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1 Introduction

The aim of this document is to provide a detailed description of the SARAS architecture for the
MULTIROBOTS-SURGERY platform with particular attention to the integration of multi-master
multi-slave (MMMS) bilateral teleoperation architecture described in D3.1 – Multi-modal human-
robot interfaces and architecture for the MULTIROBOTS-SURGERY platform into the robotic sys-
tem developed in the project.
In the MULTIROBOTS-SURGERY platform, the main surgeon controls the da Vinci tools from the
da Vinci console, whereas the assistant surgeon teleoperates standard laparoscopic tools mounted
at the end effectors of the SARAS robotic arms from a remote control station equipped with virtual
reality and haptic devices. The assistant surgeon will perform the same actions as in standard robotic
surgery, but this time by teleoperating the tools instead of moving them manually.
The MULTIROBOTS-SURGERY platform is an example of multi-master/multi-slave (MMMS) bi-
lateral teleoperation system, where two users cooperate on a shared environment by means of a
telerobotics setup. Virtual reality is exploited to improve the visual feedback provided to the sur-
geons. Pre-operative and intra-operative data allow us to produce virtual fixtures (e.g. virtual walls
impassable for the tools or optimal paths the surgeon is guided to follow during delicate phases of
the procedure) to help the surgeon safely navigating the human body or to enhance his/her 3D
perception. An Oculus Rift device provides the necessary visual feedback to the assistant surgeon,
while the main surgeon’s feedback is provided by the da Vinci console. The MMMS architecture
will be validated in terms of transparency, usability, cognitive load, and command/action misunder-
standing. Results will be reported in deliverable D1.2 – Experimental tests and validation activities
on the MULTIROBOTS-SURGERY platform.
The MULTIROBOTS-SURGERY platform is a necessary step towards the autonomous platforms
(SOLO-SURGERY and LAPARO2.0-SURGERY) because it will allow the acquisition of the training
data for the cognitive and perception modules. The following outcomes will be exploited:

• A validation of the assistive robotic arms in terms of workspace, usability, accuracy, velocity
• The identification of the nominal trajectories for the tools during the entire surgical procedure,

i.e. the pose of each tool as moved by the main surgeon and by the assistant surgeon. This will
help developing the mathematical model of their individual actions and mutual interactions

• An analysis of the correlation between the actions performed by the two surgeons and their
verbal communication for designing and training the speech recognition module

• A validation of the user interface for the main surgeon at the “enhanced” daVinci console and
the novel interface for the assistant surgeon

• The collection of data during surgical interventions to be used to train the autonomous systems
in the next platforms.
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2 System architecture

The MULTIROBOTS-SURGERY platform is designed as a collection of functional modules, each
one devoted to a single task. The tasks assigned to each module are detailed in deliverable D7.1 –
Technical Specifications, while the functional architecture is shown in Figure 1.

Figure 1: MULTIROBOTS-SURGERY platform functional architecture.

We implemented the MULTIROBOTS-SURGERY platform as a collection of ROS nodes. All the
ROS nodes are connected to a central unit acting as ROS core, in charge of providing a common
timestamp and driving the communication between nodes, and data recording module. Figure 2
shows the conceptual architecture of MULTIROBOTS-SURGERY platform in terms of ROS nodes.
For the full list of nodes and how they are connected please refer to Figure 5.

2.1 ROS core and data recording node

ROS is an open source, distributed, component-based development framework that has become
the standard de facto for interfacing heterogeneous hardware and software in robotics applications.
Its versatility allows it to be used effectively in heterogeneous scenarios ranging from quad-copter
control to surgical teleoperation systems, as in the dVRK (refer to Section 2.2 for more informa-
tion). The focus for ROS is to foster an easy way for different institutions to cooperate by offering
their independently-working applications through a standardized set of tools that allows them to
communicate and process data efficiently. The main characteristics are:

• The message passing system, which revolves around a standardized data representation
(message types) transmitted as a communication channel abstraction called topic;
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Figure 2: MULTIROBOTS-SURGERY platform conceptual ROS architecture.

• A distributed multi-process architecture that separates different functionalities between
nodes, i.e. an abstracted process entity, which has the additional benefit of improving the
overall system stability;

• Common drivers for various hardware configurations, tested by institutions worldwide for
increased reliability and ease-of-access to data.

Communication in-between nodes is organized as a star-shaped network in which the central node,
called ROS core, operates as a connection broker while also maintaining a message-driven common
time-stamp for the entire network. The low-level connection is orchestrated via an asynchronous
input/output library over TCP/IP. The ROS core module works also as Domain Name System (DNS)
in the local network of nodes. A node that needs to subscribe to a topic published from another
node for the first time, communicates with the ROS core to locate the node in the network, and
then, it establishes a point-to-point communication. This mechanism does not overload the ROS
core of work and makes the communication between nodes faster.
The ROS core and data recording module embed an efficient global time synchronization policy
between modules through Network Time Protocol (NTP). NTP is a networking protocol for clock
synchronization between computer systems over packet-switched, variable-latency data networks.
NTP is intended to synchronize all participating computers to within a few milliseconds of Coor-
dinated Universal Time. The connection between all modules to the NTP server permits the time
synchronization and the precise messages exchange handling. It is possible to order the messages
exchanged between nodes accurately, avoiding the reception from nodes of messages in different
order with respect to the sending order.
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The standard ROS library provides a functionality to record the messages, or a subset of them,
exchanged in the network, in files called rosbag. These files are then playable inside the ROS
environment. The recording functionality has been efficiently integrated into the ROS core and
data recording module. Since all the nodes in the SARAS node net are connected to the ROS core
and data recording module, and all nodes are synchronized, it is possible to record the messages
exchanged between all nodes in the ROS environment. The recording of real data allows to store
permanently experiments done with the architecture and to replay them other times in order to
study the behavior of the whole system or particular phenomena happening during the experiments.
The recording include:

• Videos from the da Vinci endoscope
• da Vinci arms kinematics
• SARAS arms kinematics
• Audio streams
• Commands executed in master consoles.

2.2 dVRK node

The da Vinci Research Kit (dVRK) is an “open-source mechatronics” system, consisting of elec-
tronics, firmware, and software that is being used to control research systems based on the first-
generation da Vinci system [2]. Due to its license, it easily allows implementing new algorithms
at any level of control for the da Vinci. In the SARAS system, the da Vinci is used by the main
surgeon to perform the main surgical task. The surgeon teleoperates the da Vinci arms and endo-
scope from the standard da Vinci master console. The dVRK has a ROS wrapper used to publish
all the information regarding the arms kinematics, endoscope positions and images to several ROS
topics. Each node in the ROS node net can read the above-mentioned pieces of information to
implement features like collision avoidance and image processing. In the SARAS environment, the
dVRK node publishes the endoscope message under the namespace endoscope, publishing Raw,
and compressed images. The dVRK node publishes also the robot’s joints states and arm positions
under the namespace PSM1, PSM2 and ECM with respect to which arm the data refers.

2.3 Bilateral teleoperation module

The bilateral teleoperation module is a set of ROS nodes which implements a multi-master/multi-
slave bilateral teleoperation, where two users cooperate on a shared environment by means of a
telerobotics setup. In our scenario, the main surgeon controls the da Vinci tools, while the assistant
surgeon teleoperates standard laparoscopic tools mounted at the end-effector of the SARAS robotic
arms through other haptic devices. The module includes different nodes with different functionalities.
The nodes main task in bilateral teleoperation module is to send commands to both master and
slave devices and to get the status (i.e. the joint states and the end-effector position) of both master
and slave devices. The ROS interface allows to retrieve the above mentioned functionality on the
ROS environment. The bilateral teleoperation module consists of two sub-modules which represent
the two agents involved in the teleoperation:
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1. Master console, also called the Assistant console.
2. Slave robot, also called the Assistant robot.

In this section, we will detail all the nodes and software present in both sub-modules and which is
their role inside the teleoperation architecture.

2.3.1 Assistant console module

The assistant console module consists of both hardware and software parts. The hardware setup is
composed by:

• Two Simball devices used by the assistant surgeon to teleoperate the two assistant robots.
Simball is commonly used to train surgeons on laparoscopic operations, due to its ability to
emulate with realism the feeling of a real laparoscopic instrument (in particular the mechanical
constraint of the trocars through which the instruments are inserted into the peritoneoum of
the patient).

• Two Touch haptic devices, motorized devices that apply force feedback on the user’s hands,
allowing him/her to feel virtual objects and producing true-to-life touch sensations. The
Simball device is bind to the end effector of Touch haptic device, allowing to propagate the
force feedback generated by the haptic device to the surgeon’s hands.

• An Oculus Rift device used to stream the da Vinci endoscope images with augmented infor-
mations (e.g. upcoming collisions).

Figure 3 shows the master console hardware setup used by the assistant surgeon during an experi-
mental surgical operation.

Figure 3: MULTIROBOTS-SURGERY assistant master console.
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The assistant console software runs over a Windows 10 machine. The software embedded in this
module is responsible to communicate with the haptic devices and to get the images from the
endoscope camera and display them inside the Oculus Rift displays.
The list of the software embedded in the assistant console module is:

Touchball controller interfaces with the two haptic devices and Simball devices. The software
main functionality is to get the current state of the devices (Simball and Touch haptic) and
stream it in a UDP socket to make it available at the Slave side of the teleoperation. The
software retrieves the states using drivers provided by the device manufacturers. The software
embeds also the option to calibrate the haptic devices and the clipping movement of the
Simball devices.

