowest level of risk in failing the
compliance)

e Risk Level 2: What will the positive value be if an activity is not done?
(e.g. collecting anonymised user information thus at a slightly higher level
of risk in the event of failure of anonymisation technique and /or data theft)



e Risk Level 3: What will the negative value be if an activity is done? (e.g.
collecting personal information and sharing the data with unauthorised
third party)

e Risk Level 4: What will the negative value be if an activity is not done?
(e.g. not anonymising the user data and paying penalty for the misuse of
the data)

For the above-mentioned risk levels, the principle Basic Value Model (BMF)
is applied for positive (yield/return) and negative (cost) values and it is to be
used in conjunction with the negative to positive and the table of the balance
sheet that is presented for a complete set of method steps for evaluating and
presenting results. The principle of BMF is based upon the three areas with
different characteristics as shown in Figure 1.
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Figure 1: Principle Basic Value Model

e Direct Values refer to direct economic values, such as failure of a device, or
direct investment based on an occurrence which could be active or passive.

e Indirect Values refer to the additional and more intangible values gained
or lost. Indirect values have a greater uncertainty and as such they can be
within ranges. Examples of indirect values are unavailability of services
due to DDoS attacks, increased administrative tasks, etc.

o Fxtended Values reflect the values affected by the direct and indirect values
and can be significantly huge. Extended values are also affected by other
factors such as impact on society and/or the GHOST network as a whole,
or share prices of suppliers if relevant, etc. Extended values of items
such as brand, reputation, etc. are often difficult to quantify. Extended
values are mostly negative but may also be positive as a consequence when
information security is applied.

Addressing the above-mentioned four risk levels and corresponding questions
in “Negative to Positive Model” in combination with the principle basic value
model, Figure 1 will then lead to creation of a balance board as shown in Figure
2.

The use of the model will lead to assurance that all the aspects have been
covered. However, there might be duplication of values related to the same
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Figure 2: Negative to Positive Model

activity which can be handled by using a simple balance table as shown in
Table 2.

Table 2: Balance Table for Net Values
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In some cases the amount in cell A1l might be the same as in cell D2, and
thus the negative value/cost would turn into a positive value when comparing
the net value for the two rows (Row 1 and 2). For a complex activity, further
rows can be used but then also the summary should be between current state
i.e., the possible activity is not done and when the activity is fully completed.

5 Risk Level Modelling and Exposure
Calculation

Estimation of risk exposure at different risk levels is based on incorporation of
the multitude of Influence Factors (IF), as identified in Table 3.

While the first three categories of IF are already integrated in the first model
of risk level calculation, the last three factors have a perception factor, which
needs to be further quantified in the risk estimation method.

1. Physical: Sum of the tangible (devices, sensors, etc.) assets in a smart
home or the entire GHOST network under consideration

2. Intangible/Logical: Sum of the intangible (information, services, etc.)
assets in a smart home or network



Table 3: Types of Influencing Factors

Type of IF

Description

Physical

Customer /User

Societal

Reputational

Intangible /Logical

Legal and Regulatory

3. Legal and Regulatory: Potential sanctions and/or penalties that may arise

Sum of the tangible assets that comprise
the GHOST network

Smart home residents/owner

Perception that the society in general has
about an appliance/device in the GHOST
network and network as a whole
Perception that competitors, suppliers,
customers, shareholders, government and
other stakeholders have about the devices
in the network and services provided by the
GHOST network

Intangible assets handled by the GHOST
network such as user data, forms of consent,
blacklisted TP addresses, software integrity,
etc.

Potential sanctions and/or penalties that
might result from a breach

from breach of data protection regulations, service contracts, etc

4. End-user
5. Societal

6. Reputation

Calculation model

e T : Time Period

e V7 : Value created by taking an action

e A : Action taken to mitigate the risk

e V5 : Value created by not taking an action

e AC, : Additional internal cost

e (' : Cost associated with an action

e AC, : Additional external cost

Risk Level 1 RL; =T x (V4 x A)

Risk Level 2 RL, =T x (Vo — ACh)

Risk Level 3 RL3;=T xC



Risk Level 4 RL, =T x (AC; + AC5)

Determining the Risk Level
1. Is the risk mitigation action (device removal) completed?

o If Yes, go to step 2
e If No, go to step 3

2. Is RL1 >RL3

o If Yes, Risk Level is RL3
e If No, Risk Level is RL;

3. Is RLy >RLy4

o If Yes, Risk Level is RL,
e If No, Risk Level is RLo

6 Demonstration and Evaluation

We use a scenario based approach, a common practice in DSRM for ongoing
work, to demonstrate and evaluate the application of the proposed risk
assessment model in the given scenario.

6.1 Example scenario - A to B communication

Internal Internet of Things (IoT) device A (IP camera) is sending data to
malicious entity B (malware.com). B is already in the blacklist (iptables).

