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1  Introduction

1.1 Motivation and goals
This document addresses the problem of detection of musical instruments in polyphonic 
audio, exemplifying this specific task by analyzing the mellotron, a vintage sampler used in 
popular music. In current Music Computing scenarios it is common to find research about  
automatically  describing,  classifying  and  labeling  pieces  of  music.  One  of  the  most 
interesting  features  that  can  be  analyzed  in  this  topic  is  precisely  that  of  musical  
instruments. Instrumentation in music is a very important field of description, which leads 
to  a  larger  discussion  involving,  amongst  others,  the  way  we  perceive  sound.   This 
provides an interesting way to approach and comprehend music, not only as some form of 
data in the information age, but as one of the essential milestones on which cultures and 
societies are built and developed. 

General goals intended to be achieved in this project involve making a comprehensive 
state-of-the-art  review,  familiarizing  with  several  renown  methods  and  techniques, 
establish a well-defined methodology,  designing and running several  experiments that,  
from  different  perspectives,  could  eventually  lead  to  a  general  understanding  of  the 
problem.  

This  project  took  advantage of  research currently  conducted in  the  Music  Technology 
Group at Universitat Pompeu Fabra. Primarily, the basic methodology for the project was 
taken from the work of Ferdinand Fuhrmann, as supervised by Perfecto Herrera.  Part of 
this project was selected and presented in the  Reading Mediated Minds: Empathy with  
Persons and Characters in Media and Art Works Summer School organized by the CCCT 
(Center for Creation, Content and Technology) at the Amsterdam University College in July 
2011,  which  goes  to  show the  potential  of  the  topic  not  only  for  the  specific  Music  
Information  Retrieval  field,  but  also  for  other  different  and  broader  scientific  areas  as  
diverse as cognitive sciences or computational musicology, proving  how vast, pertinent 
and relevant the topic is and the many possibilities for researching in several areas of 
knowledge nowadays. 

1.2 Organization

The first section is dedicated to the problem statement and current state-of-the-art.  Here,  
the specific field of Music Information Retrieval is addressed, including: the importance of 
classification;  the  historical  issue  of  timbre  in  music;  the  importance  and  possible 
applications of automatic musical instrument search, retrieval and classification; the way 
low-level audio description can be accomplished; reviewing some previously research and 
techniques  used  for  accomplishing  the  task;  describing  the  proposed  approach  to 
instrument  detection  in  polyphonic  audio;  and  finally,  a  comprehensive  technical 
description of the instrument selected, along with some of its more relevant features. 

The second section refers to  the  methodology.   Here,  specific  aspects of  the  method 
selected are explained in detail, including details on the music collections used, the feature 
extraction process, the feature selection methods, specific machine learning techniques 
employed and its characteristics, the testing and evaluation methodologies chosen and 



some additional features implemented for accomplishing the different tasks.  

The third section refers to the experiments and results, which are grouped according to the 
main goals being pursued.  Specific characteristics for every experiment are explained, 
and their outcome is shown and analyzed. The final section summarizes the main outcome 
from the experiments. General insights on the project and its methodology are presented.  
Some future perspectives for this and similar projects are commented. 



2  State-of-the-art
2.1 Problem Statement

 The  20th  Century  started  and  ended  with  two  major  changes  that  would  radically 
transform   the  way  music  is  conceived,  created,  distributed  and  consumed  in  many 
different levels, affecting at the same time different social, cultural, artistic and scientific 
fields: firstly, the creation, development and expansion of technologies for sound recording 
at the dawn of the last century; secondly, the appearance of computers, the subsequent 
digital revolution and the emergence of information societies at the dusk of the century.  
Nowadays, access to music somehow is always mediated by technologies.  Technology 
has always played a crucial role in the process of conjugating the dualism of  physical  
energy in the real world with the inner mental representations. A musical reality could be 
defined as the outcome of a “corporeal immersion in sound energy” (Leman, 2008: 4). But 
in order to approach the plethora of complex phenomena that emerge from this musical 
experience,  descriptions  constitute  an  immediate  means  to  accomplish  a  rational 
understanding  of  them.   Descriptions  provide  a  signification  within  a  specific  cultural  
context, having into account that the experience of music is a subjective one, and that the 
matters to be described are not always directly observable. The field of musicology has 
historically  addressed  this  problem  of  interpreting  music  through  a  linguistic-based 
description,  which  is  a  way to  encode  the  musical  experience  by  means  of  symbolic 
communication. Leman (2008) refers to this processes as musical signification practices. 
This practices, employ verbal descriptions as a way to get people in contact with different 
possible meanings that can be extracted from music.  In current musicological trends, it 
has been proposed to broaden the traditional historical or theoretical approaches to music 
analysis in order to include cognitive and computational models (Louhivuori, 1997).  The 
development of audio technologies have also provided a new tool for the analysis and 
comprehension  of  music.  Composer  Béla  Bartók  was  for  instance  one  of  the  first  in 
realizing the potential of recording technologies at the beginning of the 20th century for the 
analysis and research of popular folkloric music,  addressing the objectivity of recorded 
musical material when describing accurately subtle musical details and features (Bartók,  
1979).  Current  systematic  musicology  takes  advantage  of  the  computational  models, 
computing  techniques  and  databases  for  the  rational  study of  music  from disciplinary 
perspectives as diverse as psychoacoustics, digital sound processing or ethnomusicology 
(Leman & Schneider, 1997). 

Furthermore, nowadays musical culture is almost completely dependent on technological  
infrastructures,  specially  regarding  the  production,  creation  and  distribution  of  music. 
Music  is  available  in  unceasingly  growing  amounts  and  the  expanding  world-wide 
networks provide access to it.  This represents a new opportunity not only for employing 
media technology as a platform to physically access music,  but  also as a tool  for  the 
description (or automatic description) of music. In the last few years, the field of Music 
Information Retrieval (MIR) has dealt with the issue of categorizing, processing, classifying 
and  labeling  music  files  in  large  databases,  keeping  into  account  the  ever-increasing 
amount of data and the pluralist and multicultural nature of the music material.  But these  
collections represent much more than 'browsable' data: they constitute indeed the “musical  
'memory' of the world” (Kranenburg et al, 2010: 18). One way to look at MIR is as one of  
the main mass technologies who are addressing the problem of the gap between the 
physical world of sound and the perceptual realm of sense (Polotti and Rocchesso, 2008). 



Content-based access to music is then a very active field of research, and in this way,  
these huge collections of digital music belonging to any historical period or geographic 
location  could  be  eventually  accessible  and  available  to  anyone,  from  musicians, 
historians,  musicologists,  scholars,  scientists  to  members  of  the  general  public.  This 
implies  however  the  necessity  of  reconsidering  or  perhaps  creating  new  models  for  
analyzing and organizing music and developing different techniques to accomplish that 
goal, sometimes trying approaches other than those implemented by the Western musical 
tradition. This also could mean a new starting point to accomplish a rational understanding 
of music (Leman & Schneider, 1997). 

2.2 Classification in Music
 One of the ways of creating and consolidating a body of knowledge in any field starts by 
means of  classification.  Classifications in music can be seen as abstractions about the 
social function of  musical aspects for a specific culture in a specific period of time, and 
thus can only be understood within that specific context.  One of the most relevant features 
in  audio  content  description  is  precisely  classification  according  to  different  criteria 
(Herrera et al, 2002). This classification systems can relate to specific sound and musical 
features, or to more abstract and culturally subjective semantic descriptions. Dealing with 
large  databases  implies  then  the  development  of  classification  systems,  that  can 
correspond to traditional and cultural schemes previously implemented, or correspond to  
new proposals for taxonomies by reviewing the classes and categories in music that have 
been spread culturally throughout the years by different media.  Precisely, the classification 
of  musical  instruments  has  been  a  constant  in  the  development  and  consolidation  of  
several  musical  cultures  through  history,  as  shown  by  the  fact  that  it  has  been 
implemented in  one of  the oldest  known classification devices in  history,  the  mandala 
(Kartomi, 1990).  In the current MIR context then, the main goal for this classification task  
would be to find how specific encodings of physical energy could be related to higher-level 
descriptions, in this case, musical instruments (Leman, 2008). Although many of these 
historical models rely on social, cultural or religious foundations, from the perceptual point  
of view, a musical instrument is intrinsically related to the timbre sensation it produces.

2.3 On timbre
 The difficulty of defining timbre from a strictly scientific and objective point view has been 
pointed out several times (e.g. Sethares, 1999, O'Callaghan 2007). Historically, Herman 
von Helmholtz and Carl Seashore were some of the first of relating perceptual attributes of 
the sound to specific physical  properties at the end of the 19 th century (Ferrer,  2009). 
Some current standardized definitions have proven to be incomplete, either by trying to  
define  timbre  by  what  it  is  not,  or  by  oversimplifying  the  concept  until  the  point  of 
misrepresentation.  Example of these are the notion of timbre as the quality that allows to  
distinguish between two sounds with the same  pitch and loudness (as in the American 
National  Standards  Institute  definition)  or  simplifications  such  as  timbre  being  defined 
exclusively by the spectrum envelope or a set of overtones. Indeed, timbre as an audible 
difference can be metaphorically exemplified by a visual counterpart as the look of a face 
(O’Callaghan,  2007),  where  a  certain  set  of  characteristics  for  audible  features  are 
arranged in a specific way that allows them to be identifiable as a unit, that is, the face of a 
specific  sound.   These  characteristics  depend  not  only  on  the  object  itself  as  an 
independent source of sound but on the medium where the acoustic event takes place. 
This  combination  of  source  and  medium  shows  the  importance  of  analyzing  every 



instrument within a specific context.   

 Describing timbre from a perceptual point of view, usually implies bringing synaesthetic 
semantic descriptors, i.e. properties and attributes that are often associated with senses 
other than hearing such as visual features (colourful, colourless) or tactile characteristics 
(dullness, sharpness) to the way a specific sound is characterized. This way of relating 
visual sensations and concepts to auditory perception is not exclusive of timbral perception 
(for instance, in pitch perceptual description visual features such as 'height' or 'chroma' are  
also  employed).  However,  there  is  not  a  single  and  direct  connection  or  association 
between physical and acoustic measurable features and specific related timbres, which 
means that in order to describe timbre accurately, a multiple approach addressing features 
that go beyond the physical attributes of sound waves must be achieved. Timbre thus 
cannot be placed into a one-dimensional unit within a single classification method, where 
all possible timbres could be scaled and ordered.  Instead, the most adequate approach to 
timbre description is  multidimensional scaling based on similarity tests, for trying to find 
computational  models  that  represent  the  way  human  perception  operates  (Sethares, 
1999). However, timbre as a perceptual feature is basically a human sensation, thus a 
machine does not  have so far  a method to  describe it  or  categorize it  the same way 
humans  do.   In  music,  every  phenomenon  related  to  timbre  is  directly  linked  to  the 
instrument producing the sound: timbre is determined by the physical properties of the 
instrument  as  well  as  the  range  of  possibilities  of  producing  sounds  with  a  musical 
purpose. The timbre of a specific musical instrument is perceived as remaining constant 
across any change in frequency or loudness.  