Oculus endoscope is the software which takes the images from the da Vinci endoscope and dis-
plays them in the Oculus Rift displays. It is developed in Unity. The software builds a 3D
environment having two non-fixed cameras representing the Oculus display. The cameras
rotate simultaneously with the headset, and they keep the images aligned in front of the
cameras. This behavior makes the images of endoscope fixed in front of the eyes even if the
surgeon moves the head. This gives more freedom to the surgeon respect to the fixed view
of the da Vinci console.

2.3.2 Assistant robot module

The Assistant console hardware is composed of two SARAS arms. The arms are formed by two
mechanical parts: a passive arm with seven degrees of freedom, which allows to positioning the
manipulator in a safe place before the operation starts, and an actuated redundant robot with four
motors that moves the endoscopic tool. The robot controller guarantees the robot movements
pivoting around a prior fixed remote center of motion.
The software responsible for the teleoperation is developed both as standard C++ and C++ ROS
nodes. The choice to use parts of the code as standard C++ derives from the uses of different
operating systems on the machine hosting the software. The master console is running Windows 10
to better interface with the Touch haptic device drivers, while the slave console is running Ubuntu
16.04, a Linux distribution, to have better integration with the ROS environment.
The SARAS arms are connected to the assistant controller computer through Ethernet cables. The
robot’s software exposes several control methods such as the setting of a target position for the
end effector, the set of a maximum motor velocity, the opening, closing and rotating of the clip
or scissors instrument. It exposes also methods to read the joints angles, and end effector position
respect to a common reference system placed in the center of the robot base. The communication
with the robot happens through a particular WebSocket implementation called Socket.IO, a library
that enables real-time, bidirectional and event-based communication between client and server sides.
The list of the software embedded in the assistant robot module is:

SARAS arms drivers a ROS node which compiles and makes available as ROS package the
libmesa library provided by Medineering GmbH, which is written in straight C++. The
library main functionality is to wrap the methods exposed by the robot, to make them avail-
able in C++ code.
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SARAS arms state a ROS node which interfaces with SARAS arms drivers node to retrieve the
robot’s state (i.e. joint angles, end-effector pose and remote center of motion position) and
publish it in a ROS topic, making it available from all nodes connected to the same ROS core.

Teleoperation a set of ROS nodes which implement the bilateral teleoperation algorithms de-
scribed in Section 5. Its main functionalities are to keep the passivity of the system and to
have transparent teleoperation. It interfaces with the SARAS arms state node and Touchball
receiver node to send target position commands to the robot and force commands to the
haptic device.

Touchball receiver a ROS node in communication with the Touchball controller. The work-flow
of this node is to listen to a prior chosen port and IP address (i.e. where Touchball Controller
is streaming the state) and publish all the data received in specific ROS topics.

SARAS visualization a ROS node which allows to show the robot’s state in a real-time simu-
lation environment. The simulation environment is built in Rviz (ROS visualization) which
is integrated with ROS and ready to use. In order to show the real behavior of the robot
in a simulation environment, it needs to know the state of the joints and the robot model.
The state of the robot is retrieved by the SARAS arms state node, while the robot model is
composed by the robot mesh files and the URDF (Unified Robot Description Format, an XML
format for representing a robot model). Rviz allows to show also a simulation of the agents
behavior involved in the teleoperation as a response of certain simulation input, without having
the real agents attached to the system. Figure 4 shows the simulation environment with both
assistant robot arms, and the haptic devices displayed.

2.4 Camera and Image processing module

The Camera and Image processing module is a set of ROS nodes which includes all the procedures
to calibrate the system –i.e. to set a common reference frame for all the agents involved in the
teleoperation– and the processing of the images from the da Vinci endoscope.
The module embeds the following nodes:

Global frame registration a ROS node used for calibration purposes. It allows setting a unique
shared reference frame for the da Vinci and the SARAS arms (see Section 4).

Decklink ROS a ROS node used to convert analog images into digital ones. This conversion is
necessary in order to elaborate and process the images. The analog images flow from the da
Vinci endoscope to the Decklink acquisition board, then the ROS node publishes the node in
specific topics to make them available all over the ROS net.

Colliding regions a ROS node that computes the colliding regions between the instruments of the
da Vinci and SARAS arms or between the robot instruments and the bones, or other forbidden
anatomical regions (see Section 6).

Image processing a ROS node responsible to add virtual fixtures to the endoscope images, e.g.
highlighting regions where a potential collision is estimated (see Section 7).
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Figure 4: The simulation environment showing the actual state of the assistant robots and haptic devices.

Figure 5 shows a full representation of all the nodes involved in the bilateral teleoperation setup.
It reports all the connections between nodes and data exchanged between them. In this figure
the ROS core module has been omitted to better represent the other communications; actually all
communication channels converge to the ROS core and data recording module to be then redirected
to the destination node.
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Figure 5: MULTIROBOTS-SURGERY platform detailed ROS architecture.
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3 Hardware implementation

The two SARAS arms at the slave side of the platform are composed of three subsystems:

1. the passive Positioning Arm is needed for the rough and static positioning of the laparoscopic
instruments.

2. the Endoscope Robot is the active robot for the fine positioning of the laparoscopic in-
struments teleoperated by the assistant. It guarantees the safe pivoting of the instruments
through the trocar.

3. the SARAS Adapter which provides two further degrees of freedom: the rotation of the
instruments along its main axis and the opening/closing of the tools (forcep and grasper).

Such mechatronics systems were already described in D7.1 – Technical Specifications: In this de-
liverable we provide more in details on the SARAS Adapter that is the main outcome from the
hardware development point of view.

3.1 SARAS Adapter

The SARAS adapter consists of three segments and has two degrees of freedom. A description of
the three segments and their parts is provided in Table 1 and Figure 6.

Table 1: Components of the SARAS adapter.

The SARAS adapter is a mechatronic device for holding and guiding endoscopic instruments. The
adapter can be used for surgical instruments like grasping forceps in the laparoscopy and allows the

16
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Figure 6: Segments and basic dimensions of the adapter top view, with attached instrument.

instrument to open, close and rotate. The internal part of the SARAS adapter is composed of a linear
mechanical part (consisting of motor, encoder, gear and bearings) and a rotatory mechanical part
(consisting of motor, encoder and gear). The linear part also contains a port providing a connectivity
between instrument and adapter. Underneath the software and electrical system is mounted to the
frame. It is subdivided into the power supply and the printed circuit board. Altogether these
components are surrounded by the housing which provides a mechanical interface to the linear axis
of the Medineering Endoscope Robot.
The SARAS adapter can be used with the Medineering Robotic Endoscopy which contains the
Positioning Arm, the Endoscope Robot and an input device (e.g. foot pedal). Power supply and
data supply of the adapter is provided by the Endoscope Robot via an according plug connector.
In Figure 7 is shown: a) isometric view of the adapter; (1) mechanical interface; (2) housing; (3)
instrument. b) interior-top view; (4) port; (5) rotatory part; (6) linear part. c) interior-back view;
(7) circuit board; (8) power supply.

3.2 Demands to the System

3.2.1 Modularity

The SARAS system’s components can be separated and recombined. Primarily the Endoscope Robot
is connected to the Positioning Arm via a mechatronic interface. Further, the SARAS adapter is
linked with the Robot through a mechanical interface. As these interfaces are standardised within
the Medineering product range, the three different modules can be exchanged by – for example
– a stronger Positioning Arm or another SARAS Adapter for different instruments in the field of
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Figure 7: Side, top, and back view of the SARAS adapter.

laparoscopy. This modularity leads to the benefit of flexibility and variety in use. Initially, the first
SARAS Adapter is dimensioned for all instruments of the Karl Storz Click Line Series.

3.2.2 Inter-Operability

The mechatronic interface supplies the Endoscope Robot with power and data, and moreover, a
LEMO cable provides the same connection between Robot and Adapter. A web interface operates
through certain commands as an input device for the Positioning Arm. The integrated electronic
of the Positioning Arm can be used to supply the connected Endoscope Robot via the intern bus
system with all sensor data of the arm. All in all, the three modules are compatible for mutual
communication.

3.2.3 Dependability

The Positioning Arm receives its power from a standard 230 V socket and transfers it to the other
modules. So the Endoscope Robot needs the Positioning Arm and the SARAS Robot would not
work without the combination with the Endoscope Robot. The arm represents the basis of the whole
system and can operate autonomously.

3.2.4 Safety Requirements

The Positioning Arm and the Endoscope Robot provide sufficient safety precautions to prevent
damage, as a detailed hazard analysis led to the implementation of different actions. As the SARAS
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System generates a magnetic field it must not be used closer than 200mm to patients wearing a
pacemaker. To prevent the possibility of an electric shock the user should not touch the mechatronic
interface of the Positioning Arm and the patient at the same time. Before use of the System it has
to be ensured that the Positioning Arm is firmly mounted to the OR table. None of the SARAS
system’s components – except the instrument – must get in touch with the patient. The payload
of the Positioning Arm must never exceed 2kg. As the prescribed payload of the Endoscope Robot
is set to 0,5kg the SARAS Adapter including its instrument should not be heavier. A violation of
those limits can lead to injuries of the patients. The user always has to keep in mind that once the
brakes are opened all the weight is in the user´s hands.

3.2.5 Sterility

The components of the SARAS System are not sterile. To prevent a danger of infection during
surgery, all components are covered with a sterile drape to provide sterility. Here the sterile border
is located between the instrument and the adapter. Surgical instruments are sterilized in clinical
standard procedures.