Device Exposure Data
IP static e Wi-Fi connection e System status
camera
e Motion detection e Configuration data
e Remote control e Video frames

Credentials for
remote access

e Night vision

e Video & sound
capturing

Facial profiles

e Face recognition

Actions
1. Block outgoing communication from device A to B
2. Block all outgoing communication from device A

3. Allow outgoing communication from device A to B



Possible Consequences

1. e Partial service disruption (-)
e User discomfort as no alert is received (-)
e Controlled traffic (+)

e Avoiding privacy infringement from the IP camera data sent to
malware.com (+)

e Avoiding ransomware attack (+)

2. e Full service disruption (-)
e Exposure to theft (-)
e Controlled traffic (+)

e Avoiding ransomware attack (+)

3. e Remote control by unauthorised party (-)
e Privacy violation (-)
e Involvement in DDoS (-)
e Potential danger in extreme scenario (—)
e GDPR regulatory fine (-)
e Ransomware ()
e Continuous monitoring of sick (elderly) person (+)

e Physical security monitoring (4)

Manual Mitigation
e Remove the device

e Inform the administrator on possible threat

6.2 Application of Proposed Model

The proposed risk assessment model is applied to the above-mentioned
scenario, and we made assumptions for the data used in the calculations below
to demonstrate the positive and negative values of doing or not doing the
required action.

6.2.1 Risk Level 1: Positive Value — Activity Done

Let us assume that by removing the device from the network, we gain a positive
value of EUR 5000 (from the positive consequences as listed in outlined scenario
and annotated with (4)). Time period under consideration is 1 day. Risk
reduction for the GHOST network in the given home is 90%.

Hence, T =1, V; = 5000, A = 90%. Therefore, RL; = 1 x (5000 x 0.9) =
4500.



6.2.2 Risk Level 2: Positive Value — Activity Not Done

Let us assume that by not removing the device from the network, we gain a
positive value of EUR 3000 (from the positive consequences as listed in outlined
scenario and annotated with (+)). Further, there is an additional cost associated
with the unwanted data flow between A to B, which we assume as EUR 1000.

Hence, T' =1, V5 = 3000, AC; = 1000. Therefore, RL, = 1x(3000—1000) =
2000.

6.2.3 Risk Level 3: Negative Value — Activity Done

Let us assume that the negative consequences are critical in nature and by
applying a method like Cyber Value-at-Risk (CVaR) for the above consequences
as listed in outlined scenario and annotated with (=), we get an estimated cost
(negative consequence) of EUR 8000.

Hence, T =1, C = —8000. Therefore, RL3 =1 x (—8000) = —8000.

6.2.4 Risk Level 4: Negative Value — Activity Not Done

Since the device is not removed, the associated external cost is estimated by
using a method like Single Loss Expectancy (SLE) for the above-mentioned
negative consequences as listed in outlined scenario and annotated with (-).
Let us assume that by applying SLE we get EUR 10000.

Hence, T = 1, AC; = 1000, ACy = —10000. Therefore, RL, = 1 x (1000 +
(—=10000)) = —9000.

7 Conclusion and Future Work

The Risk Level model presented in this paper is currently an ongoing research
and development effort and is at the heart of the GHOST solution for risk
assessment. Deployed at the network traffic capture level, the incoming data is
constantly monitored and fed into several distinct analysers. The resulting
output is a set (zero or more) of risk related properties. Further grouped into
identified risks, they serve as a base for the exposure value calculation.
Various risk levels at multiple stages of data processing are evaluated and
monitored to ensure permitted risk levels of current activity at each case,
practically determining the required action to be taken.

Experimental evaluation of the risk boundaries is enabling further fine-tuning
of the calculation model to achieve automatic risks assessment. It is envisioned
to perform several iterations of the model values refinement through the data
obtained during the trials.

Furthermore, a process on effective allocation and association of the
mitigation actions should be identified. The current prototype relies on the
hard-coded set of the actions extracted from the set of predefined attack
scenarios.

Nowadays, a typical smart home installation contains an enormous variety
of IoT devices communicating with the controlling gateway and/or with each
other through various wireless protocols. Threats against smart homes can put
at risk the security and privacy of the unaware users residing on it. However,
the traditional cyber security risk assessment approaches fail to address the
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heterogeneous nature of such environment. GHOST project aims to close this
security gap by providing a cyber security solution targeted at the regular
citizens. In our work, we present an approach called Negative to Positive
modelling to automate the threat-based risk assessment process, tailored
specifically to the smart home environments. The RA layer is a core layer of
the GHOST software implementation focused on the context-aware real-time
risk assessment. As we discuss, the main purpose of this layer is to provide the
real-time security and privacy risk assessment of the ongoing activities on the
network. It gathers information about the current risks, analyses in real-time
current network traffic flows and correlates them with the normal behaviour of
the smart home.
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