 Timbre perception is crucial when identifying a source, recognizing an object and naming 
it. In the MIR context, the human timbral perception can be translated to the recognition of 
a specific musical instrument when searching and analyzing audio files in large databases. 
Timbre description and analysis actually depends on perceptual features which could be 
extracted and computed from audio recordings by means of signal processing, and are not 
available or explicit  in other representation forms,  such as the score. In  that way,  this 
approach to music information retrieval -based on the sound features of the instrument 
instead  of  other  melodic,  harmonic  or  rhythmical  models-  could  be  used  to  create 
automatic classification techniques.  

2.4 Automatic instrument classification
 The automatic description of a piece of music by finding a particular musical instrument or 
group of instruments, involves analyzing the direct source of the physical sound, and the 
way it is categorized or grouped linguistically.   When creating a computational model for  
identifying and classifying musical instruments, the equivalent human performance should 
also be taken into account.  Some studies show that even subjects with musical training 
rarely  show  a  positive  recognition  greater  than  90%,  depending  in  the  number  of  
categories used, and in the most difficult cases the value of identification goes down to a 
40%  (Herrera  et  al,  2006).   For  instance,  families  of  instruments  are  more  easily 
identifiable than singular instruments.  It is also common to confuse an instrument with 
another  one  having  a  very  similar  timbre.   Subjects  can  improve  their  discrimination 
performance by listening and training by comparison pairs of instruments, or by listening to 
instruments  within  a  broader  context,  instead  of  isolated  or  sustained  musical  notes 
(Herrera et al, 2006).  

 There  are  several  general  classification  schemes  that  must  be  taken  into  account 
beforehand  in  order  to  optimize  the  automatic  classifier.   For  instance,  a  very  basic 
distinction that could be relevant for creating a computational model is that of differencing 



between pitched (instrument that can play a relatively wide range of frequencies or notes)  
and non-pitched instruments (basically, what we refer to as percussive instruments).  In 
pitched musical instruments, for example, sometimes the overtones define some timbral 
sensations and serve as cues for identification.  In non-pitched musical instruments -as it  
is the case of some percussive instruments-, features such as attack and decay time are 
more relevant  to  help discriminate and classify the sounds (Fuhrmann,  Haro,  Herrera, 
2009).  

 The main  goal  would  be then to  determine specific  musical  instrumentation  in  audio 
recordings based on facets related to the timbral sensation. It could be of some interest for 
several fields (musicology, psychoacoustics, commercial applications, etc) to retrieve and 
automatically classify pieces of music which make use of a certain musical instrument from 
a  large  database,  regardless  of  the  musical  style,  genre,  time  period  or  geographic  
location, or without taking into account any additional metadata. Some applications and 
motivations for using computational models for the automatic labeling and classification of 
musical instruments are:

• Finding the acoustic features that make the sound of an instrument identifiable or 
remarkable  within  a  specific  musical  context.  Thus,  timbre  can  be  used  as  an 
acoustic fingerprint (keeping in mind all possible range of sounds that a singular 
instrument can accomplish).

• Genre classifier. Culturally, there are instruments associated to a particular musical 
genre  or  style.  Different  research  on  genre  classification  usually  employ  global 
timbre  description  as  one  of  the  main  relevant  attributes.   However,  individual 
instruments are rarely taken into account in this task.  Developing an instrument 
classifier could substantially improve a genre-classification performance.

• Geographical  classifier.   There  are  musical  instruments  associated  to  specific 
regions on the planet,  so specific pieces of music are related to their geographic 
location.  Gómez,  Haro  and  Herrera  (2009)  showed  how  by  including  timbre 
features, performance in classifying geographically pieces of music is increased, 
helping complement other musical features such as tonal profiles. 

• Historical  classifier.  In  a  similar  way,  musical  instruments  can be associated  to 
specific historical periods. In both academic and popular music, the specific time of 
invention and development of  an instrument determine its  use in a well-defined 
temporal lapse.  It could also be important to study the appearance of a specific  
instrument through time, finding the relative recurrence or historical usage.

• Musical ensembles classifier. Combination of timbres could be addressed through 
the detection of a closed set of instruments leading to ensemble classification, that 
could also be helpful in classifying music according to existent defined forms.   

• Perceptually,  instruments  and  their  timbres  are  relevant  to  informativeness  in 
audition. The presence of a single instrument or combination of instruments could 
define the overall texture or atmosphere in a piece of music. Similarly, the inclusion 
of  an  instrument  in  a  specific  section  of  the  piece  could  create  a  contrast  or 
distinctiveness that could be useful to analyze.    

 Several of this applications could be combined to achieve different classification systems. 
E.g.  developing a  virginals classifier  could also help classifying music containing it  by 
genre (classical, renaissance, early baroque), by historical period (16 th  _17th century), by 
geographic area (northern Europe, Italy); or a conga classifier could help classifying music 
belonging to the  latin genre (and subgenres such as salsa, merengue, reggaeton) from 
specific countries (Cuba, Puerto Rico, Dominican Republic) and so on. All of this requires  
a  musicological/organological  approach,  getting  to  know the  history,  development  and 



context of the instrument and its more important physical characteristics. 

2.5 Descriptors
 Now we refer to probably one of the most important tools when trying to connect abstract  
digital  information in  audio files with  well-defined semantic  concepts  related to  human 
perception.  Several  temporal  and  spectral  features  are  decoded  by humans  from the 
cochlea to the primary auditory cortex in order to discriminate the sound source, which is 
subsequently  labeled in higher auditory centers (Herrera et al, 2006).  By computational 
means, some of these features -also called descriptors- can be extracted, quantified and 
coded from raw audio signals. These descriptors can be obtained from the time-domain 
signal, or from its spectrum in the frequency domain.  It is extremely important to know the 
most relevant acoustic and perceptual features, not only of the musical instrument itself, 
but of the  descriptors associated with a particular sound as well. Ideally, finding the most 
appropriate descriptors that help associate a different set of sounds coming from the same 
musical instrument.  It could be the case that some descriptors are not relevant to the 
study and analysis  of  a  specific  instrument,  and furthermore,  its  computational  results  
could  be  misleading  for  the  classification  issue.  By selecting  a  small  set  of  pertinent 
descriptors,  redundancy  is  avoided,  computational  time  is  decreased  and  ideally 
performance in detection should be more accurate. As it is difficult to know beforehand 
what are the descriptors that describe more accurately a specific musical instrument, some 
feature selection techniques must be applied (which will be explained in more detail in the  
Methodology  section).  As  the  amount  of  descriptors  used  in  several  state-of-the-art 
techniques for audio processing is too vast we present some of these features that could 
be eventually used as a starting point when describing the timbre of a sound, several more 
are  well  documented  and  standardized  -for  instance  see  (Peeters,  2004)  for  further 
reference-.  The following descriptors are intended to serve as an overview (in section 4 
Experiments and results, specific descriptors that prove to be relevant for this project are 
also commented)

• Energy descriptors.  Although not intrinsically related to timbre, the description of 
power in a signal could be used in combination with other descriptors for specific 
instrument identification if required.  Among these kind of descriptors, calculating 
the root mean square or RMS (related perceptually to the loudness of the sound) is 
commonly implemented. It can be calculated as follows (Serrà, 2007):

RMS= f s

n2−n1
∑ [ x n]2                                        (2.1)

Where  f s  corresponds to  the  sampling  rate,  x(n)  is  the  sampled signal  and 
n2−n1  is the window length. 

• Time descriptors. Obtained from the time-domain signal.  Some of them are:
◦ Log-attack time: defined as the logarithmic difference between the stop-attack 

time (80%-90% of the maximum RMS value) and the start-attack time (20% of 
the maximum RMS value).   It can be used for discriminating percussiveness in  
sounds. 

◦ Temporal  centroid:  defined  as  the  time  averaged  over  the  energy  (RMS) 
envelop.  Related  to  decay  time,  i.e.  capability  of  the  instrument  of  playing 
sustained notes. Useful for distinguishing percussive sounds. 

◦ Zero-Crossing  Rate:   Averaged  amount  of  times  the  signal  crosses  the 
horizontal zero axis. This descriptor is related to noisiness (the higher the value, 
the noisier the signal is).



• Spectral  descriptors.   Related  to  the  spectral  shape  and  structure,  which  are 
specific values in the frequency-domain. Some of them are:
◦ Spectral centroid: Barycenter of the spectrum.  It considers the spectrum as a 

distribution where the values are the frequencies and the probabilities are the 
normalized amplitudes. In timbre perception, it can be related to brightness of a  
sound.  It  is  correlated  with  the  zero-crossing  rate  temporal  descriptor.  It  is 
defined by (Peeters, 2003):

=∫ x.p x dx                                              (2.2)
Where x is the observed frequency and p(x) is the probability of observing x 
(normalized amplitudes).

◦ Spectral  spread:  Variance of  the  spectrum,  i.e.  spreadness around its  mean 
value. Defined by (Peeters, 2003):

2=∫ x−2 . p xdx                                         (2.3)
Where x is the observed frequency, p(x) the normalized amplitude (probability), 
and   is the spectral centroid.

◦ Spectral flatness:  Computed for different frequency bands, it corresponds to the 
ratio between geometric and arithmetic means.  It is related to the noisiness of a 
sound (high values), as opposed to being tone-like (low values), thus it gives 
hints in the noisy or tonal nature of a sound. 

◦ Spectral irregularity (jaggedness of the spectrum). 

• Mel-Frequency  Cepstrum  Coefficients  (MFCC).   A  standard  pre-processing 
technique in the field of speech, the MFCC represent a short-term power spectrum 
Mel scale (a non-linear scale of pitch perception).  It is usually calculated in the 
following way (Serrà, 2007): divide the signal into windowed frames and for each 
one  obtain  the  DFT  (Discrete  Fourier  Transform),  obtain  the  logarithm  of  the 
amplitude, map these values (log of the amplitudes) to the Mel scale by means of 
triangular  overlapping  and  finally  take  the  DCT  (Discrete  Cosine  Transform). 
Although the MFCCs have proven adequate for timbral description (specifically in 
genre classification tasks), as they are defined by a mathematical abstraction it is 
not possible to relate precise MFCC values with specific physical characteristics of 
the  sound.  Nonetheless,  MFCCs  can  help  in  discriminating  the  way  specific 
polyphonic timbral mixtures sound (Aucouturier et al, 2005).  