3.2.6 Robot Dexterity

The Positioning Arm possesses 7 degrees of freedom (DOFs). Through this increase of the usual six
DOFs the Arm can be moved to different positions without moving the distal end. The kinematics
and the linear axis of the robot provides its five DOFs. It can either be used parallel within one
plain or pivoting around a certain pivot point. On top of that, the SARAS adapter has two degrees
of freedom. All in all, the rough positioning is performed by the Positioning Arm, whereas the
Endoscope Robot is responsible for the fine positioning. Finally, the SARAS Adapter with its
inserted laparoscopic instrument provides gripping, closing and opening of the instrument.

3.2.7 Plug and unplug-mechanism

The first prototype of the SARAS Adapter doesn’t possess a mechanism for plugging and unplugging
the instrument yet. The instrument is a fixed integrated part of the SARAS Adapter. For the later
instruments a mechanism will be developed for an easy plugging and unplugging of the instrument
and thus, an easy exchange of the instruments.
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4 Multirobots Calibration procedure

The MULTIROBOTS-SURGERY setup is a complex multi-robot system where five independent arms
cooperate to accomplish a task in a common workspace. Four arms are devoted to manipulation
tasks, i.e. two arms of the da Vinci system managed by the main surgeon and two SARAS arms
controlled by the assistant surgeon, while the last one is used for image acquisition. The da Vinci
arms are called:

PSM1 Patient side manipulator 1
PSM2 Patient side manipulator 2

while the SARAS arms will be called:

APSM1 Assistance patient side manipulator 1
APSM2 Assistance patient side manipulator 2

Finally the endoscope is attached to the third da Vinci’s arm and is called:

ECM Endoscope control manipulator

To guarantee safety in collaboration between multiple robots, it is crucial to allow all the systems to
refer to a common reference frame, usually called world reference frame. In other words, we need to
compute the transformation matrices holding between each pair of local reference frames to which
different robots refer to.
To account the estimation of these relations, we have to address the following issues:

1. Endoscope intrinsic and extrinsic parameters estimation
2. Hand-eye calibration between the ECM arm and the endoscope cameras
3. Endoscope and arms base frame calibration

It’s important to point out that the camera parameters estimation and the hand-eye calibration are
related to the da Vinci robot and so are not task dependant. Differently, the arms and endoscope
base calibration is mandatory every time the positioning arms of the da Vinci and/or the SARAS
arms are moved from the previous calibrated positions.

4.1 Endoscope intrinsic and extrinsic parameters estimation

The camera parameters estimation is mandatory to transform the features position extracted in the
image plane to the Euclidean space where the manipulators act.
The procedure to estimate the intrinsic parameters of a camera is well known in the literature, and
the most common technique is based on the Zhang approach [4]. Briefly, as shown in Figure 8, a
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Figure 8: The calibration board used to estimate the intrinsic and extrinsic parameters estimation of the
da Vinci endoscope.

specific pattern (a black and white checkerboard) has been shown and moved in front of the stereo-
camera (i.e. the endoscope); the corners are detected and an optimization algorithms allows to
minimize the back-projection error assuming a pinhole camera model and a polynomial deformation
model.
For stereo vision system, besides the intrinsic parameter estimation, it is necessary to estimate also
the transformation –i.e. the relative translation and rotation– between the two cameras. To this
purpose, we used the camera_calibration package, provided by the ROS community, that makes
available camera calibration algorithm implemented in the the OpenCV library.

4.2 Hand-eye calibration

The robotics hand-eye calibration is the task of computing the relative 3D position and orientation
between the camera reference frame and the ECM’s end-effector. In our case the camera is rigidly
connected to the ECM arm, and this configuration is commonly referred to as eye-on-hand [3].
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This procedure is crucial because the features extracted by the vision sensor are relative only to
the camera reference frame, which is not fixed with respect to the world reference frame since
the endoscope is hold by the ECM arm, which is moved by the main surgeon during the surgical
procedure.
Figure 9 shows how the Hand-eye calibration technique works. The operator moves the ECM arm
of the da Vinci system in different and redundant poses. At each step, the ECM’s end effector pose
and the measured marker pose are stored. Then an optimization problem in the form AX = XB is
solved in order to find the relative transformation between the end effector and the camera reference
frames. We use the implementation of [3] provided by the visp_hand2eye_calibration and
easy_handeye packages.

Figure 9: To account the hand-eye calibration the ECM is manually moved on different poses while it
acquires the relative position of a fiducial marker.

4.3 Base frame calibration

This procedure aims at estimating a set of Euclidean transformations between a fixed frame –the
base frame– and the local reference frames of each arm. The proposed calibration technique is
based on the three points calibration method commonly used in robotic tool calibration routine [1].
This procedure uses the forward kinematics to estimate the relative pose of a circular pattern called
positioner with respect to the robot’s base frame. This procedure is repeated for each robot creating
a set of transformations between the positioner plane and the robots base frame.
In our solution we use a printed calibration pattern, shown in Figure 10, which is composed by a set
of black dots lying on a circle and by four fiducial markers lying on a concentric circumference. The
black dots are the target points touched by the arms, and the fiducial markers are the positioners
used by the endoscope. The printed board has an outer circle radius of 100 mm, the black dots have
a diameter of 5 mm and the fiducial markers have a side of 25 mm. The fiducial markers are needed
to use the same calibration procedure also for the endoscope. Since the endoscope is unable to
touch the calibration pattern due to the mechanical limitation of the ECM kinematics, we estimate
the relative pose of the positioners using a marker detector library called ArUco which provides the
relative pose and orientation of each marker with respect to to the camera frame and then by the
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hand-eye calibration with respect to the ECM.

Figure 10: The calibration pattern and the printed version used during the base frame calibration.

The calibration algorithm is implemented in a ROS node called global_frame_registration.
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5 Bilateral Teleoperation

The bilateral teleoperation architecture is divided into the following set of ROS nodes:

tf_transformer computes the main frame transformations between the master reference frames
and the slave reference frames. In particular, (1) it translates the master position information
provided by the touchball_reciever node from the Simball reference frame to the SARAS
arm reference frame, and (2) it translates the force information from the SARAS arm reference
frame to the Touch haptic reference frame. At the same time it computes the master pose
frame velocity with respect to the slave reference frame, in order to command properly the
robots.

tank_master deals with the management of the energy of the masters with the aim of preserving
the stability of the master system, exploiting the passivity theory. Once the energy is computed,
it provides the force set-points to the master devices.

tank_slave deals with the management of the energy of the slaves. Once the energy is computed,
it provides the velocities set-points to the slave devices.

transparency provides the desired set points for the master and slave sides to the corresponding
energy tank (force for the master side and velocity for the slave side), in order to implement
the desired type of control.

velocity_integrator send the desired position information to the SARAS arms. It takes as inputs
the initial position of the arm and the desired velocity. Then, integrating, it computes the
position set-point.

The tf_transformer and the velocity_integrator nodes are designed to manage only one
device at a time. For this reason, within the architecture, a node will run for the right channel
and another one for the left channel. The tank_master, the tank_slave and the transparency
nodes are designed to manage multiple devices at the same time. For this reason only one instance
of each of them will be launched within the architecture.
In the deliverable D3.1 – Multi-modal human-robot interfaces and architecture for the MULTIROBOTS-
SURGERY platform more details about the theoretical aspects of the bilateral teleoperation are
provided. Here we just report pieces of code to explain how the theoretical results are implemented
in the SARAS architecture.

5.1 tf_transformer node

First, the code wait at least a time equal to 2.5 seconds in order to verify that the reference systems
of which we want to identify the transforms are actually available within tf.

1 while (t_new - t_old < 2.5){
2 // Pose tracking
3 try {
4 pose_tracking_start = true;
5 tf_listener.waitForTransform(pose_reference_tf_frame_name ,
6 pose_tracking_tf_frame_name ,
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7 ros::Time(0),
8 ros::Duration(10.0));
9 tf_listener.lookupTransform(pose_reference_tf_frame_name ,

10 pose_tracking_tf_frame_name ,
11 ros::Time(0),
12 tracked_pose_transform);
13 } catch (tf::TransformException ex) {
14 pose_tracking_start = false;
15 }
16

17 // Twist tracking
18 try {
19 twist_tracking_start = true;
20 tf_listener.lookupTwist(pose_tracking_tf_frame_name ,
21 pose_reference_tf_frame_name ,
22 pose_tracking_tf_frame_name ,
23 tf::Point(0.0, 0.0, 0.0),
24 pose_tracking_tf_frame_name ,
25 ros::Time(0),
26 ros::Duration(0.001),
27 tracked_twist.twist);
28 } catch (tf::TransformException ex) {
29 twist_tracking_start = false;
30 }
31

32 // Wrench tracking
33 try {
34 wrench_tracking_start = true;
35 tf_listener.waitForTransform(wrench_tracking_tf_frame_name ,
36 wrench_reference_tf_frame_name ,
37 ros::Time(0),
38 ros::Duration(10.0));
39 tf_listener.lookupTransform(wrench_tracking_tf_frame_name ,
40 wrench_reference_tf_frame_name ,
41 ros::Time(0),
42 tracked_wrench_transform);
43 } catch (tf::TransformException ex) {
44 wrench_tracking_start = false;
45 }
46

47 t_new = ros::Time::now().toSec();
48

49 if ((pose_tracking_start == true) &&
50 (twist_tracking_start == true) &&
51 (wrench_tracking_start == true)){
52 break;
53 }
54 }

If all transformations are available the algorithm stores the static wrench transformation and then
proceeds, otherwise an error message is displayed.

