
PIPELINED ARCHITECTURE FOR INVERSE

DISCRETE COSINE TRANSFORM

Jari Nikara1, Jarmo Takala1, David Akopian2, Jukka Saarinen1, and Jaakko Astola1

1Dept. of Information Technology, Tampere University of Technology,
P.O.Box 553, 33101 Tampere, FINLAND

2Nokia Mobile Phones, P.O.Box 429, 33101 Tampere, FINLAND
Tel: +358 3 3652111; fax: +358 3 3654575

e-mail: jari.nikara@tut.fi, jarmo.takala@tut.fi, david.akopian@nokia.com,

jukka.saarinen@tut.fi, jaakko.astola@tut.fi

ABSTRACT

In this paper, a pipelined architecture for inverse dis-
crete cosine transform (IDCT) is presented. Pipeline ar-
chitectures are popular in parallel fast Fourier transform
implementations but they are rare in IDCT implemen-
tations due to the irregularities in fast IDCT algorithms.
The proposed architecture is derived by applying verti-
cal projection to in-place IDCT algorithm. The result-
ing structure is modular and easy to pipeline. The word
width requirements in the internal arithmetic are esti-
mated to fulfil the requirements set by IEEE standard
for 8×8 inverse cosine transform.

1 INTRODUCTION

Discrete cosine transform (DCT) is a widely used tool
in digital signal processing and it is a part of many in-
ternational standards. In video coding applications, the
accuracy of the implementation is important; e.g., IEEE
Standard 1180-1990 [1] defines accuracy requirements
for two-dimensional 8×8 inverse DCT (IDCT) imple-
mentations. Several architectures for such DCT imple-
mentations have been proposed for multimedia applica-
tions where the DCT circuit should support high data
rates.

Typically high speed operation is achieved with the
aid of parallelism. Uramoto et al. [2] have presented an
architecture for 8×8 DCT, which is based on distributed
arithmetic. Matsui et al. [3] have introduced a DCT
macrocell, which is a direct realization of the fast DCT
algorithm by Chen et al. [4]. Distributed arithmetic
and sense-amplifying flip-flops were used to achieve high
speed performance with 20 bits. Madisetti and Willson
[5] have implemented a small area DCT processor using
22-bit internal accuracy.

In general, the cost of the implementation should be
low, i.e., the number of arithmetic units in the architec-
ture should be minimized. For this purpose the linear
array processor approach described in [6] can be used.
Such pipelined architectures have gained popularity in
case of fast Fourier transform (FFT). The parallel ar-
chitecture is obtained by applying vertical projection to
signal flow graph of the algorithm, i.e., the parallel arith-

metic operations are mapped onto a single resource thus
the data samples are fed to the architecture in sequential
fashion rather than in parallel.

Although several pipelined FFT architectures have
been proposed, such architectures for DCT are rare due
to the irregularity of fast DCT algorithms. Kovac et al.
[7] have proposed a pipelined architecture based on fast
DCT algorithm by Arai et al. [8]. Due to the irregular-
ity of the signal flow graph of the algorithm, reordering
of the samples is needed several times during the pro-
cessing, which increases the latency and the number of
registers in the architecture.

In this paper, a pipelined IDCT architecture based
on the principles used in pipelined FFT architectures is
proposed. The architecture is derived by utilizing the
constant geometry DCT algorithm described in [9, 10].
By rescheduling the operations in the regular IDCT al-
gorithm, it is possible to obtain an in-place IDCT al-
gorithm. Vertical projection is then applied to the sig-
nal flow graph and the resulting dependency graph is
mapped onto a hardware structure where no intermedi-
ate data reordering is needed. The modular structure is
easy to pipeline for increasing the throughput. In addi-
tion, error analysis of the architecture for fulfilling the
IEEE standard [1] is estimated.

2 IDCT ARCHITECTURE

The basis of our architectural derivation is the constant
geometry fast DCT algorithm presented in [9, 10]. The
corresponding signal flow graph (SFG) of an 8-point con-
stant geometry inverse DCT algorithm can be seen in
Fig. 1, where the coefficients di can be generated recur-
sively as

d1 =
√

0.5,

d2i =
√

0.5(1 + di),

d2i+1 =
√

0.5(1 − di). (1)

The constant geometry algorithm lends itself for hori-
zontal projection as described in [9], which leads into a
partial-column architecture. Here our purpose is to uti-
lize vertical projection as described, e.g., in [11], where
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Figure 1: Signal flow graph of 8-point constant geometry
inverse discrete cosine transform.

the projection is applied to in-place FFT algorithms.
Therefore, the previous SFG for IDCT in Fig. 1 needs
to be modified in order to obtain an in-place algorithm.
The modification is done by rescheduling the operations
in the SFG and one possible in-place schedule for an
8-point IDCT is illustrated in Fig. 2.

The SFG of the in-place algorithm reminds the SFG
of the familiar Cooley-Tukey radix-2 FFT algorithm,
i.e., the SFG contains the butterfly operations found
in FFT. In traditional pipelined FFT architectures, the
processing stages of the SFG consisting of parallel but-
terfly operations are mapped onto separate multiplier
and processing elements (PE) containing an adder and
subtractor as illustrated in Fig. 3.b). In an in-place algo-
rithm, the data elements are processed in pairs, e.g., in
the first butterfly stage in Fig. 2, elements xi and xi+2,
0 ≤ i ≤ 7, are computed at the same time. In the sec-
ond butterfly stage, elements xi and xi+1 are processed
as a pair. Therefore, the data reordering can simply be
arranged by delaying the samples with an shift register.