2.6 Techniques
 In Music Information Retrieval there has been a large quantity of research on timbre, 
where it  has been employed mainly for  genre classification, music similarity or overall  
global  timbre  description  of  a  piece  of  audio.   Specific  musical  instrument  detection, 
retrieval and classification has been regularly researched using monophonic approaches, 
that is, using recordings of isolated monophonic sounds aiming at instrument recognition 
(Aucouturier and Pachet, 2002). This technique is accurate but sometimes unrealistic, if 
the final goal is to develop a system capable of dealing with more complex polyphonic  
audio with different combinations of instruments over a temporal line. Some research in 
instrument detection has also been carried by computing semantic tags associated to the 
appearance  of  the  instrument  and  created  and  shared  in  digital  social  communities 
(Turnbull et al,  2008; Hoffmann et al, 2009; Eck et al,  2007).  This technique however  
depends on the actual contribution by the communities, i.e. if a piece has not been tagged 
therefore  cannot  be  classified.  Polyphonic  audio  presents  a  basic  complexity  when 
comparing  it  to  monophonic  audio,  which  is  the  combination  and  mixture  of  several  



frequency components in the spectrum coming from as many different sources are present 
in the recording (Fuhrmann et al, 2009).  This overlapping of different sounds in polyphonic 
recordings  makes  the  positive  identification  of  individual  pitches  and  onsets  for  every 
source a very difficult task. 

 Nonetheless, several approaches that actually employ the raw audio data for instrument 
detection in polyphonic signals can be mentioned, all of them using different techniques:

• f0  estimation  and  restriction,  with  a  Gaussian  classifier  for  identifying  the  solo 
instrument in Western classical music sonatas and concertos (Egglink and Brown, 
2004). 

• Learning techniques by training from weakly labeled mixtures of instruments (Little 
and Pardo, 2008).

• Linear  Discriminative  Analysis  for  feature  weighting,  in  order  to  minimize  the 
overlapping of sounds (Kitahara et al, 2007).

• Pre-processing  to  achieve  source  separation  in  the  identification  of  percussive 
instruments (Gillet and Richard, 2008).

• Hidden  Markov  Models  with  inclusion  of  temporal  information  for  automatic 
transcription of drums (Paulus and Klapuri, 2007).

• Training fixed combination of instruments -instead of solo instruments-, clustering 
them firstly and  labeling them secondly (Essid et al, 2006).

• Extraction  of  pitched  information  from  different  sources  for  subsequent  feature 
computation and clustering (Every, 2008). 

• f0-estimation for source separation by Non-negative Matrix Factorization techniques 
(Heittola et al, 2009).

• Beat tracking, feature integration and fuzzy clustering (Pei and Hsu, 2009).

 As  it  is  shown,  several  procedures  with  different  degrees  of  complexity  have  been 
implemented, but there is not an single, unified framework for dealing with the problem. 
There could be, however, simpler techniques for accomplishing the instrument detection 
task obtaining rather adequate performances. In the next section, one of such approaches 
is described.

2.7 Proposed approach for detecting musical instruments in  
polyphonic audio

 It is possible to train classifiers with audio descriptors (temporally integrated from the raw 
feature values extracted from polyphonic audio data) using extensive datasets (Fuhrmann 
y Herrera, 2010; Fuhrmann, Haro y Herrera, 2009).  The following is a general description 
of this approach (flow diagram can be seen in Fig. 1), in section 3 specific implementation 
of this approach for this project is explained in detail.



Fig. 1  Automatic instrument detection and classification flow diagram for polyphonic audio (taken from 
Furhmann, Haro and Herrera, 2009)

The procedure for computationally classifying sounds according to some audio features in 
a supervised manner (in opposition to the clustering technique of unsupervised learning), 
proceeds roughly in the following way:

1. Building a well-suited database for the instrument with an adequate annotation, as 
well  a  database  for  the  counterpart,  i.e.  a  collection  including  samples  not 
containing the instrument.

2. Extracting  audio  features  (descriptors),  frame-based,  computed  over  time  (by 
means of statistical analysis) from the datasets. It is important to remark that no 
pre-processing is required in this process, the feature extraction is done directly in 
all pieces belonging to a particular collection.

3. Selecting the most relevant attributes by using specific feature selection techniques, 
that could be more accurate for describing timbrally the instrument, helping improve 
the performance and finding a model for the instrument sound. 

4. Training, testing and classifying the data according to the selected descriptor sets 
model,  using  several  machine  learning  techniques.  Here,  supervised  learning 
techniques will  be used, that is, training annotated data is used to produced an 
inferred function. 

5. Comparing,  analyzing  and  evaluating  descriptors,  models,  techniques  and 
classification  results,    according  to  this  representation  of  the  presence  of  an 
instrument in a piece of audio. 

 This  general  approach can be applied to  basically any instrument.   However,  for  the 
purpose of this project, this general task had to be limited. In the next section the selected  
instrument  is  presented,  along  with  some  of  its  most  relevant  technical  and  sound 
features.  

2.8 The mellotron
The  mellotron  is  a  peculiar  instrument  in  the  history  of  20th  Century  popular  music. 
Modeled  after  the  chamberlin,  it  is  recognized  as  one  of  the  first  playback  sample 
instruments in history. Originally, the idea behind the mellotron was to emulate the sound 
of a full-orchestra by means of recording individual instrument notes in tape strips, which 
are activated through playback. For instance, instead of recording a whole string section 
for accompaniment in a song, the mellotron could 'sample' individual notes of this string 
section,  which  then  can  be  played  by  the  performer  in  any  necessary  musical  
arrangement.  The instrument can also be used in live settings, which makes it a very  



adequate option whenever it is difficult to get the original instrument or instruments for the 
performance.   However,  the  mellotron  is  not  as  commonly  used  as  other  keyboard 
controlled instruments, and this uniqueness makes it ideal for performing some specific  
classification tasks.  For instance, developing a mellotron classifier could help also classify 
music by genre or more specifically by sub-genre (e.g. progressive rock, art rock) or time 
period (from the sixties onwards). 

Fig. 2  M400 mellotron, with 35 keys, 35 magnetic tape strips and inner motor mechanism. 

 During  the  second  half  of  the  sixties  decade,  several  groups  of  psychedelic  and 
progressive rock started using the mellotron, prompted amongst others by the seminal 
piece  Strawberry  Fields  Forever by  The  Beatles,  which  employed  a  flute  mellotron 
throughout the song. Some bands such as King Crimson, Genesis or The Moody Blues 
made  the  mellotron  a  regular  instrument  in  their  compositions  and  then  it  became  a 
trademark  sound  of  a  big  portion  of  the  progressive  rock  during  the  seventies.  The 
mellotron usage decayed during the eighties decade, due probably to the huge diffusion 
and  success  of  cheaper  digital  synthesizers  which  emulated  the  sound  of  traditional  
Western instruments by means of several synthesis techniques. However, the last decade 
saw a revival of the mellotron, several recordings in different genres that are using it can 
be  found,  not  only  as  a  vintage  or  'retro'  artifact,  but  as  a  main  instrument  and  
compositional tool (bands such as Oasis and Air, or artists such as Aimee Mann have 
included  prominently  the  mellotron  in  their  music).  Its  electro-mechanical  nature  (i.e. 
having  characteristics  both  from  electrically-enhanced  and  mechanic-powered  musical 
instruments) makes it difficult to classify within a well-defined taxonomy. According to the 
Hornbostel-Sachs  instrument  classification  system  for  instance,  the  mellotron  would 
belong to its fifth category, electrophones, but when trying to classify it within any of the 
subcategories of this system, there is the problem of considering the multi-timbral nature of 
the recorded sounds from real instruments, or the fact that it presents electric action and 
electrical amplification. 

 Now we refer to some technical features of the mellotron which make it unique in the way 
its sound is constructed and its timbre is created, thus making it of special interest for the  
purpose of this research. The mellotron main mechanism lies in a bank of linear magnetic 
tape strips,  in which sounds of  different  acoustic instruments are recorded.   It  uses a 



regular Western keyboard as a way to control the pitch of the samples. Each key triggers a 
different tape strip, where individual notes belonging to a specific instrument have been 
recorded.  Below every key, there is a tape and a magnetic head (the M400 model has 35 
keys,  with  35 magnetic  heads and 35 tapes,  while  the Mark II  model  has the double  
amount, for instance). Monophonic sounds belonging to a single pitch or sequences of 
pitches can be played for a single instrument, but due to the fact that the mellotron is 
controlled by a keyboard, it is more usual to find recordings that use polyphonic sounds, 
that is, the performer pressing two or more keys at the same time playing different melodic 
lines. Furthermore, some mellotron models had up to three tracks in every tape, meaning 
that 3 different instruments or sounds could be recorded, and with a selector function a 
combination  of  two  of  them  could  be  played  simultaneously.  When  the  instrument  is 
switched  on,  a  capstan  (a  metallic  rotating  spindle)  is  activated  and  remains  turning 
constantly. Whenever a key is pressed, the strip makes contact with the magnetic head 
(the reader) and the tape is played. There is an eight-second limit for playing a steady note 
in the instrument, due to the physical limitations (length) of the tape strips (Vail, 2000). One 
of the main innovations in the mellotron is its working tape mechanism: instead of having 
two reels and playing a sound until the tape length is over (as in a regular tape player  
system), the tapes are looped and attached to springs that allow the strips to go back to 
the starting position, once a pressed key is released, or after the eight-second limit.

 The  mellotron  was  commonly  used  to  replace  the  original  acoustic  instrument  it  
represents,  but  in  the  process  it  adds  a  distinctive  timbral  feature  that  changes  the 
perception of the piece as a whole. By using tapes, the mellotron can reproduce the attack  
of the instrument, fact that could be used as a temporal cue when obtaining the values of  
the descriptors. However, its timbre is perceived as having an additional sound to that of 
its acoustic counterpart, i.e. sounds from mellotron strings and a real string orchestra are  
perceived differently.  It is important to address these specific features, because they could 
be  of  high  relevance  for  trying  to  match  specific  descriptors  with  correlated  physical 
characteristics.  One of  the  most  frequent  sound deviations  that  can be found in  tape 
mechanisms is the so-called wow and flutter effect, which corresponds to rapid variations 
in frequency due to irregular tape motion. In analog magnetic tapes it is also frequent to 
have tape hiss, which a high-frequency noise produced by the physical properties of the 
magnetic material.  In some recordings, the characteristic sound of the spring coming back 
to the default position can be heard as well. Although different models of the mellotron  
(such  as  the  M300,  the  MKII,  the  M400,  etc)  produce  different  sounds  due  to  using 
different  set  of  samples,  or  having  slight  variations  in  the  working  mechanism,  these 
distinctions were not addressed for this project, instead trying to find an overall  timbral  
description for the generic sound of the mellotron.  For the purpose of this research we are  
focusing in some of the most frequent instrument samples used in the mellotron (though 
other samples were used as well for specific experiments): 

• Strings section (covering samples featuring violins section and full string orchestra)
• Flute. 
• Choir (including samples featuring male, female and mixed choir).  