1 if ((pose_tracking_start == true) &&
2 (twist_tracking_start == true) &&
3 (wrench_tracking_start == true))
4 {
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5 std::cout << "Start␣tracking␣succeed!" << std::endl;
6

7 // Setting up kdl wrench transformation
8 tracked_wrench_transform_kdl.p[0] =
9 tracked_wrench_transform.getOrigin().x();

10 tracked_wrench_transform_kdl.p[1] =
11 tracked_wrench_transform.getOrigin().y();
12 tracked_wrench_transform_kdl.p[2] =
13 tracked_wrench_transform.getOrigin().z();
14

15 tracked_wrench_transform_kdl.M = KDL::Rotation::Quaternion(
16 tracked_wrench_transform.getRotation().x(),
17 tracked_wrench_transform.getRotation().y(),
18 tracked_wrench_transform.getRotation().z(),
19 tracked_wrench_transform.getRotation().w());
20

21 while (public_node_handler.ok()) {
22 //main loop
23 ...
24 }
25 }
26 else
27 {
28 std::cout << "Start␣tracking␣failed!" << std::endl;
29 }

The main loop is organized as follow:
the master pose frame related to the slave base frame is continuously tracked and stored into a ROS
geometry_msgs/PoseStamped message.

1 // Pose tracking
2 try {
3 tf_listener.waitForTransform(pose_reference_tf_frame_name ,
4 pose_tracking_tf_frame_name ,
5 ros::Time(0),
6 ros::Duration(10.0));
7 tf_listener.lookupTransform(pose_reference_tf_frame_name ,
8 pose_tracking_tf_frame_name ,
9 ros::Time(0),

10 tracked_pose_transform);
11 } catch (tf::TransformException ex) {
12 ROS_ERROR("%s", ex.what());
13 }
14

15 tracked_pose.header.stamp = ros::Time::now();
16 tracked_pose.header.frame_id = robot_namespace+"/sbs_world";
17

18 tracked_pose.pose.position.x = tracked_pose_transform.getOrigin().x();
19 tracked_pose.pose.position.y = tracked_pose_transform.getOrigin().y();
20 tracked_pose.pose.position.z = tracked_pose_transform.getOrigin().z();
21

22 tracked_pose.pose.orientation.x = tracked_pose_transform.getRotation().x();
23 tracked_pose.pose.orientation.y = tracked_pose_transform.getRotation().y();
24 tracked_pose.pose.orientation.z = tracked_pose_transform.getRotation().z();
25 tracked_pose.pose.orientation.w = tracked_pose_transform.getRotation().w();
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The algorithm continuously tracks also the master pose frame velocity, filters the signals using a low
pass filter and then stores the data into a ROS geometry_msgs/TwistStamped message.

1 // Twist tracking
2 try {
3 tf_listener.lookupTwist(pose_tracking_tf_frame_name ,
4 pose_reference_tf_frame_name ,
5 pose_tracking_tf_frame_name ,
6 tf::Point(0.0, 0.0, 0.0),
7 pose_tracking_tf_frame_name ,
8 ros::Time(0),
9 ros::Duration(0.001),

10 tracked_twist.twist);
11

12 } catch (tf::TransformException ex) {
13 ROS_ERROR("%s", ex.what());
14 }
15 tracked_twist.twist.linear.x =
16 low_pass_filter(tracked_twist.twist.linear.x,
17 old_tracked_twist.twist.linear.x,
18 1.0 / frequency ,
19 low_pass_filter_frequency);
20 tracked_twist.twist.linear.y =
21 low_pass_filter(tracked_twist.twist.linear.y,
22 old_tracked_twist.twist.linear.y,
23 1.0 / frequency ,
24 low_pass_filter_frequency);
25 tracked_twist.twist.linear.z =
26 low_pass_filter(tracked_twist.twist.linear.z,
27 old_tracked_twist.twist.linear.z,
28 1.0 / frequency ,
29 low_pass_filter_frequency);
30 tracked_twist.twist.angular.x =
31 low_pass_filter(tracked_twist.twist.angular.x,
32 old_tracked_twist.twist.angular.x,
33 1.0 / frequency ,
34 low_pass_filter_frequency);
35 tracked_twist.twist.angular.y =
36 low_pass_filter(tracked_twist.twist.angular.y,
37 old_tracked_twist.twist.angular.y,
38 1.0 / frequency ,
39 low_pass_filter_frequency);
40 tracked_twist.twist.angular.z =
41 low_pass_filter(tracked_twist.twist.angular.z,
42 old_tracked_twist.twist.angular.z,
43 1.0 / frequency ,
44 low_pass_filter_frequency);
45

46 old_tracked_twist = tracked_twist;
47

48 tracked_twist.header.stamp = ros::Time::now();

It computes the wrench conversion of the commanded master forces, from the slave base frame to
the Touch haptic reference frame using the transformation stored at the beginning. The result is
stored into a ROS geometry_msgs/WrenchStamped message.
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1 // Wrench conversion
2 applied_wrench_kdl = tracked_wrench_transform_kdl * des_wrench;
3

4 applied_wrench.header.stamp = ros::Time::now();
5 applied_wrench.wrench.force.x = applied_wrench_kdl[0];
6 applied_wrench.wrench.force.y = applied_wrench_kdl[1];
7 applied_wrench.wrench.force.z = applied_wrench_kdl[2];
8 applied_wrench.wrench.torque.x = applied_wrench_kdl[3];
9 applied_wrench.wrench.torque.y = applied_wrench_kdl[4];

10 applied_wrench.wrench.torque.z = applied_wrench_kdl[5];

The commanded master forces are captured exploiting the following callback function.
1 void in_wrench_callback(const geometry_msgs::WrenchStamped::ConstPtr& msg) {
2

3 des_wrench[0] = msg->wrench.force.x;
4 des_wrench[1] = msg->wrench.force.y;
5 des_wrench[2] = msg->wrench.force.z;
6 des_wrench[3] = msg->wrench.torque.x;
7 des_wrench[4] = msg->wrench.torque.y;
8 des_wrench[5] = msg->wrench.torque.z;
9 }

Once all data are computed, the algorithm sends the messages.
1 // Publishing
2 tracked_pose_pub.publish(tracked_pose);
3 tracked_twist_pub.publish(tracked_twist);
4 out_wrench_pub.publish(applied_wrench);

5.2 tank_master node

First, the information relative to the cycle time are updated.
1 // Update dt
2 time2 = ros::Time::now().toSec();
3 dt = time2 - time1;
4 time1 = time2;

The energy stored in the tank need to be limited. The algorithm checks if the energy introduced in
the tank needs to be stored or can be sent outside.

1 // Check if the tank is full
2 if (T < p_Tmax)
3 sigma = 1.0;
4 else
5 sigma = 0.0;

In order to implement the energy exchange between the tanks, the conditions for which energy need
to be exchanged are verified.

1 // Check if the tank can provide energy
2 if (T > p_Tava)
3 beta = 1.0;
4 else
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5 beta = 0.0;
6

7 // Check if the tank requires energy
8 if (T < p_Treq)
9 Ereq = 1.0;

10 else
11 Ereq = 0.0;

The value of the damping applied to the master devices depends on the energy stored in the tank
and need to be computed.

1 // Evaluate damping value
2 for (int i = 0; i < 6; i++) {
3 p_Damping[i] = get_damping(p_Tmax, p_Tmin, p_Treq, p_Tava,
4 p_Damping_std[i], p_Damping_max[i], T);
5 }

If the energy in the tank is low, then a request of energy is sent to the slave tank.
1 // Send a request for energy if needed
2 out_Ereq.data = Ereq;
3 Ereq_pub.publish(out_Ereq);

The power associated to the damping is evaluated in order to update the evolution of the energy
tank state and the energy stored.

1 // Evaluate the power associated to the damping
2 D = 0.0;
3 for (int i = 0; i < 6; i++)
4 D += p_Damping[i] * pow(Right_measCartVel[i], 2) +
5 p_Damping[i] * pow(Left_measCartVel[i], 2);

The power flows are then evaluated and the state is updated, bounding the energy level if needed.
1 // Evaluate Pout and read Pin
2 Pout = (1 - sigma) * D + extEreq * beta * p_Pconst;
3 out_Pout.data = Pout;
4 Pout_pub.publish(out_Pout);
5

6 // Evaluate xt_dot , xt and T
7 xt_dot = sigma * D + U + (sigma * Pin - Pout) / xt;
8 xt = xt + xt_dot * dt;
9

10 if (xt > xt_max)
11 xt = xt_max;
12

13 T = 0.5 * pow(xt, 2);

If the energy is low, a set-point reduction factor is applied to the desired set-points, and need to be
computed.

1 // Evaluate decreasing set-point reduction factor
2 KE = Ereq * (1 - (T - p_Tmin) / (p_Treq - p_Tmin));

The energy associated to the desired actions is evaluated.
1 // Compute the energy associated to the set-point
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2 deltaE = 0.0;
3 for (int i = 0; i < 6; i++) {
4 deltaE = deltaE + (Right_desWrench[i] * Right_measCartVel[i] * dt -
5 KE * Right_desWrench[i] * Right_measCartVel[i] * dt);
6 deltaE = deltaE + (Left_desWrench[i] * Left_measCartVel[i] * dt -
7 KE * Left_desWrench[i] * Left_measCartVel[i] * dt);
8 }

If there is enough energy in the tank the desired actions can be implemented, otherwise not.
1 U = 0.0;
2 if ((T - deltaE) > p_Tmin) // desired action is implementable
3 for (int i = 0; i < 6; i++) {
4 Right_tankWrench[i] = Right_desWrench[i] - KE * Right_desWrench[i];
5 U = U - Right_tankWrench[i] / xt * Right_measCartVel[i];
6 Left_tankWrench[i] = Left_desWrench[i] - KE * Left_desWrench[i];
7 U = U - Left_tankWrench[i] / xt * Left_measCartVel[i];
8 }
9 else // desired action is not implementable

10 for (int i = 0; i < 6; i++) {
11 Right_tankWrench[i] = 0.0;
12 Left_tankWrench[i] = 0.0;
13 U = 0.0;
14 }

In order to physically implement a damping to the master device, the damping force is added to the
implementable actions.