The operation of the processing element is the follow-
ing. In the stage, where data elements xi and xi+d are
computed in pairs, the first d elements entering the PE
are directed to the shift register of size d. When the
element xd is entering the PE, the element x0 is avail-
able from the shift register and, therefore, the butterfly
operation can be performed, i.e., (xd +x0) and (xd−x0)
can be computed in parallel. According to the SFG in
Fig. 2, the result of subtraction is fed to the output of
the PE and the result of addition is directed to the shift
register. Such an operation is performed for the next d
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Figure 2: Signal flow graph of 8-point in-place inverse
discrete cosine transform.
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Figure 3: Pipelined architecture for 8-point in-place
IDCT corresponding the SFG in Fig. 2: a) block di-
agram and b) butterfly processing element. D: Delay
register. M: Multiplexer. PE: Processing element.

data elements. At this point we have output d results of
subtraction and the result of the first addition is avail-
able from the shift register, thus next the values from
the shift register are directed to the output of the PE
and, at the same time, the next d elements entering the
PE are directed to the shift register. By continuing this
procedure the data reordering can be performed. The
advantage of the pipelined architecture is that the multi-
plier is removed from the critical path, i.e., the feedback
loop containing the shift register, and multicycle mul-
tipliers can be used to increase the throughput of the
implementation.

The SFG of the in-place IDCT algorithm contains
some irregularities, which are not present in FFT. For
instance, at the first stage of the SFG in Fig. 2, three
subtractions need to be performed for element pairs hav-
ing different offsets. These operations can be realized
with a special subtractor, which performs subtraction
according to a control signal and otherwise is in bypass
mode. The correct data reordering can be implemented
with an elastic buffer, e.g., in the fist stage of the pre-
vious SFG, subtraction is performed for element pairs
having offsets of one, two, and three, thus a feedforward
shift register is needed to delay certain elements.

As a result of the vertical projection, according to
the previous discussion, the SFG of the 8-point in-place
IDCT can be mapped onto a structure illustrated in
Fig. 3.a). The computation of butterfly operation is
performed in PE in Fig. 3.b), for each input pair. It
should be noted that the clock lines are not drawn in
the figure. The input as well as the output of the archi-
tecture is sequential and the structure can be pipelined
arbitrary to increase throughput. The only limiting fac-
tor in pipelining is the speed of the adder and subtractor
in the PE.

The drawback of the architecture is that the utiliza-
tion of adders and subtractors during the butterfly com-
putations is only 50%. With some optimizations, it is
possible to achieve higher utilization rate of these re-
sources but then, in general, an additional reordering
network is needed to maintain the correct order of data
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Figure 4: Error behaviour of the proposed architecture as a function of internal word width: a) pixel mean square
error, b) overall mean square error, c) pixel mean error, and d) overall mean error. Line with squares: rounding, line
with circles: two’s complement, and the solid line: requirement of the IEEE Standard.

elements during the computation.

3 Error Analysis

In order to avoid overflow during the computations with
fixed-point, i.e., fractional, number representation, the
intermediate signal levels are scaled. Due to the fact,
that all the intermediate data vectors are passed through
multipliers, the signal levels can be adjusted at multi-
pliers. This allows scaling factors to be selected with
finer resolution without additional hardware costs. Typ-
ically scaling without additional hardware costs is done
by rewiring, i.e., scaling factors are powers of two.

In fixed-point realizations, the main error source is
the quantization error caused by the finite wordwidth in
the intermediate arithmetic. In order to analyze the ac-
cyracy requirements of the architecture, the IEEE Stan-
dard 1180-1990 [1] is used as a test suite for the architec-
ture. For this purpose, the proposed architecture should
be extended to 2-D. This can be accomplished by uti-
lizing the separability of the IDCT, i.e., the row-column

approach, and realizing the 2-D transform with consec-
utive 1-D transforms with an additional 8× 8 transpose
unit.

The error behaviour of the pipeline architecture based
on the IDCT algorithm shown in Fig. 2 is analyzed with
simulations. The randam data generator described in
the standard was used to create six test data sets. Then
the performance of the architecture realized with dif-
ferent word widths and quantization methods was ob-
tained with the aid of simulations. The used quan-
tization methods where rounding to the nearest inte-
ger and truncation of two’s complement (“rounding to-
wards minus infinity”), which is the cheapest quanti-
zation method. In the simulations, the constant coef-
ficients were rounded to the same word width as the
internal data word width.

The obtained error values, mean error and mean
square error per pixel and overall mean error and mean
square error, are presented in Fig. 4 as a function of the
word width of the internal arithmetic. The results show



that 17-bit representation is needed to fulfil the specifi-
cations when rounding is used (one sign bit and 16 bits
for fraction).

When using the truncation of two’s complement as the
quantization method, the internal word width should be
22 bits. In this case, better performance could be ex-
pected when considering only the mean square error val-
ues. However, due to the fact that truncation of two’s
complement introdusis bias to the quantized value, the
sign of error after the final rounding and clipping defined
by the standard is in general the same. Therefore, the
mean error value is almost the same as the mean square
error. Lower word width can be expected if some vari-
ance to the error can be introduced.

4 CONCLUSION

In this paper, a pipelined architecture for inverse dis-
crete cosine transform has been described, which is
based on in-place IDCT algorithm. The actual archi-
tecture is obtained by collapsing the signal flow graph
of the algorithm with vertical projection. In the re-
sulting architecture, multipliers are removed from the
critical path thus pipelined multipliers can be used to
increase the throughput of the architecture. With the
aid of simulations, it is estimated that internal accuracy
of 17 bits in a fixed-point realization is needed to satisfy
the requirements of the IEEE Standard 1180-1990 for
8 × 8 IDCT when using rounding as the quantization
method. When quantization is performed with trunca-
tion of two’s complement, 22-bit word width is required.
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