In section 3.1 there is a more detailed explanation of the different sound samples selected 
and the criteria for choosing them. 

Now we refer to some possible research questions that can be asked and could constitute 
a guideline for the project:

• What are the physical properties that make the mellotron sounds to be perceived 



differently to the equivalent acoustic instruments? 
• Can a machine be taught to detect the sound of this instrument?
• Is there a feature in the timbre that allows us to group all sounds coming from the 

mellotron, disregarding the kind of instrument being sampled?
• In general terms, do these kind of 'rare' or specialized musical instruments have 

distinctive  sound  features  that  can  be  recognized,  described  and  characterized 
using low-level attributes? 

There are also some additional challenges derived from the specific characteristics of the 
instrument itself, which make it pertinent for the purpose of this thesis:

• The mellotron constitutes  one instrument with  several timbres.  The possibility of 
playing  any  instrument  that  has  been  previously  recorded  in  a  magnetic  strip, 
makes  the  mellotron  unique  in  its  timbral  diversity.  However,  all  this  different 
instruments are being mediated by the same physical mechanism, which could lead 
to an unified timbral feature. 

• The  mellotron  sound  is  not  very  prominent  in  most  of  the  recordings.   It  was 
commonly  used  as  a  background  musical  accompaniment,  which  means  that 
sometimes several other instruments appear in the recordings with equal or more 
relative loudness than the mellotron.  Also, in most of the recordings the mellotron 
does not play long continuous musical phrases, appearing only for a short period of 
time.  Solo sections are hard to find as well. 

• Recognition of  this  instrument  proves to  be difficult,  even for  human listeners . 
Although there have not been scientific studies on this specific task, there is a lot of  
information on the world wide web on this matter. For instance, the Planet Mellotron 
website1 lists  at  least  100 albums containing allegedly mellotron,  some of  them 
wrongly classified or very difficult to verify due to:
◦ Not enough sonorous evidence.  Sometimes, the alleged sound of the mellotron 

is deeply buried in the mix, so it is difficult to be perceptually discriminated.  As  
the mellotron samples the sound of other instruments, actual strings sections 
could for instance be mistaken for being a mellotron. 

◦ Lack of meta-information. For instance, confirmation by musicians or producers 
of the usage of the instrument in a specific piece of music.   

◦ Mistaken samples.  It is common finding wrong information on a certain piece of 
music employing the mellotron. For instance, Led Zeppelin's original recording 
of Stairway to Heaven has been referred to as employing a mellotron flute in its 
beginning, when the sound comes actually from dubbed recorders.  However, in 
their  live shows they used in fact  a mellotron for playing this section,  which 
helped  to create this confusion2. 

1 http://www.planetmellotron.com/index.htm    Planet Mellotron is a  website where a comprehensive and extensive 
database of music recordings that include the mellotron is annotated and updated regularly. (last visited in July 2011)

2 Refer to http://www.planetmellotron.com/revledzep.htm for more information on this matter. (last visited in July 
2011)

http://www.planetmellotron.com/revledzep.htm
http://www.planetmellotron.com/index.htm


3  Methodology
3.1 Collections

 Two main tasks were defined for building the groundtruth: first, making a representative 
collection of recordings that employ the mellotron; second, building collections that include 
the 'real' acoustic instruments that are being sampled by the mellotron.  The purpose here 
is  to discriminate the mellotron from what is not, e.g. learning to differentiate between a 
mellotron choir sound from a real choir. In that way, it is possible to find the features that  
make  the  mellotron  sound  to  be  physically  and  perceptually  distinctive.  Ideally,  the 
selected excerpts featuring the instrument must correspond to recordings from different  
songs, albums, artists, periods and musical genres, in order to cover a wide range of sonic 
possibilities.  Also, in addition to fragments featuring the solo instrument, there must be a 
wide diversity of instrument combinations, taking into account the predominance level of 
the mellotron. Selection of excerpts belonging to the same song was discouraged, as well  
as excerpts belonging to the same album (trying to avoid the so-called album effect, where 
due to a unity of production techniques the sound similarity increases). Samples where the 
mellotron was deeply buried in the mix were not selected, because probably they would 
have confused the classifiers, adding difficulty to the task. These databases were reviewed 
by an expert.  A total  of 973 files were collected, segmented, annotated, classified and 
processed for different experiments (see table 1), with the following characteristics:

• Fragments  of  30  seconds  where  the  mellotron  is  constantly  playing,  that  is,  it 
features in every moment of the excerpt. 

• WAV format was used, transferred from 192 Kbps (or more) MP3 or straight from 
audio compact discs.

• The samples were fragmented and converted from stereo to mono, using Audacity3.

Annotation was done according to the following categories: 
• If the excerpt features the mellotron: 

◦ Solo (just mellotron) or polyphonic (in combination with other instruments)
◦ Strings, Flute or Choir
◦ Specific classical music pieces

• If the excerpt does not feature the mellotron:
◦ Strings, Flute, or Choir 
◦ Specific classical music pieces
◦ Generic rock/pop and electronic music

 Different styles of popular music were represented in the mellotron collection, amongst 
others (as categorized by Allmusic4):  Prog-Rock, Psychedelic, Art Rock, Alternative/Indie 
Rock, Electronica, Ambient, Britpop, Blues-Rock.  However, all the samples that constitute 
the mellotron groundtruth belong either to the Pop/Rock or the Electronic western music 
mega-genres  (also  as  defined  by  Allmusic),  with  the  exception  of  a  small  collection 
belonging to Classical. 

3 http://audacity.sourceforge.net/   Audacity is a open-source freeware for editing sound. (Last visited on July 2011)
4 http://www.allmusic.com/   Allmusic is a music guide website, providing basic data plus descriptive and relational 

content for music, covering a wide range of genres and periods. (Last visited on July 2011)

http://www.allmusic.com/
http://audacity.sourceforge.net/
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Table 1. Groundtruth details, total amount and classification for the different collections, for the classes 

'Mellotron' and 'Non-mellotron'.

 The collections  for  strings and flute  in  polyphonic  audio  were provided by Ferdinand 
Fuhrmann, taken from his own database employed in his research on the same topic. The 
collection for 'real'  choir  was built  by selecting a representative amount of  music from 
several  genres  (not  only  classical  music)  in  order  to  avoid  some  possible  'genre' 
discrimination instead of 'instrument' distinction.  A general collection of Pop/Rock was also 
built, intended for testing this last aspect, that is, the possibility of the classifier finding 
descriptors that classify genre instead of the specific presence of the mellotron; and for 
testing some of the models found against a non-used previously database. 

3.2 Feature extraction
 Once the groundtruth collections were reviewed, the feature extraction was implemented 
in  Essentia,  which  is  a  C++/python-based  library  for  audio  analysis  (collection  of 
algorithms) that includes standard signal processing and temporal, spectral and statistical 
descriptors. Here, the  signal  is  cut  into  2048  points  frames  (50ms),  hop size of 1024,  
and  for  each frame short-time spectrum is computed and several temporal and spectral 
descriptors are obtained and aggregated to a pool.  The default Essentia Extractor was 
used, which extracts pretty much all features useful for audio similarity.  Every descriptor 
has  the  following  statistical  values,  computed  for  all  frames  within  a  sample:  mean,  
variance, first and second derivative mean and variance, minimum and maximum values. 
Some descriptors have only a single mean value, such is the case of the MFCCs, where 
the  output  consists  of  mean  values  for  13  different  mel-Frequency  coefficients. 
Descriptors containing metadata were not used.
 
 For all the experiments there will be 2 main classes, mellotron or non-mellotron, thus the  
models are dealing with a binary decision.  However, every experiment would use different  
datasets, according to specific tasks that are explained in section 4.  In this way, we make 
sure that a specific model works for several setups, timbral combinations or instruments 
sampled  by  the  mellotron.  A  python  script  was  used  for  changing  the  information 
containing all the extracted descriptors from the Essentia format (YAML files) into one of 
the Weka compatible formats (ARFF files).  According to the intended experiment, a single  
file  containing  the  database  needed  was  created  for  both  classes.  In  this  ARFF file, 
information for all the excerpts and all features is included. 

3.3 Machine Learning 
Machine  learning  evolved  as  a  branch  of  the  artificial  intelligence  field,  developing 
algorithms  that  find  behaviors  and  complex  patterns  from  real  world  data.  Machine 



learning  main  purpose  is  to  find  useful  approximations  for  modeling  and  predicting 
processes that follow some hidden regularities, but that are hard to detect manually due to 
the huge amount of information describing them (Alpaydin, 2004).  It is crucial that these 
automatic systems are capable of learning and adapting, in order to have high predictive  
accuracy . They are also intended to provide training by means of efficient algorithms that  
are capable of processing massive amounts of data and find optimal solutions to specific  
problems.  In this particular case, it is our intention to build  descriptive models gaining 
knowledge from data, that lead eventually to predictive systems that anticipate to events in 
the future. Thus, supervised classification will be used, where the learning algorithm maps 
features to classes predefined by taxonomies. For the purpose of this project, open-source 
free  software  Weka5 from the  University  of  Waikato  was  employed.   Weka  allows  to 
preprocess, select features, classify or cluster data, creating predictive models by means 
of  different  machine learning  techniques.  The idea was  to  compare  different  of  these 
techniques,  in  order  to  find  the  most  appropriate  for  a  specific  task,  or  even  finding 
patterns of performance throughout the experiments. 

Two different feature evaluators were used, giving a number between 0 and 1, with 1 being 
the highest ranking possible and 0 the lowest (both use the Ranker search method, which 
ranks attributes by their individual evaluations): 

• InfoGain, which evaluates the worth of an attribute by measuring the information 
gain with respect to the class.  

• GainRatio, which evaluates the worth of an attribute by measuring the gain ratio 
with respect to the class.

Three different machine learning methods were selected for the experiments:

• Decision  trees:  According  to  the  attributes  values for  the  dataset,  this  classifier 
develops  a  decision  tree,  where  the  nodes  denote  the  different  attributes,  the 
branches between nodes represent  the values that  the attributes have,  and the 
terminal node (or leaf) gives a final classification decision value (see Fig. 3).  

Fig. 3 Example of a decision tree, showing nodes (attributes), branches (values) and leaves (decision)6

For the experiments, the J48 decision tree was chosen (confidence factor 0.25 and 
2 minimum instances per leaf).

5 Software and documentation are available for downloading in http://www.cs.waikato.ac.nz/ml/weka/ 
6 Taken from http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture11.html (last visited August 2011)

http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture11.html
http://www.cs.waikato.ac.nz/ml/weka/


• K-Nearest Neighbor:  It  is  a lazy learning method (i.e.  generalization beyond the 
training data is delayed until a query is received), it consists of classifying objects 
according  to  proximity  in  a  feature  space.  Thus,  an  instance is  classified  by a 
majority vote of its neighbors.  