1 // Add damping feedback
2 for (int i = 0; i < 6; i++) {
3 Right_tankWrench[i] = Right_tankWrench[i] -
4 p_Damping[i] * Right_measCartVel[i];
5 Left_tankWrench[i] = Left_tankWrench[i] -
6 p_Damping[i] * Left_measCartVel[i];
7 }

The resulting actions are then stored into a geometry_msgs/WrenchStamped message and then
published.

1 // Write the implementable action
2 out_Right_tankWrench.header.stamp = ros::Time::now();
3 out_Right_tankWrench.header.frame_id = "mesa_right/sbs_world";
4 out_Right_tankWrench.wrench.force.x = Right_tankWrench[0];
5 out_Right_tankWrench.wrench.force.y = Right_tankWrench[1];
6 out_Right_tankWrench.wrench.force.z = Right_tankWrench[2];
7 out_Right_tankWrench.wrench.torque.x = Right_tankWrench[3];
8 out_Right_tankWrench.wrench.torque.y = Right_tankWrench[4];
9 out_Right_tankWrench.wrench.torque.z = Right_tankWrench[5];

10

11 out_Left_tankWrench.header.stamp = ros::Time::now();
12 out_Left_tankWrench.header.frame_id = "mesa_left/sbs_world";
13 out_Left_tankWrench.wrench.force.x = Left_tankWrench[0];
14 out_Left_tankWrench.wrench.force.y = Left_tankWrench[1];
15 out_Left_tankWrench.wrench.force.z = Left_tankWrench[2];
16 out_Left_tankWrench.wrench.torque.x = Left_tankWrench[3];
17 out_Left_tankWrench.wrench.torque.y = Left_tankWrench[4];
18 out_Left_tankWrench.wrench.torque.z = Left_tankWrench[5];
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19

20 Right_tankWrench_pub.publish(out_Right_tankWrench);
21 Left_tankWrench_pub.publish(out_Left_tankWrench);

This procedure is continuously replicated in order to manage the energy in the system.
All the input data are collected using callback functions.

1 void Right_measCartVel_callback(
2 const geometry_msgs::TwistStamped::ConstPtr& msg) {
3

4 Right_measCartVel[0] = msg->twist.linear.x;
5 Right_measCartVel[1] = msg->twist.linear.y;
6 Right_measCartVel[2] = msg->twist.linear.z;
7 Right_measCartVel[3] = msg->twist.angular.x;
8 Right_measCartVel[4] = msg->twist.angular.y;
9 Right_measCartVel[5] = msg->twist.angular.z;

10 }
11

12 void Right_desWrench_callback(
13 const geometry_msgs::WrenchStamped::ConstPtr& msg) {
14

15 Right_desWrench[0] = msg->wrench.force.x;
16 Right_desWrench[1] = msg->wrench.force.y;
17 Right_desWrench[2] = msg->wrench.force.z;
18 Right_desWrench[3] = msg->wrench.torque.x;
19 Right_desWrench[4] = msg->wrench.torque.y;
20 Right_desWrench[5] = msg->wrench.torque.z;
21 }
22

23 void Left_measCartVel_callback(
24 const geometry_msgs::TwistStamped::ConstPtr& msg) {
25

26 Left_measCartVel[0] = msg->twist.linear.x;
27 Left_measCartVel[1] = msg->twist.linear.y;
28 Left_measCartVel[2] = msg->twist.linear.z;
29 Left_measCartVel[3] = msg->twist.angular.x;
30 Left_measCartVel[4] = msg->twist.angular.y;
31 Left_measCartVel[5] = msg->twist.angular.z;
32 }
33

34 void Left_desWrench_callback(
35 const geometry_msgs::WrenchStamped::ConstPtr& msg) {
36

37 Left_desWrench[0] = msg->wrench.force.x;
38 Left_desWrench[1] = msg->wrench.force.y;
39 Left_desWrench[2] = msg->wrench.force.z;
40 Left_desWrench[3] = msg->wrench.torque.x;
41 Left_desWrench[4] = msg->wrench.torque.y;
42 Left_desWrench[5] = msg->wrench.torque.z;
43 }
44

45 void Pin_callback(const std_msgs::Float32::ConstPtr& msg) {
46

47 Pin = msg->data;
48 }
49
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50 void extEreq_callback(const std_msgs::Float32::ConstPtr& msg) {
51

52 extEreq = msg->data;
53 }

5.3 tank_slave node

The software architecture of the tank_slave node is the same of the tank_master node with the
only difference that the desired action is a velocity and not a force. For this reason the tank_slave
node software description is not reported here.

5.4 transparency node

The transparency node software architecture is organized into two states. In the first state, it
waits until position information of all master and slave’ robots are available. Then, it switches to
the second state and stores the position information as initial positions.

1 if (state == 0) {
2 if ((meas_right_master_pose_new_data == true) &&
3 (meas_left_master_pose_new_data == true) &&
4 (meas_right_slave_pose_new_data == true) &&
5 (meas_left_slave_pose_new_data == true)) {
6 for (int i = 0; i < 3; i++) {
7 init_meas_right_master_pose[i] = meas_right_master_pose[i];
8 init_meas_right_slave_pose[i] = meas_right_slave_pose[i];
9 init_meas_left_master_pose[i] = meas_left_master_pose[i];

10 init_meas_left_slave_pose[i] = meas_left_slave_pose[i];
11 }
12 state++;
13 }
14 } else {
15 //State 1 description
16 ...
17 }

The new_data flags are acquired by means of callback functions, as the position information. An
example of callback function is reported here.

1 void meas_left_master_pose_callback(
2 const geometry_msgs::PoseStamped::ConstPtr& msg) {
3

4 meas_left_master_pose[0] = msg->pose.position.x;
5 meas_left_master_pose[1] = msg->pose.position.y;
6 meas_left_master_pose[2] = msg->pose.position.z;
7

8 meas_left_master_pose_new_data = true;
9 }

In the second state the node continuously evaluates the position error between the master and the
slave of each channel (left and right):

1 // compute right pose error
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2 for (int i = 0; i < 3; i++) {
3 meas_right_pose_error[i] =
4 (meas_right_slave_pose[i] - init_meas_right_slave_pose[i]) -
5 (meas_right_master_pose[i] - init_meas_right_master_pose[i]);
6 }
7

8 // compute left pose error
9 for (int i = 0; i < 3; i++) {

10 meas_left_pose_error[i] =
11 (meas_left_slave_pose[i] - init_meas_left_slave_pose[i]) -
12 (meas_left_master_pose[i] - init_meas_left_master_pose[i]);
13 }

Then it computes the desired force set-points for the master side,
1 // Evaluate desired wrenches
2 for (int i = 0; i < 3; i++) {
3 des_right_wrench[i] = pose_error_gain * meas_right_pose_error[i];
4 des_left_wrench[i] = pose_error_gain * meas_left_pose_error[i];
5 }
6

7 for (int i = 3; i < 6; i++) {
8 des_right_wrench[i] = 0.0;
9 des_left_wrench[i] = 0.0;

10 }

and for the slave side.
1 // Evaluate desired velocity
2 for (int i = 0; i < 6; i++) {
3 des_right_velocity[i] = meas_right_master_velocity[i];
4 des_left_velocity[i] = meas_left_master_velocity[i];
5 }

The force set-points are then stored into geometry_msgs/WrenchStamped message, the velocity
set-point are stored into geometry_msgs/TwistStamped message and all the messages are pub-
lished:

1 //Send desired set-points
2 out_des_right_wrench.header.stamp = ros::Time::now();
3 out_des_right_wrench.wrench.force.x = des_right_wrench[0];
4 out_des_right_wrench.wrench.force.y = des_right_wrench[1];
5 out_des_right_wrench.wrench.force.z = des_right_wrench[2];
6 out_des_right_wrench.wrench.torque.x = des_right_wrench[3];
7 out_des_right_wrench.wrench.torque.y = des_right_wrench[4];
8 out_des_right_wrench.wrench.torque.z = des_right_wrench[5];
9

10 out_des_left_wrench.header.stamp = ros::Time::now();
11 out_des_left_wrench.wrench.force.x = des_left_wrench[0];
12 out_des_left_wrench.wrench.force.y = des_left_wrench[1];
13 out_des_left_wrench.wrench.force.z = des_left_wrench[2];
14 out_des_left_wrench.wrench.torque.x = des_left_wrench[3];
15 out_des_left_wrench.wrench.torque.y = des_left_wrench[4];
16 out_des_left_wrench.wrench.torque.z = des_left_wrench[5];
17

18 des_right_wrench_pub.publish(out_des_right_wrench);
19 des_left_wrench_pub.publish(out_des_left_wrench);
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20

21 out_des_right_velocity.header.stamp = ros::Time::now();
22 out_des_right_velocity.twist.linear.x =
23 des_right_velocity[0] * scaleFactor;
24 out_des_right_velocity.twist.linear.y =
25 des_right_velocity[1] * scaleFactor;
26 out_des_right_velocity.twist.linear.z =
27 des_right_velocity[2] * scaleFactor;
28 out_des_right_velocity.twist.angular.x =
29 des_right_velocity[3] * scaleFactor;
30 out_des_right_velocity.twist.angular.y =
31 des_right_velocity[4] * scaleFactor;
32 out_des_right_velocity.twist.angular.z =
33 des_right_velocity[5] * scaleFactor;
34

35 out_des_left_velocity.header.stamp = ros::Time::now();
36 out_des_left_velocity.twist.linear.x =
37 des_left_velocity[0] * scaleFactor;
38 out_des_left_velocity.twist.linear.y =
39 des_left_velocity[1] * scaleFactor;
40 out_des_left_velocity.twist.linear.z =
41 des_left_velocity[2] * scaleFactor;
42 out_des_left_velocity.twist.angular.x =
43 des_left_velocity[3] * scaleFactor;
44 out_des_left_velocity.twist.angular.y =
45 des_left_velocity[4] * scaleFactor;
46 out_des_left_velocity.twist.angular.z =
47 des_left_velocity[5] * scaleFactor;
48

49 des_right_velocity_pub.publish(out_des_right_velocity);
50 des_left_velocity_pub.publish(out_des_left_velocity);

For the slave set-points a scaling factor is added in order to fit with the master workspace.