Fig. 4  Example of a 3-NN classifier, where a decision is taken based on the three nearest neighbors7. 

For  this  project,  1-NN  was  implemented,  (IB1  in  Weka),  where  an  instance  is 
assigned the class of its nearest neighbor in the feature space. It employs a simple 
distance measure  to  find  the  training  instance closest  to  a  given test  instance, 
predicting the same class as this training instance. 

• Support  Vector  Machines:  A linear  binary classifier,  it  builds  a  model  based on 
training examples by assigning points into a high-dimensional space, assigning new 
examples into one category or another. Each category is mapped in a way that is as 
separate as possible from the other one. 

Fig. 5  Example of a support vector machine classifier, showing the mapped categories, the margin between 
them and possible misclassified instances8.

In  Weka,  the  SMO (Sequential  Minimal  Optimization)  algorithm was  used,  this 
implementation normalizes all  attributes by default,  replacing missing values and 
transforming nominal attributes into binary ones. 

7 Taken from http://cgm.cs.mcgill.ca/~soss/cs644/projects/perrier/ (last visited August 2011)
8 Taken from http://www.gunnet.org/svm/ (last visited August 2011)

http://www.gunnet.org/svm/
http://cgm.cs.mcgill.ca/~soss/cs644/projects/perrier/


3.4 Additional implementations

In some experiments, additional features were implemented, such as:

• Employing different random seeds in the classifier evaluation options.  The seed is 
the  number  used  to  initialize  the  random number  generator.   By  using  several  
random seeds and averaging the results obtained for a specific classifier, several 
data partitions are done for one specific evaluator and we get a more accurate idea 
of the performance of the model. 

• Applying  paired  two-sample  t-test  to  verify  the  statistical  significance  of  the 
descriptors selected in one of the experiments. The t-test is an important statistical 
tool that applies to two  sets of samples subjected to comparison with matched 
pairs of attributes.  Usually, a null hypothesis is stated in which the means of both 
groups are equal.  For testing it, a p-value is employed, which is the probability of  
having a test statistic as extreme as the one obtained, if the null hypothesis is true. 
A low p-value for the statistical test helps to reject the null hypothesis.  Apart from 
the feature selection that Weka is performing, this additional test was implemented 
by transforming the ARFF file into the CSV format. Then, using Systat9 statistical 
analysis  software,  the t-test  was performed and a reduced group of  descriptors 
according to the p-value threshold was selected.

• Obtaining box plots for some relevant descriptors.  This is a graph commonly used 
for showing a set of relevant statistical information: smallest and greatest values, 
lower and upper quartiles, and median. It also provides an easy visual evaluation 
for the detection of outliers. In that way, we can easily spot the main differences 
between datasets for specific features.  This task was implemented in Systat as 
well. 

3.5 Test and Evaluation

 Mainly, two different classifier test options were used:
• Cross-Validation:  The  classifier  performs  k-fold  cross-validation,  (k  being  the 

number  of  subsamples)  where  through a  subsequent  series  of  partitions  of  the 
datasets,  several  training/testing  operations  are  performed  and  their  outcomes 
quantified.  For  instance,  in  a  10-fold  cross-validation  the  original  sample  is 
partitioned into  10  sub-samples  and one of  them is  used for  testing,  while  the 
remaining 9 are used for training.  This procedure is repeated 10 times and the 
outcomes averaged, assuring that every sub-sample is used once for testing and 9 
times for training.  

• Percentage  split:  The  classifier  is  evaluated  according  to  performance  in  a 
percentage of the data which is held out for testing. For instance, a percentage split 
of 66% means that 2/3 of the instances would be used for building the model, while 
the remaining 1/3 of the instances would be used for testing. 

For the evaluation, we will focus on the effectiveness of the system (Serrà, 2007), that is,  
performance based on the accomplishment of the objectives.  This will be specifically done 
by measuring the following Weka outputs:

• Percentage of correctly classified instances.  

9 http://www.systat.com/   Software and documentation (last visited in July 2011)

http://www.systat.com/


• The  recall of  the  system,  that  is,  the  proportion  of  relevant  material  actually 
retrieved in answer to a search request. In this binary task, it corresponds as well to 
the  positive  predictive  value.  It  can  be  weighted  for  all  classes  or  calculated 
individually for each class.  It can be defined as:

recall= relevant instances ∩ retrieved instances
 relevant instances                             (3.1)

Or in other terms:

recall= true positives
true positives false negatives                                 (3.2)

• The  precision of  the  model,  that  is,  the  proportion  of  retrieved  material  that  is 
actually relevant. In this binary task, it corresponds as well to the sensitivity of the 
system. It can be weighted for all classes or calculated individually for each class. It 
can be defined as:

precision=relevant instances ∩retrieved instances 
retrieved instances                         (3.3)

Or in other terms:

precision= true positives
true positives  false positives                              (3.4)

• Precision and recall can also be condensed in the f-measure, which is the evenly 
weighted harmonic mean of precision and recall. It can be calculated as:

f measure= 2× recall × precision 
 recall  precision                                   (3.5)



4  Experiments and results
 A series of experiments were sequentially designed in order to gather information about 
the specific descriptors that could help accomplish the tasks proposed (each experiment is  
named after  one representative  music  piece from the  collections  used),  by employing 
custom-built datasets classified according to instrumentation features. Two classes will be 
created then for each experiment, one for samples featuring the mellotron and one for 
samples not featuring the mellotron.  The number of instances for each class will be the  
same in every experiment. First, an initial experiment about comparing specific pieces of  
music is presented, which is intended to be a guideline for the following experiments by 
making  a  direct  timbral  comparison  between  the  mellotron  and  several  instrument 
combination for  equivalent  musical  phrases.  Then,  a  series of  experiments  comparing 
three  specific  instruments  settings  (strings,  flute,  choir)  is  conducted,  all  of  them  for 
polyphonic music pieces. The final experiments, dealing with the totality of the collections 
and a larger number of instances, are intended to evaluate the findings from the previous 
experiments. 

4.1 Initial experiment. Nimrod10: Comparing classical music pieces with  
their versions for mellotron

4.1.1 Description
For this experiment, a special collection was built employing specific music for mellotron 
arranged by Mike Dickson from his album  mellotronworks11.  In these recordings, some 
classical  music  pieces  are  performed  exclusively  employing  mellotron  sounds,  by 
recording individual instrument scores on it and mixing them afterwards. The purpose of  
this initial  experiment was to compare directly classical  music pieces with versions for 
mellotron.  In this way, we are assuring that harmonic or melodic content are the same, so 
we  can focus directly on  the  timbral  differences.   This  pieces present  several  timbral  
combinations, belonging to different musical instruments from a typical Western orchestra. 
Furthermore, most of the mellotron versions employ the same original instrumentation of  
the orchestral pieces, so it is a direct comparison between the recording of the instrument  
and the main features the mellotron adds to the timbre when sampling those instruments.  
It is important to note that the mellotron collection, while having polyphonic sounds, all of  
them come  from the  mellotron,  that  is,  there  are  no  more  non-mellotron  instruments 
playing.  Thus with this experiment we are referring to the following questions:

• Is  it  possible  to  differentiate  the  classical  music  pieces  from  their  versions  for 
mellotron by means of low-level descriptors? 

• What are the most important descriptors that help discriminating instrument sounds 
and mellotron sounds in this collection?

4.1.2 Procedure
Some specificities in the procedure for this experiment:

10 One of the pieces in this collection is Nimrod, the variation IX (Adagio) of Edward Elgar's Enigma Variations. 
Elgar's musical enigma can be reminiscent of the mellotron timbral 'enigma' we are pursuing in this experiment.

11 http://www.mikedickson.org.uk/mellotronworks/index.html   Several other recordings featuring the mellotron are 
available for free-downloading in the website (last visited in july 2011).

http://www.mikedickson.org.uk/mellotronworks/index.html


• Selecting  and  segmenting  musical  phrases  (at  least  30  seconds  long)  in  each 
orchestral version. 

• Selecting and segmenting the same musical phrases for the mellotron version, even 
if the length in seconds was different (i.e., disregarding tempo variations). 

• Assuring similar melodic and harmonic content. This additional test was done by 
extracting the THPCP (Transposed Harmonic Pitch Class Profile), which is a tonal 
profile  invariant  to  transposition  (Gómez  and  Herrera,  2006)  and  then  finding 
correlation values between the orchestral and mellotron sets. 

• Finding  the  most  relevant  set  of  descriptors  according  to  the  Weka  attribute 
evaluators.

• Applying a t-test to that set of descriptors for finding its statistical relevance. 

• Testing the three different classifiers with a percentage split of 66%. 

• Due to the size of the collection, the evaluation will focus mainly on the percentage 
of  correctly classified instances,  for  the different  set  of  descriptors and different 
machine learning techniques selected. 

4.1.3 Results and discussion
When comparing the results given by the two Weka attribute evaluators selected (that is, 
GainRatio and InfoGain) only a list of 14 descriptors were ranked above 0.  The remainder 
of the attributes were ranked with a 0, which means not relevant.   Table 2 shows the 
results for the t-test appliedin this list of descriptors.

Table 2. t-test results for 14 descriptors selected.  Selected descriptors below the P-value 0.015 threshold 
are shown in red. 

The descriptors that were below the selected p-value threshold (0.015) are shown in red in 
table 2. These conform then a more concise group of descriptors, that are tested for the  
same machine learning techniques,  under  the same conditions.   For  each method 20 

Variable t p-Value

mfcc4 3,979 0,000

dissonance_var -2,525 0,020

dissonance_dvar -2,609 0,018

dissonance_dvar2 -2,660 0,016

spectral_skewness_mean -2,683 0,012

barkbands_skewness_max -2,574 0,019

spectral_flux_max -2,180 0,044

mfcc10 -1,955 0,062

dissonance_mean 2,794 0,010

barkbands_kurtosis_max -2,105 0,052

barkbands_kurtosis_dvar -1,582 0,136

spectral_crest_max -2,824 0,009

dissonance_dmean2 -3,489 0,002

barkbands_kurtosis_dvar2 -1,594 0,133



different random seeds were selected, and the results were averaged.  As mentioned in 
section  3.4,  the  idea  behind  selecting  different  random  seeds  is  assuring  statistical 
significance, i.e. it is not by chance that certain values are obtained. 