5.5 velocity_integrator node

First, the velocity integrator waits at least 10 seconds for the initial slave pose. Then the main loop
can start, otherwise not.

1 while((meas_init_pose_new_data_flag==false)&&
2 (t_new-t_old <10.0)){ros::spinOnce(); t_new=ros::Time::now().toSec();}
3

4 if(meas_init_pose_new_data_flag==true){ //Integrator can start
5 std::cout<<"Integrator:␣waiting␣start␣pose␣from␣robot
6 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣succeed"<<std::endl;
7

8 in_start_pose_sub.shutdown();//Stop receiving initial pose
9

10 while ( public_node_handler.ok()){ //Main loop
11 ...
12 }
13 }
14 else{ //Integrator can't start
15 std::cout<<"Integrator:␣waiting␣start␣pose␣from␣robot
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16 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣failed␣after␣10␣second␣waiting"<<std::endl;
17 }

The pose of the slave robot is acquired using the following callback function:
1 void in_start_pose_callback(
2 const geometry_msgs::PoseStamped::ConstPtr& msg){
3

4 ROS_INFO_STREAM("in_start_pose_callback");
5

6 pose_kdl.p[0]=msg->pose.position.x;
7 pose_kdl.p[1]=msg->pose.position.y;
8 pose_kdl.p[2]=msg->pose.position.z;
9

10 pose_kdl.M=KDL::Rotation::Quaternion(
11 msg->pose.orientation.x, msg->pose.orientation.y,
12 msg->pose.orientation.z, msg->pose.orientation.w);
13

14 meas_init_pose_new_data_flag=true;
15 }

Similarly the desired velocity to be applied to the slave robot are acquired.
1 void in_twist_callback(const geometry_msgs::TwistStamped::ConstPtr& msg){
2

3 // ROS_INFO_STREAM("in_twist_callback");
4

5 meas_twist[0]=msg->twist.linear.x;
6 meas_twist[1]=msg->twist.linear.y;
7 meas_twist[2]=msg->twist.linear.z;
8 meas_twist[3]=msg->twist.angular.x;
9 meas_twist[4]=msg->twist.angular.y;

10 meas_twist[5]=msg->twist.angular.z;
11 }

In the main loop we first compute the slave pose set-point by integrating the desired velocity, starting
from the initial pose of the robot.

1 t_new=ros::Time::now().toSec();
2 pose_kdl = addDelta(pose_kdl , meas_twist , t_new-t_old);
3 t_old=t_new;

The pose is then stored into a geometry_msgs/PoseStamped message and then published.
1 out_pose_msg.header.stamp=ros::Time::now();
2

3 out_pose_msg.header.frame_id = published_tf_pose_reference_name;
4

5 out_pose_msg.pose.position.x=pose_kdl.p[0];
6 out_pose_msg.pose.position.y=pose_kdl.p[1];
7 out_pose_msg.pose.position.z=pose_kdl.p[2];
8

9 pose_kdl.M.GetQuaternion(out_pose_msg.pose.orientation.x,
10 out_pose_msg.pose.orientation.y, out_pose_msg.pose.orientation.z,
11 out_pose_msg.pose.orientation.w);
12

13 out_pose.publish(out_pose_msg);
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The same pose is also published as a tf_transform as a debugging information.
1 out_pose_transform.setOrigin(
2 tf::Vector3( out_pose_msg.pose.position.x,
3 out_pose_msg.pose.position.y, out_pose_msg.pose.position.z ) );
4

5 out_pose_transform.setRotation( tf::Quaternion(
6 out_pose_msg.pose.orientation.x, out_pose_msg.pose.orientation.y,
7 out_pose_msg.pose.orientation.z, out_pose_msg.pose.orientation.w ));
8

9 out_pose_broadcaster.sendTransform( tf::StampedTransform(
10 out_pose_transform , ros::Time::now(),
11 published_tf_pose_reference_name , published_tf_pose_name ) );
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6 Collision detection

The goal is to compute the distance between the tools and the forbidden regions in order to give
the user useful information about the operative scenario. The concepts behind the implementa-
tion of the collision detection node are explained in the ”Colliding region identification for multi-
master/multi-slave platform” section of the deliverable D3.1 – Multi-modal human-robot interfaces
and architecture for the MULTIROBOTS-SURGERY platform. As a brief overview, the algorithm
for collision detection receives in input:

• the poses of the tools,
• the positions of the trocars, and
• the vertices of the parallelepipeds of the forbidden regions.

This node computes the distances between the tools using a capsule-to-capsule distance computation
function and between the tools and the pelvic bones using a capsule-to-paralellelepiped distance
computation function. For each tool, only the minimum distance is kept; at the end of each cycle,
these distances will be presented as output.

6.1 Collision detection ROS implementation

The collision detection algorithm is implemented in a ROS node using C++, ROS and Eigen libraries
and data types.
The node starts fetching the transformation between the world reference frame and the robots
reference frames. Since the poses of the robots refer to their base reference frames, a transformation
is needed for computing the distances in a common reference frame.

1 t_bones = tfBuffer.lookupTransform("world", "bones_marker_frame",
2 ros::Time(0), ros::Duration(3000.0));
3

4 tr_sbs_link_l = tfBuffer.lookupTransform("world", "mesa_left/sbs_world",
5 ros::Time(0), ros::Duration(3.0));
6

7 tr_sbs_link_r = tfBuffer.lookupTransform("world", "mesa_right/sbs_world",
8 ros::Time(0), ros::Duration(3.0));
9

10 transform_l = tfBuffer.lookupTransform("world", "mesa_left/rcm",
11 ros::Time(0), ros::Duration(3.0));
12

13 transform_r = tfBuffer.lookupTransform("world", "mesa_right/rcm",
14 ros::Time(0), ros::Duration(3.0));
15

16 transform_psm1 = tfBuffer.lookupTransform("world", "PSM1",
17 ros::Time(0), ros::Duration(3.0));
18

19 transform_psm2 = tfBuffer.lookupTransform("world", "PSM2",
20 ros::Time(0), ros::Duration(3.0));

The information about orientation and translation of the transforms are then stored into Eigen
matrixes.
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1 Eigen::Quaternion <double> q_temp=
2 Eigen::Quaternion <double >(tr_sbs_link_l.transform.rotation.w,
3 tr_sbs_link_l.transform.rotation.x,tr_sbs_link_l.transform.rotation.y,
4 tr_sbs_link_l.transform.rotation.z);
5

6 Eigen::Matrix3d rot = q_temp.toRotationMatrix();
7 sbs_l <<rot(0, 0),rot(0, 1),rot(0, 2),tr_sbs_link_l.transform.translation.x,
8 rot(1, 0), rot(1, 1), rot(1, 2), tr_sbs_link_l.transform.translation.y,
9 rot(2, 0), rot(2, 1), rot(2, 2), tr_sbs_link_l.transform.translation.z,

10 0, 0, 0, 1;
11

12 q_temp = Eigen::Quaternion <double >(tr_sbs_link_r.transform.rotation.w,
13 tr_sbs_link_r.transform.rotation.x, tr_sbs_link_r.transform.rotation.y,
14 tr_sbs_link_r.transform.rotation.z);
15 rot = q_temp.toRotationMatrix();
16

17 sbs_r <<rot(0, 0),rot(0, 1),rot(0, 2),tr_sbs_link_r.transform.translation.x,
18 rot(1, 0), rot(1, 1), rot(1, 2), tr_sbs_link_r.transform.translation.y,
19 rot(2, 0), rot(2, 1), rot(2, 2), tr_sbs_link_r.transform.translation.z,
20 0, 0, 0, 1;
21

22 q_temp = Eigen::Quaternion <double >(transform_psm1.transform.rotation.w,
23 transform_psm1.transform.rotation.x, transform_psm1.transform.rotation.y,
24 transform_psm1.transform.rotation.z);
25

26 rot = q_temp.toRotationMatrix();
27 m_psm1<<rot(0,0),rot(0,1),rot(0,2),transform_psm1.transform.translation.x,
28 rot(1, 0), rot(1, 1), rot(1, 2), transform_psm1.transform.translation.y,
29 rot(2, 0), rot(2, 1), rot(2, 2), transform_psm1.transform.translation.z,
30 0, 0, 0, 1;
31

32 q_temp = Eigen::Quaternion <double >(transform_psm2.transform.rotation.w,
33 transform_psm2.transform.rotation.x, transform_psm2.transform.rotation.y,
34 transform_psm2.transform.rotation.z);
35

36 rot = q_temp.toRotationMatrix();
37 m_psm2<<rot(0,0),rot(0,1),rot(0,2),transform_psm2.transform.translation.x,
38 rot(1, 0), rot(1, 1), rot(1, 2), transform_psm2.transform.translation.y,
39 rot(2, 0), rot(2, 1), rot(2, 2), transform_psm2.transform.translation.z,
40 0, 0, 0, 1;
41

42 q_temp = Eigen::Quaternion <double >(t_bones.transform.rotation.w,
43 t_bones.transform.rotation.x, t_bones.transform.rotation.y,
44 t_bones.transform.rotation.z);
45 rot = q_temp.toRotationMatrix();
46 bones << rot(0, 0), rot(0, 1), rot(0, 2), t_bones.transform.translation.x
47 + 0.02,rot(1, 0), rot(1, 1), rot(1, 2), t_bones.transform.translation.y,
48 rot(2, 0), rot(2, 1), rot(2, 2), t_bones.transform.translation.z,
49 0, 0, 0, 1;

From the transformations we obtain the coordinates of the trocars (which are stored into four
Eigen::Vector3d.