Fig. 6 Classification results for the first selected group of descriptors and a smaller set obtained after a t-test 
in the Nimrod experiment

From  fig.  6  we  can  see  how  the  overall  performance  either  improves  or  remains 
statistically similar when reducing the number of descriptors to this set.  In both scenarios, 
the IB1 classifier presents the highest percentage of correctly classified instances.  Now,  
we can take a look at some specific characteristics of the descriptors.  The 5 attributes that  
show statistical significance after the t-test are, in order of relevance:

• MFCC4
• Dissonance (second derivative mean).  
• Spectral Crest (maximum value)
• Dissonance (mean)
• Spectral Skewness (mean)
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Fig. 7 Example of box plots for the MFCC4 in the two-sample t-test performed for the mellotron/orchestral 
classes in the Nimrod experiment

 The MFFC4 corresponds to the fourth band of the mel-cepstrum coefficients.  In fig. 7 we 
can see how the mellotron sounds have a larger mean value for the MFCC4 with a wider 
distribution, while orchestral sounds are lower and more equally distributed. From the box 
plot in fig. 7, we see how the MFCC4 constitutes one of the most relevant descriptors for 
differentiate the mellotron versions from the original versions.  This indicates that there is 
indeed a feature in the polyphonic mixture of the mellotron sounds that allows us to group 
them according to the way they sound.   The  dissonance descriptors describe sensory 
dissonance (not musical theoretical dissonance), based on the roughness of the spectral 
peaks. According to the results, mellotron sounds are more dissonant.  Spectral crest and 
spectral skewness refer to the flatness and the asymmetry around the mean value of the 
spectrum, respectively. Both are apparently relevant in this experiment. 

 Despite being a rather difficult task (comparing a lot of timbral possibilities in orchestral  
music with the inner sound qualities that the mellotron provides) in a small dataset, we  
have found evidence for defining a set of descriptors relevant for discriminating sounds 
from  acoustic  instruments  and  sounds  coming  from  the  mellotron.  In  general,  these 
attributes correspond to specific spectral features that give us a model for discriminating 
the mellotron sound from a complex combination of instruments. This set of 5 descriptors 
selected will be used again for testing in the following experiments in order to prove the 
actual effectiveness in defining the mellotron timbre.  

4.2 Specific instrument experiments: flutes, strings, choir

4.2.1 Description 
 The  mellotron,  as  mentioned  earlier  in  this  document,  usually  samples  well-known 
Western instruments or ensembles. It  is the intention of the next three experiments to 
compare and discriminate between sound from real instruments and sounds coming from 
the same instruments in their mellotron version. Collections belonging to three specific 
settings are used, involving the specific timbral characteristics of three musical instruments 
(or set of  instruments):  flute,  strings and choir.  Now, we intend to evaluate the overall 



performance of the classifiers when dealing when different amount of relevant attributes, 
i.e. checking whether it is better in some specific cases to have more descriptors, or on the 
contrary if reducing the amount of descriptors will not affect significantly the performance 
and will lead to a more detailed and accurate characterization of the mellotron.  Also, the 5  
descriptors selected from the initial experiment will  be tested, by adding them to the 5 
highest ranked descriptor according to Weka, for every experiment.  In that way, we can 
check if indeed the addition of this descriptors improves the performance of the classifiers,  
or if on the contrary they are not relevant for this classification task.  Also, it is intended 
trying  to  avoid  having  too  many  descriptors,  because  that  would  reduce  the  specific 
description of the uniqueness of the mellotron timbre. Having too many parameters also 
increases  the  possibility  of  classifying  according  to  random  features,  event  which  is 
commonly known as overfitting.  

4.2.2 Procedure
1. Comparing different set of descriptors according to the Weka attribute evaluators. 

Weka has an Attribute Selected Classifier, which is an arbitrary classifier on data 
that has been reduced through attribute selection.  With the Ranker Search method, 
it is possible to select a specific number of descriptors that correspond to the 
highest ranked by the feature evaluators. The amounts chosen for every set will be 
as follows: 50, 40, 30, 20, 10,  5 and finally those same 5 highest-ranked 
descriptors plus the 5 descriptors chosen from the first experiment.  

2. Testing the classifiers (J48, IB1, SMO) employing 10-Fold Cross-Validation.
3. Utilizing different random seeds for creating several data partitions and averaging 

the evaluation results. 
4. The evaluation will include this time -besides the percentage of correctly classified 

instances the  class  f-measures for  the  different  set  of  descriptors  and different 
machine  learning  techniques  selected.   As  the  classifiers  deal  with  a  binary 
decision, the f-measure would be sufficient for comprising both precision and recall 
measures for each class. 

5. Selecting a group of relevant descriptors according to the following criteria:
1. Highest-ranked descriptors according those selected by the attribute evaluators.
2. Highest averaged performance for the three machine learning methods.

In regard to the following three experiments, some general questions can be asked, that 
will define the goals for each individual experiment:

• Is it  possible to differentiate the original  instruments from the mellotron-sampled 
ones in a polyphonic context by means of low-level descriptors? 

• Furthermore, do the mellotron sounds have some specific features that allow it to 
be  detected,  disregarding  the  amount  and  variety  of  other  acoustic,  electro-
mechanic or electronic instruments that are mixed in the recordings? 

• What are the most relevant set of descriptors for each task?
• Does  the  set  of  descriptors  obtained  in  the  initial  experiment  improve  the 

classification performance of the models for this collections?



4.2.3 Julia Dream12: Comparing flute and mellotron flute samples in 
polyphonic music

Experiment details
Number of instances: 140
Total number of attributes: 838

Fig. 8 Percentage of correctly classified instances for different sets of descriptors and three machine learning 
techniques in the Julia Dream experiment (flutes). 

From fig. 8 it can be observed how the SMO classifier presents the highest classification 
values, above the other two methods, and how its performance increases when employing 
less attributes. It  can be stated that the individual performance of the classifiers when 
selecting between 50 and 30 attributes does not present considerable changes. The less 
attributes used, the better performance J48 and SMO show, while for IB1  is the opposite: 
less attributes means less percentage of correctly classified instances. For IB1 and SMO 
the  addition  of  the  5  general  descriptors  proves  to  be  useful,  helping  improve  the 
classification performance, especially in the IB1 case, where it improves around 5%. For  
the decision tree, adding these 5 descriptors actually decreases its performance, but only 
around 2%. However, this results belong to the overall weighted performance. It is also of  
interest to see individual performances for each class, that is, mellotron and non-mellotron.

12 Julia Dream (1968) by Pink Floyd -along with Strawberry Fields Forever by The Beatles- is perhaps one of the 
earliest examples of prominent use of the mellotron flute in a recording, adding an eerie pastoral effect to the song.
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Fig. 9 F-measure values for the Mellotron and Non-mellotron classes, with different sets of descriptors and 
machine learning techniques in the Julia Dream experiment (flutes).

In general terms, fig. 9 shows how the f-measure for the Mellotron class has higher values 
than the  Non-mellotron class, disregarding the method or set of descriptors used.  This 
means that non-mellotron samples are are more likely to be classified as mellotron (false-
positives)  than  the  opposite,  mellotron  samples  classified  as  non-mellotron  (false-
negatives). The highest overall class performance was for the mellotron with the support 
vector machine SMO.  Indeed, the additional 5 descriptors from the Nimrod experiment in 
section 4.1 are helping to improve the f-measure in IB1 for the non-mellotron class, that is,  
the  amount  of  false-positives  (real  strings)  that  are  being  classified  as  featuring  the 
mellotron. 

We have gathered evidence for saying that when using the 5 highest-ranked descriptors a 
rather good performance is obtained.  These descriptors are:

• Spectral Crest (derivative variance)
• Dissonance (derivative variance)
• Spectral Crest (second derivative variance)
• Spectral Energy Band Middle-High (maximum value)
• Dissonance (second derivative variance)

These findings are interesting in the way that most of the descriptors are related to the set 
found  in  the  initial  experiment.  Dissonance,  again,  seems  to  be  very  important  for 
discriminating the sound of the mellotron, as well as Spectral Crest, for different statistical 
measures.  This means that both  the roughness of the spectral peaks and the spectrum 
flatness are relevant features in these datasets.  The Spectral Energy Band Middle-High 
refers to specific differences in the energy of the spectrum calculated for the Middle-High 
band between the two classes. 

50 attributes
40 attributes

30 attributes
20 attributes

10 attributes
5 attributes

5 attributes + 5 general

0,550

0,600

0,650

0,700

0,750

0,800

0,850

J48 Mellotron
J48 Non-mellotron
IB1 Mellotron
IB1 Non-mellotron
SMO Mellotron
SMO Non-
mellotron



4.2.4 Watcher of the Skies13: Comparing strings and mellotron strings 
samples in polyphonic music

Experiment details
Number of instances: 100
Total number of attributes: 838

Fig. 10  Percentage of correctly classified instances for different sets of descriptors and three machine 
learning techniques in the Watcher of the Skies experiment (strings). 

The first remarkable general result is the high performance obtained for the classifiers in 
this experiments, even for the smaller set of descriptors it does not pass below the 75% 
mark.  There  is  a  rather  steady  trend  for  the  classification  performance  in  the  three 
methods when reducing progressively the amount of weka-selected attributes. Generally, 
between 50 and 20 automatically selected descriptors, the performance remains the same, 
with the support vector machine SMO getting the highest performance (slightly above the 
90% mark), and the decision tree J48 and kNN IB1 having similar results (slightly above 
the  85%  mark).  For  10  and  5  descriptors,  the  performance  in  the  three  methods 
decreases, showing that for this specific task of discriminating mellotron strings from real 
strings, more descriptors are needed. Although clearly the 5 general attributes from the 
first experiment improve the classification performance for the 3 methods (even increasing 
around  5%  the  decision  tree  performance),  they  are  still  below  the  rather  steady 
performance from the 50 to the 20 descriptors mark. 

13 Watcher of the Skies (1972) by prog-rock band Genesis is one of the seminal pieces in the use of the mellotron by 
developing an extended 'solo' strings section in the beginning.
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Fig. 11  F-measure values for the Mellotron and Non-mellotron classes, with different sets of descriptors and 
machine learning techniques in the Watcher of the Skies experiment (strings).

In Fig. 11 it can be observed that the difference within classes is not too relevant.  Both 
classes remain with statistically close values no matter the amount of attributes, or the 
machine learning technique selected. We can see that recognition of mellotron is slightly 
higher in general terms, but the amount of false-positives and false-negatives seems to be 
around a similar value. Despite the significant increase in the performance when adding 
the 5 descriptors from the first experiment, the highest general performance for the three 
methods still requires more descriptors. So in order to choose a relevant list of descriptors, 
we  refer  to  the  set  of  20  descriptors.   By comparing  relative  ranks between different  
evaluator methods (GainRatio and InfoGain), the list obtained is:

• Spectral Kurtosis (minimum value)
• Bark Band 24 (maximum value)
• Pitch (derivative variance)
• Pitch (second derivative variance)
• Pitch Instantaneous Confidence (minimum value)
• Bark Bands Spread (maximum value)
• Bark Band 23 (maximum value)
• Bark Band 25 (maximum value)
• Spectral Roll-off (maximum value)
• Spectral Contrast 1 (variance)
• Spectral Contrast 7 (variance)
• Spectral Contrast 8 (variance)
• Spectral Flux (maximum value)

Now we find a set of descriptors that did not show up in the previous experiments as being  
relevant for the classification tasks.   Bark Bands, for instance,  computes the spectrum 
energy contained in a given number of bands, which correspond to an extrapolation of the  
Bark band scale, a scale based on psychoacoustics models corresponding to the critical  
bands of hearing (Zwicker  and Fastl,  1990).   Here, a clear maximum value for higher 
bands is a pattern that emerges for the mellotron class. Similarly, the Bark Bands Spread 
is a general measure for the statistical dispersion for all Bark bands. The Spectral Kurtosis 
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seems also to be relevant, hinting that the mellotron string sounds have a more peaked 
spectrum, while real strings present a flatter spectrum.  Spectral  Contrast  is an octave-
based descriptor  that  relates to the timbre of  an audio signal  and it  has been proven 
relevant  for  music  genre  classification  tasks  (Akkermans,  Serrà  and  Herrera,  2009). 
Spectral Flux (how quickly the power spectrum is changing) also appears on the list. It is 
important to mention that as the main purpose of this experiment is to compare real strings 
sections with mellotron-sampled ones, the majority of samples from the acoustic collection 
belongs to  the  Classical  genre,  while the mellotron collection as mentioned previously 
belongs in its totality to the Rock/Pop or Electronic genres. The set of descriptors found, 
(such as  Spectral Contrast) plus the fact that a higher average performance than in the 
previous experiments was achieved,  gives us indications about  the model  recognizing 
generic  genre  differences  rather  than  specific  instrumentation.  This  will  be  tested  in 
subsequent experiments.

4.2.5 Exit Music14: Comparing choir and mellotron choir samples in 
polyphonic music 

Experiment details
Number of instances: 134
Total number of attributes: 838

Fig. 12 Percentage of correctly classified instances for different sets of descriptors and three machine 
learning techniques in the Exit Music experiment (choir). 

SMO shows again the averaged highest performance for the different sets of descriptors. 
For the KNN technique, the highest performance happens around the 20 attributes mark, 
decreasing progressively for lower or higher number of attributes. The J48 and SMO show 
similar behavior, decreasing when reducing the number of descriptors and improving when 
adding the 5 general descriptors from the first experiment.  This is remarkable especially 
for the decision tree model, unexpectedly increasing more than 10% when adding those 5 
general descriptors.  This is a relevant result, that shows how these five descriptors define 
some important conjunctions of features that improve the classification performance, and 
14 Exit Music (For a Film) by Radiohead (1997) is a more recent example of the usage of mellotron choir, by 

developing a dynamic chord-sequence in its middle-section. 
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that by using exclusively the Weka attribute evaluators are not shown as relevant.  

Fig. 13  F-measure values for the Mellotron and Non-mellotron classes, with different sets of descriptors and 
machine learning techniques in the Exit Music experiment (choir).

There are not too many differences between the individual class performance for the three 
methods employed, according to fig. 13. One remarkable difference appears when using 
SMO and reducing the amount of descriptors, which affects specifically the non-mellotron 
class, especially around the 10 to 5 descriptors mark. This means that in the 20-attributes 
set there are relevant descriptors for helping classify real choir sounds as true-negatives. 
Thus,  from  this  20-attributes  set  a  smaller  list  of  descriptors  is  selected,  again  by 
comparing  individual  ranks with  two  different  attribute  evaluators.  The following  is  the 
selected list of relevant descriptors for this experiment:

• Bark Band 9 (variance)
• Bark Band 9 (second derivative variance)
• Spectral Crest (derivative variance)
• Bark Band 9 (derivative variance)
• Bark Band 9 (second derivative mean)
• Bark Band 9 (derivative mean)
• Bark Band 8 (maximum value)
• Spectral Crest (second derivative mean)
• Spectral Crest (second derivative variance)
• Bark Band 9 (mean)

We get mainly two group of descriptors:  Bark band, -specially the ninth band appears 
prominently for several statistic values-, and Spectral Crest, which appears once again as 
being significant.  
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4.2.6 Results and discussion

We have found a list of descriptors for every experiment that could be the most relevant in  
trying to discriminate between the real instrument and the mellotron-sampled sound.  

Mean D-Mean Var D-Var 2D-Var Min Max
Dissonance X X X X

Bark bands Spread X

Bark bands 8 X

Bark bands 9 X X X X X

Bark bands 23, 24, 25 X

Spectral Crest X X X X

Spectral Contrast 1, 7, 8 X

Spectral Kurtosis X

Spectral Roll-off X

Spectral Skewness X

Pitch Instantaneous Confidence X

Spectral EnergyBand Middle-High X

Pitch  X X

Spectral Flux X

MFCC 4 X
Table 3 Selected group of descriptors from the the first four experiments according to their statistical values.

From Table 3 several groups of descriptors can be analyzed, where D means derivative, 
Var means variance, 2D means second derivative, Min means minimum value and Max 
means  maximum  value.   There  are  several  descriptors  with  more  than  one  relevant 
statistical  measure, such as Dissonance, Bark bands 9, Spectral  Crest.  The statistical 
measure that appears the most is the maximum value, specially for attributes related to the 
description  of  several  high  frequency bands as  in  Bark  bands 23,  24,  25  or  Spectral  
Energy computed for the Middle-High Band.  Timbral descriptors related to genre (MFCC 
4, Spectral Contrast 1, 7, 8) are present as well. However, it is important to ask again how 
many of these descriptors might be helping to discriminate specific genre features, instead 
of  the  individual  mellotron  characteristics.  In  the  next  section,  experiments  employing 
different  databases,  including a rock/pop and electronic  collection,  intend to  find more 
information on this specific question.

4.3 Final Experiments: combining databases 
Now,  we  intend  to  test  the  performance  and  reliability  of  the  findings  from  previous 
experiments by taking the specific set of descriptors from the previous experiments (Table 
3) to check whether if  combining them would lead to a general characterization of the 
mellotron sound, no matter the kind of instrument sampled. Thus, the first experiment will 
mix all databases with sounds coming from the mellotron, with  However, we also must  
find out whether this set of descriptors are discriminating the presence of the mellotron or if  
they are a set of features that focus more on general genre-differences. For that, a general  
rock/pop and electronic collection will be used in another experiment. 



• Comparing two different set of descriptors, in the following way:

◦ One set (from now on it will be referred to as Set 1) will use Weka features 
evaluators (InfoGain and GainRatio) by using the Attribute Selected Classifier. 
With the Ranker Search method, selecting groups of 30, 20, 10 and 5 
descriptors out of the general 838 attributes. 

◦ The other set will exclusively use the group of 30 descriptors obtained in the 
previous experiments (see Table 3), selecting groups of 30, 20, 10 and 5 
highest-ranked for this task (from now on this set will be referred to as Set 2).  

• Testing the classifiers (J48, IB1, SMO) employing 10-Fold Cross-Validation.

• Utilizing different random seeds for creating several data partitions and averaging 
the evaluation results. 

• The  evaluation  will  comprise:  percentage  of  correctly  classified  instances  and 
individual class f-measures. 

Some questions that we are pursuing with these final experiments:

• Is it possible to detect and classify mellotron sounds that sample different musical 
instruments, in this case, strings, flute and choir?

• Are there any features in the mechanism of the instrument that make it possible to 
find a group of low-level descriptors that help discriminate the mellotron from the 
instruments it samples or from any other instrumental mixture?

4.3.1 Kashmir15: combining strings, flute and choir samples.

Experiments details
Instances: 374
Total number of attributes: 838
As we are combining the datasets from the three previous experiments, the task in this  
experiment  increases:  trying to distinguish all  grouped mellotron sounds (flute,  strings, 
choir)  from  the  combination  of  real  instruments.   However,  it  is  the  intention  of  this 
experiment to include information related to the previous experiments, in the form of the 
selected  descriptors  for  each  case  and  compare  it  with  the  newly  evaluated  list  of 
attributes.

15 Led Zeppelin's Kashmir (1975) combines both a real strings section with mellotron strings accompaniment for 
creating a background contrast between different passages of the song. 



Fig. 14 Classifiers performance for two different set of descriptors and different amount of selected 
descriptors in the Kashmir experiment.

Fig. 14 shows the performance for the three classifiers with Set 1 of descriptors (which can 
be identified in the graph with the blue tones) and Set 2 of descriptors (which can be 
identified in the graph with the orange/red tones).  We see that despite the fact that the Set 
2 of descriptors (obtained from previous experiments)  outperforms generally the Set 1 of  
descriptors  (selected  automatically  by  Weka),  the  best  results  still  require  the  whole 
amount of descriptors.  However, results for Set 2 show how the previous experiments 
hinted correctly at describing the main features of the mellotron.  For higher performances 
several  descriptors  are  needed though.  The less  descriptors  are  used,  the  worse the 
performance is.  It can be concluded that as three different main timbral groups are used 
here (strings, choir, flute for both real instruments and mellotron-sampled) the classifier 
requires more descriptors that could describe the several amount of timbres found.  

30 descriptors 20 descriptors 10 descriptors 5 descriptors
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

J48
Mellotron 0,656 0,685 0,690 0,656 0,596 0,726 0,558 0,721
Non-
mellotron 0,654 0,698 0,560 0,693 0,582 0,596 0,552 0,506

IB1
Mellotron 0,690 0,739 0,667 0,716 0,594 0,687 0,598 0,627
Non-
mellotron 0,686 0,753 0,675 0,728 0,600 0,682 0,579 0,624

SMO
Mellotron 0,717 0,789 0,719 0,722 0,680 0,706 0,650 0,715
Non-
mellotron 0,674 0,774 0,636 0,688 0,556 0,627 0,515 0,637

Table 4  f-measure for 2 different classes, two different sets of descriptors, three classification techniques, 
and different amount of descriptors in the Kashmir experiment.

The highest-scoring f-measures for the same amount of descriptors are shown in bold in 
Table 4. Looking at the individual classes performance is also helpful for analyzing what at 
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first glance seems to be 'good' resulsts. For instance, we see in table 4 how when using 5 
descriptors and the J48 classifier, the mellotron class presents an f-measure of 0,721 (the 
highest of all classifiers for that amount of descriptors), but the non-mellotron class in the 
same category has an f-measure of 0,506, which corresponds basically to chance values.  
As the decision is binary, what this classifier is doing is assigning most of the instances to  
the mellotron class, which increases the amount of false-negatives in the non-mellotron 
class. Thus, it is not a reliable result. 