1 trocar_ml[0] = transform_l.transform.translation.x;
2 trocar_ml[1] = transform_l.transform.translation.y;
3 trocar_ml[2] = transform_l.transform.translation.z;
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4

5 trocar_mr[0] = transform_r.transform.translation.x;
6 trocar_mr[1] = transform_r.transform.translation.y;
7 trocar_mr[2] = transform_r.transform.translation.z;
8

9 trocar_psm1[0] = transform_psm1.transform.translation.x;
10 trocar_psm1[1] = transform_psm1.transform.translation.y;
11 trocar_psm1[2] = transform_psm1.transform.translation.z;
12

13 trocar_psm2[0] = transform_psm2.transform.translation.x;
14 trocar_psm2[1] = transform_psm2.transform.translation.y;
15 trocar_psm2[2] = transform_psm2.transform.translation.z;

Subsequently, the node collects information about the forbidden regions by reading a file containing
the number NUM of parallelepipeds used for modeling the pelvic bones and the coordinates of their
vertices, one vertex per line, listed with the convention in Figure 11.

Figure 11: Naming convention for parallelepipeds vertices

1 FILE *f = fopen("vertices.txt", "r");
2 fscanf(f, "%d", &NUM);
3 boxes = Eigen::MatrixXd(NUM, 24);
4 Eigen::Matrix4d init_trans;
5 init_trans << 0.0, -1.0, 0.0, 0.0,
6 0.0, 0.0, 1.0, 0.0,
7 -1.0, 0.0, 0.0, 0.0,
8 0.0, 0.0, 0.0, 1.0;
9 Eigen::Vector4d support_tmp;

10 for (int i = 0; i < NUM; i++)
11 {
12 Eigen::Vector3d tmp;
13 for (int c = 0; c < 8; c++)
14 {
15 fscanf(f, "%lf␣%lf␣%lf", &tmp[0], &tmp[1], &tmp[2]);
16 support_tmp[0] = tmp[0] * SCALING;
17 support_tmp[1] = tmp[1] * SCALING;
18 support_tmp[2] = tmp[2] * SCALING;
19 support_tmp[3] = 1.0;
20 support_tmp = bones.inverse() * support_tmp;
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21 support_tmp = (init_trans.inverse() * support_tmp);
22 boxes(i, c * 3) = (support_tmp[0]);
23 boxes(i, c * 3 + 1) = (support_tmp[1]);
24 boxes(i, c * 3 + 2) = (support_tmp[2]);
25 }
26 }
27 fclose(f);

The vertices are stored in a NUM ∗ 24 Eigen matrix, where each row represents a parallelepiped
and the columns are the concatenation of coordinates (x, y, z) of each vertex of the parallelepiped.
After that, the node publishes in ROS a topic called /collision/distances with the result of the
computation:

1 pub_dist=
2 nh.advertise <std_msgs::Float64MultiArray >("/collision/distances",100);

where
1 ros::Publisher pub_dist;

which is defined as a global variable. Since the node computes four distances (one for each tool),
the std_msgs::Float64MultiArray data type is chosen as the data type for the topic. This will
be filled in a pre-determined order: the minimum distance for the left SARAS tool; the minimum
distance for the right SARAS tool; the minimum distance for the first daVinci tool; the minimum
distance for the second daVinci tool.
In order to acquire the tool poses, the node subscribes to the following topics:

1 ros::Subscriber sub_ml = nh.subscribe("/mesa_left/ee_pose", 100,callback1);
2

3 ros::Subscriber sub_mr = nh.subscribe("/mesa_right/ee_pose", 100,callback2);
4

5 ros::Subscriber sub_psm1 =
6 nh.subscribe("/dvrk/PSM1/position_cartesian_current", 100, callback3);
7

8 ros::Subscriber sub_psm2 =
9 nh.subscribe("/dvrk/PSM2/position_cartesian_current", 100, callback4);

These topics are published by the other ROS nodes in the system. Each subscriber registers a
different callback to manage the arrival of new data; these, however, have the same function: they
update the pose of the tool in order to obtain the current scenario. The following snippet shows the
structure of one of the callbacks (which is representative also for the other callbacks).

1 void callback1(const geometry_msgs::PoseStamped::ConstPtr &msg)
2 {
3 ml_ee[0] = msg->pose.position.x;
4 ml_ee[1] = msg->pose.position.y;
5 ml_ee[2] = msg->pose.position.z;
6 Eigen::Vector4d temp;
7 temp << ml_ee[0], ml_ee[1], ml_ee[2], 1;
8 temp = sbs_l * temp;
9 ml_ee << temp[0], temp[1], temp[2];

10 }
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The callback simply reads the current Cartesian position of the tool tip, stores it in a vector and
performs the transformation into the common reference frame. Reading only the position (and
not the orientation) of the tool-tip is enough because for modeling the tool as a capsule only the
coordinates of the end-points (which are the tool tip and the trocar) are required.
Finally the node cycles periodically throwing the callbacks that are waiting in the queue and then
calling the distance computation function.

1 while (ros::ok())
2 {
3 ros::getGlobalCallbackQueue()->callAvailable(ros::WallDuration(0.05));
4 compute_distances();
5 }

With this architecture the node updates all the poses and then computes the minimum distance
of each tool on the current scenario. The cycling period has been chosen in order to have an
updating frequency for the distance computations compatible with the dynamics of the operation
while keeping its impact on the overall system as light as possible.
The function compute_distances is defined as follows:

1 void compute_distances();

It does not take any input parameter because all the variables needed for the computations are
defined as global and also it does not have any return type because it publishes the results directly
on the topic before returning the control to the main function of the node. The function checks
the distance between each couple of tools using the dist_capsule_to_capsule function and if the
new distance is lower than the distances already saved for the tools taken in exam it updates those
values.

1 double distance_tl = 10000, distance_tr = 10000,
2 distance_psm1 = 10000, distance_psm2 = 10000;
3 double dist_temp1 , dist_temp2 , dist_temp3 ,
4 dist_temp4 , dist_temp5 , dist_temp6;
5 int ret, ret_tl, ret_tr, ret_psm1, ret_psm2;
6 Eigen::Vector3d point_tl , point_tr , point_psm1 , point_psm2;
7 Eigen::Vector3d temp1, temp2;
8

9 ret = dist_capsule_to_capsule(ml_ee, trocar_ml , mr_ee, trocar_mr ,
10 r_saras_tool , r_saras_tool , dist_temp1 , temp1, temp2);
11 distance_tl = dist_temp1;
12 distance_tr = dist_temp1;
13 point_tl = temp1;
14 point_tr = temp2;
15 ret_tl = ret;
16 ret_tr = ret;
17

18 ret=dist_capsule_to_capsule(PSM1_ee,trocar_psm1 ,PSM2_ee,trocar_psm2 ,
19 r_davinci_tool , r_davinci_tool , dist_temp2 , temp1, temp2);
20 distance_psm1 = dist_temp2;
21 distance_psm2 = dist_temp2;
22 point_psm1 = temp1;
23 point_psm2 = temp2;
24 ret_psm1 = ret;
25 ret_psm2 = ret;
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26

27 ret = dist_capsule_to_capsule(mr_ee,trocar_mr ,PSM1_ee, trocar_psm1 ,
28 r_saras_tool , r_davinci_tool , dist_temp3 , temp1, temp2);
29 if (dist_temp3 < distance_tr)
30 {
31 distance_tr = dist_temp3;
32 point_tr = temp1;
33 ret_tr = ret;
34 }
35 if (dist_temp3 < distance_psm1)
36 {
37 distance_psm1 = dist_temp3;
38 point_psm1 = temp2;
39 ret_psm1 = ret;
40 }
41

42 ret = dist_capsule_to_capsule(mr_ee,trocar_mr ,PSM2_ee, trocar_psm2 ,
43 r_saras_tool , r_davinci_tool , dist_temp4 , temp1, temp2);
44

45 if (dist_temp4 < distance_tr)
46 {
47 distance_tr = dist_temp4;
48 point_tr = temp1;
49 ret_tr = ret;
50 }
51 if (dist_temp4 < distance_psm2)
52 {
53 distance_psm2 = dist_temp4;
54 point_psm2 = temp2;
55 ret_psm2 = ret;
56 }
57

58 ret = dist_capsule_to_capsule(ml_ee,trocar_ml ,PSM1_ee, trocar_psm1 ,
59 r_saras_tool , r_davinci_tool , dist_temp5 , temp1, temp2);
60