4.3.2 Space Oddity16: comparing mellotron sounds with rock/pop and 
electronic music samples.

Experiment details
Instances: 600
Total number of attributes: 838

The general  rock/pop and  electronic music collection is used, 300 samples with music 
from different decades and several sub-genres, against 300 samples containing mellotron 
sounds for all three instruments. As a new and non-used before dataset is used, there will  
be  a  new  list  of  weka-selected  descriptors  for  this  task.   But  as  with  the  previous  
experiment  Kashmir,  the  former set of selected descriptors will  be included as well,  in 
order to compare the performances, and check if they are relevant for the classification 
tasks.  

Fig. 15 Classifiers performance for two different set of descriptors and different amount of selected 
descriptors in the Space Oddity experiment.

In this task, performance for different sets of descriptors, methods and amount of attributes 
is always higher than 70%.  However,  the performance of the Set 2 of  descriptors (in  
orange/red tones in Fig. 15) remains almost always below the performance for Set 1 (in 

16 Space Oddity (1969) by David Bowie evokes the interstellar trip of the astronaut Major Tom with the 'ethereal' 
sounds of a mellotron.
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blue tones in Fig. 15).  In this case, the weka-selected group of descriptors proves to be 
better than the automatically selected descriptors by Weka. The SMO classifier has the 
best  classification  performance results.   Reducing the amount  of  descriptors generally 
affects negatively the classifiers performance, but the reduction is not drastic.

30 descriptors 20 descriptors 10 descriptors 5 descriptors
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

J48
Mellotron 0,793 0,745 0,806 0,752 0,810 0,728 0,779 0,728
Non-
mellotron 0,799 0,744 0,793 0,752 0,793 0,765 0,770 0,772

IB1
Mellotron 0,795 0,747 0,780 0,767 0,776 0,717 0,756 0,711
Non-
mellotron 0,792 0,738 0,774 0,759 0,765 0,722 0,750 0,711

SMO
Mellotron 0,839 0,801 0,841 0,798 0,840 0,773 0,826 0,773
Non-
mellotron 0,837 0,814 0,837 0,814 0,833 0,796 0,812 0,792

Table 5  f-measure for 2 different classes, two different sets of descriptors, three classification techniques, 
and different amount of descriptors in the Space Oddity experiment.

The  difference  between  classes  as  seen  in  Table  4,  is  not  important,  both  remain 
statistically closed for every single category, with the best performance belonging to the 
SMO classifier for both sets of descriptors.

4.3.3 Epitaph17: comparing mellotron samples with specific instruments 
and generic rock/pop and electronic music samples

Experiment details
Instances: 600
Total number of attributes: 838

For this final experiment, the same mellotron class from the previous experimente will be 
used  (300  instances  featuring  strings,  flute  and  choir  mellotron).  Databases  from the 
previous two experiments will  be combined for the non-mellotron class in the following 
way:

• 50% (150 instances out of 300) correspond to samples randomly taken from the 
strings, flute and choir instrument collections.

• 50% (150 instances out of 300) correspond to samples randomly taken from the 
generic rock/pop and electronic music collections.

In that way, we are creating a 'hybrid' from the two previous experiments, increasing the 
complexity of the training task. 

17 King Crimson's Epitaph (1969) is also one of the most representative mellotron pieces in the progressive rock 
canon, employing sustained strings chords in this slow-building piece. 



Fig. 16 Classifiers performance for two different set of descriptors and different amount of selected 
descriptors in the Epitaph experiment.

When combining this databases half and half, the general classifying performance of the 
models tested decreases.  It can be seen in fig. 16, how the best performance belongs to  
the Weka selected classifiers.  Set 2 of descriptors does not prove to be very practical at 
this task, especially when reducing the amount of attributes.  

30 descriptors 20 descriptors 10 descriptors 5 descriptors
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

J48
Mellotron 0,712 0,651 0,728 0,643 0,737 0,684 0,730 0,624
Non-
mellotron 0,691 0,662 0,693 0,625 0,683 0,585 0,652 0,556

IB1
Mellotron 0,684 0,687 0,665 0,667 0,681 0,642 0,640 0,563
Non-
mellotron 0,672 0,690 0,652 0,668 0,675 0,634 0,645 0,571

SMO
Mellotron 0,747 0,681 0,753 0,677 0,754 0,664 0,743 0,662
Non-
mellotron 0,704 0,628 0,703 0,638 0,696 0,622 0,668 0,549

Table 6  f-measure for 2 different classes, two different sets of descriptors, three classification techniques, 
and different amount of descriptors in the Epitaph experiment.

Again, SMO proves to be the best classifier for Set 1.  For set 2 however, other techniques  
outperform it depending on the number of descriptors employed. But the less descriptors 
used, the less accurate the model is. Table 6 shows for example how for some f-measure 
values,  performance  when  reducing  the  number  of  attributes  in  Set  2  is  not  far  from 
chance.  

4.3.4 Discussion
The results in this last series of experiments show the difficulty in modeling the sound of a 
specific instrument in a polyphonic mixture.  On one hand, it requires a large number of 
descriptors for relatively high performances. On the other hand, performance decreases 
when changing some characteristics of the databases.  Not all the questions asked were 
answered.  It remains hard to tell whether high performance results are due to accurate 
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descriptions on the actual instrument or to generic differences between styles of music. It  
can be stated however, that there is evidence supporting the idea of the mellotron adding 
specific features in the sound -disregarding the instrument being sampled- that can be 
found and described in its spectrum.  



5  Conclusions
5.1 On the project
This  is  to  the  best  of  our  knowledge,  the  only  research of  its  kind  conducted on the 
mellotron,  an  instrument  that  although  not  so  common in  the  Western  popular  music 
canon, presents interesting technical and perceptual  qualities, which make it ideal for the 
study of timbre descriptors in the context of automatic classification in polyphonic audio. 

Despite  the  difficulty  involved  when  trying  to  extract  features  belonging  to  a  single 
instrument from polyphonic audio -and in this particular case, one instrument featuring 
'several instruments'-  there is some evidence that the methodology used proves to be 
effective for solving the task. However, due to the huge variety of spectral and temporal 
features that can be found in a polyphonic mixture (belonging to any kind of instrument  
from  any  style  or  genre),  probably  this  methodology  by  itself  won't  be  sufficient  for 
achieving  higher  classification  performances  or  for  attempting  to  employ  it  in  more 
complex tasks such as genre or geographical classification.

Even though the models did not achieve a very high classification performance, the results 
obtained were relevant  for  the tasks proposed,  with  values far  above chance in  most 
cases, which indicates some statistical significance for assuring that the models tested are 
indeed  recognizing  the  presence  of  the  mellotron  in  a  polyphonic  context,  and 
discriminating it from the instruments it samples or other timbral mixtures. Although it was  
attempted trying to obtain a reduced set of descriptors that could be used for discriminate  
the sound of the mellotron, the complexity of the task showed the necessity of having 
larger sets in several experiments.

It  is  important  to  note  how some  mellotron  features,  such  as  the  slight  variations  in 
frequency due to irregular tape motion, could be indeed distinctive of this instrument, but  
they are not always present in the recordings.  This means that depending on variables 
such as recording and production characteristics, model of mellotron or even date of the 
recording, some sound characteristics of the instrument could notably change, or even 
could not be featured in the audio samples.  The descriptors obtained by the different  
models that could help differentiate and classify the mellotron, are somehow coherent with 
the physical properties of the instrument. Indeed one could hypothesize that features such 
as  irregularities  in  the  tape  motion  mechanism  could  be  related  to  the  dissonance 
descriptor, or the tape hiss could be reflected on attributes such as the spectral crest.

5.2 On the methodology

 The methodology used has a series of advantages worth mentioning.  First, it is applied to 
music in real scenarios, that is, polyphonic signals which take into account a diversity of 
sound  sources  creating  a  multi-timbral  mixture,  instead  of  the  monophonic  approach 
where instruments are specifically isolated. It can be extrapolated to several categories, 
including solo instruments or several combination of instruments, that could help to classify 
the data according to predefined taxonomies. Some of the approaches used previously to 
approach  this  problem,  imply  building  a  model  that  sometimes  fits  only  one  specific 
instrument.  As we are dealing with polyphonic music, this approach can be extended and 
be applied to any kind of instruments coming from any musical culture in the world, thus 



being pertinent  for  current  multicultural  approaches in  MIR. No previous processing is 
needed, which drastically reduces the computational time when comparing it to the time 
needed in  other different methods. Many of other techniques which deal with this task, 
such as source separation, are still in an incipient stage (Fuhrmann, Haro and Herrera, 
2009), so it constitutes a rather simple and cost/benefit appropriated methodology. It can 
be robust against unknown categorizations, i.e. instruments or sounds that have not been 
identified previously.  Once a model for a specific instrument is established, it does not 
require any information beforehand from the audio file, i.e. the computation can be applied 
to raw data without any kind of high-level tags associated to it. 
 
It is pertinent also to remark the importance of the groundtruth collections: basically, the 
success of the implemented models depends not only in the quantity, but in the quality of  
the samples used to train the classifiers.  This goes to show the importance of treating 
music as a physical and perceptual phenomenon and not only as data. The project also 
shows the importance of not using software tools (such as the Weka machine learning 
classifiers) merely as black boxes, where the main goal is defined by obtaining an 'output' 
just  for  the sake of  it,  without  knowing the inner  underlying processes in  the different 
stages of the methodology.    

5.3 Future work

There are several possibilities for achieving a more refined methodology in order to get 
more detailed descriptors that could lead to higher classifiers performance. Some of the 
collections  were  not  as  large  as  for  becoming  totally  representative  of  the  mellotron 
detection and classification task. Getting access to the recordings is not simple, it requires 
time and careful listening process due to the specific characteristics of the mellotron that 
make it hard to be perceived. Maybe with further exhaustive search the collections could 
be increased, and the models found in this project tested again. 

The descriptors found to be relevant when describing the sound of the mellotron could 
eventually be attributed or caused by the magnetic tape mechanism. In order to find out 
about this, further research must be carried out.  For instance, creating a collection with 
samples of music directly transferred from magnetic tapes,  and testing to see if a similar 
group of descriptors is obtained. 

One further step would be also to implement a mellotron detector in a genre-classifier. This  
could  be  tested,  with  and  without  the  mellotron  detector  in  order  to  determine  if  the 
genre/sub-genre  performance  actually  increases  when  including  timbre  information 
corresponding to the specific instrument.  

It is possible to apply this methodology for the detection and classification of any musical 
instrument  in  polyphonic  music.  Considering  the  current  interest  in  multicultural 
approaches18it would be of great interest to apply this methodology for musical instruments 
coming from any geographic region and any musical cultural in the world.

18 See for instance the CompMusic project http://compmusic.upf.edu 
Music Technology Group - Universitat Pompeu Fabra.

http://compmusic.upf.edu/
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