61 if (dist_temp5 < distance_tl)
62 {
63 distance_tl = dist_temp5;
64 point_tl = temp1;
65 ret_tl = ret;
66 }
67 if (dist_temp5 < distance_psm1)
68 {
69 distance_psm1 = dist_temp5;
70 point_psm1 = temp2;
71 ret_psm1 = ret;
72 }
73

74 ret = dist_capsule_to_capsule(ml_ee,trocar_ml ,PSM2_ee, trocar_psm2 ,
75 r_saras_tool , r_davinci_tool , dist_temp6 , temp1, temp2);
76

77 if (dist_temp6 < distance_tl)
78 {
79 distance_tl = dist_temp6;
80 point_tl = temp1;
81 ret_tl = ret;
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82 }
83 if (dist_temp6 < distance_psm2)
84 {
85 distance_psm2 = dist_temp6;
86 point_psm2 = temp2;
87 ret_psm2 = ret;
88 }

After that, the function cycles for each parallelepiped of the forbidden region computing the distance
between each tool and the parallelepiped taken in exam calling the dist_capsule_to_parallelepiped
function and again updating the distance values if a new lower value is computed:

1 for (int i = 0; i < NUM; i++)
2 {
3 Eigen::VectorXd tmp(24);
4 tmp << boxes(i, 0), boxes(i, 1), boxes(i, 2),
5 boxes(i, 3),boxes(i, 4), boxes(i, 5),
6 boxes(i, 6),boxes(i, 7), boxes(i, 8),
7 boxes(i, 9),boxes(i, 10), boxes(i, 11),
8 boxes(i, 12),boxes(i, 13), boxes(i, 14),
9 boxes(i, 15),boxes(i, 16), boxes(i, 17),

10 boxes(i, 18),boxes(i, 19), boxes(i, 20),
11 boxes(i, 21),boxes(i, 22), boxes(i, 23);
12 Eigen::Vector3d vertices[8];
13 vertices[0] << tmp[0], tmp[1], tmp[2];
14 vertices[1] << tmp[3], tmp[4], tmp[5];
15 vertices[2] << tmp[6], tmp[7], tmp[8];
16 vertices[3] << tmp[9], tmp[10], tmp[11];
17 vertices[4] << tmp[12], tmp[13], tmp[14];
18 vertices[5] << tmp[15], tmp[16], tmp[17];
19 vertices[6] << tmp[18], tmp[19], tmp[20];
20 vertices[7] << tmp[21], tmp[22], tmp[23];
21

22 ret = dist_capsule_to_parallelepiped(ml_ee, trocar_ml , vertices,
23 r_saras_tool ,dist_temp1 , temp1, temp2);
24

25 if (dist_temp1 < distance_tl)
26 {
27 distance_tl = dist_temp1;
28 point_tl = temp1;
29 ret_tl = ret;
30 }
31

32 ret = dist_capsule_to_parallelepiped(mr_ee, trocar_mr , vertices,
33 r_saras_tool , dist_temp2 , temp1, temp2);
34

35 if (dist_temp2 < distance_tr)
36 {
37 distance_tr = dist_temp1;
38 point_tr = temp1;
39 ret_tr = ret;
40 }
41 ret = dist_capsule_to_parallelepiped(PSM1_ee, trocar_psm1 , vertices,
42 r_davinci_tool , dist_temp3 , temp1, temp2);
43

44 if (dist_temp3 < distance_psm1)
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45 {
46 distance_psm1 = dist_temp3;
47 point_psm1 = temp1;
48 ret_psm1 = ret;
49 }
50 ret = dist_capsule_to_parallelepiped(PSM2_ee, trocar_psm2 , vertices,
51 r_davinci_tool , dist_temp4 , temp1, temp2);
52

53 if (dist_temp4 < distance_psm2)
54 {
55 distance_psm2 = dist_temp4;
56 point_psm2 = temp1;
57 ret_psm2 = ret;
58 }
59 }

Finally the function publishes the minimum distances following the order already mentioned.
1 std_msgs::Float64MultiArray msg;
2 msg.data.resize(4);
3 msg.data[0] = distance_tl;
4 msg.data[1] = distance_tr;
5 msg.data[2] = distance_psm1;
6 msg.data[3] = distance_psm2;
7 pub_dist.publish(msg);

The function dist_capsule_to_capsule is defined as follows:
1 int dist_capsule_to_capsule(
2 const Eigen::Vector3d& P1, const Eigen::Vector3d& P2,
3 const Eigen::Vector3d& P3, const Eigen::Vector3d& P4,
4 double r1, double r2,
5 double& distance ,Eigen::Vector3d& point_on_capsule1 ,
6 Eigen::Vector3d& point_on_capsule2);

The function takes the coordinates of the two end-points of the first capsule, the coordinates of
the two end-points of the second capsule, the radius of the first capsule, the radius of the second
capsule as proper inputs, while uses three variables passed by reference as inputs to store the results
of computation: (1) the distance between the capsules, (2) the closest point on the first capsule,
and (3) the closest point on the second capsule. The function returns an integer value that can
have these values:

• -1: if the two capsules intersect; in this case the distance is computed and is negative (instead
of zero, to give the user an idea of how much the capsules are intersecting) while the closest
points are both set to (0, 0, 0) by default;

• 0: if the two capsules are tangent; the distance is zero and the closest points are coincident
and computed properly;

• 1: if the two capsules do not intersect; the distance and the closest points are computed
properly;

• 2: if the two capsules are parallel; the distance is computed properly while the closest point
are both set to (0, 0, 0) by default;
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1 int dist_capsule_to_capsule(
2 const Eigen::Vector3d& P1, const Eigen::Vector3d& P2,
3 const Eigen::Vector3d& P3, const Eigen::Vector3d& P4,
4 double r1,double r2,
5 double& distance , Eigen::Vector3d& point_on_capsule1 ,
6 Eigen::Vector3d& point_on_capsule2)
7 {
8 point_on_capsule1 <<0,0,0;
9 point_on_capsule2 <<0,0,0;

10 Eigen::Vector3d di1 = P2 - P1;
11 Eigen::Vector3d di2 = P4 - P3;
12 Eigen::Vector3d di12 = P3 - P1;
13 double D1 = di1.dot(di1);
14 double D2 = di2.dot(di2);
15 double S1 = di1.dot(di12);
16 double S2 = di2.dot(di12);
17 double R = di1.dot(di2);
18 double D = D1*D2-R*R;
19 double u,t,u_t;
20 bool parallel=false;
21 if ((D1<SMALL_NUM && D1>-SMALL_NUM) || (D2<SMALL_NUM && D2>-SMALL_NUM))
22 {
23 if (D1 >SMALL_NUM || D1<-SMALL_NUM)
24 {
25 u =0;
26 t =S1/D1;
27 if(t<SMALL_NUM)
28 t=0;
29 else if (t>1)
30 t=1;
31 }
32 else if (D2 >SMALL_NUM || D2<-SMALL_NUM )
33 {
34 t = 0;
35 u = -S2/D2;
36

37 if (u<SMALL_NUM)
38 u=0;
39 else if(u>1)
40 u=1;
41 }
42 else
43 { using
44 t = 0;
45 u = 0;
46 parallel=true;
47 }
48 }
49 else if (D <SMALL_NUM && D>-SMALL_NUM)
50 {
51 t = 0;
52 u = -S2/D2;
53 if (u<SMALL_NUM)
54 u_t=0;
55 else if(u>1)
56 u_t=1;
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57 else
58 u_t=u;
59

60

61 if (std::abs(u_t - u)>SMALL_NUM )
62 { t = (u_t*R+S1)/D1;
63 if (t<SMALL_NUM)
64 t=0;
65 else if(t>1)
66 t=1;
67

68 u = u_t;
69 }
70 }
71 else
72 {
73

74 t = (S1*D2-S2*R)/D;
75

76 if (t<SMALL_NUM)
77 t=0;
78 else if(t>1)
79 t=1;
80

81 u = (t*R-S2)/D2;
82 if (u<SMALL_NUM)
83 u_t=0;
84

85 else if(u>1)
86 u_t=1;
87 else
88 u_t=u;
89 if (std::abs(u_t - u)>SMALL_NUM )
90 {
91 t = (u_t*R+S1)/D1;
92 if (t<SMALL_NUM )
93 t=0;
94 else if(t>1)
95 t=1;
96

97 u = u_t;
98 }
99 }

100

101 double dist_temp = (di1*t-di2*u-di12).norm();
102 distance=dist_temp -r1-r2;
103 Eigen::Vector3d point_on_ax1 ,point_on_ax2;
104 if(distance <-SMALL_NUM)
105 return -1;
106 else
107

108 {
109 if(!parallel)
110 {
111 point_on_ax1=P1 + di1*t;
112 point_on_ax2=P3+di2*u;
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113 Eigen::Vector3d dir_1_to_2=(point_on_ax2 -point_on_ax1).normalized();
114 point_on_capsule1=point_on_ax1+r1*dir_1_to_2;
115 point_on_capsule2=point_on_ax2 -r2*dir_1_to_2;
116 if((distance<SMALL_NUM && distance >-SMALL_NUM))
117 {
118 distance=0;
119 return 0;
120 }
121 else
122 {
123 return 1;
124 }
125 }
126 else
127 {
128 return 2;
129 }
130

131 }
132 }

As explained in details in the deliverable D3.1 – Multi-modal human-robot interfaces and architecture
for the MULTIROBOTS-SURGERY platform, the dist_capsule_to_capsule function implements
an algorithm for segment-to-segment distance computation by:

• parameterizing the lines containing the segments,
• solving a minimization problem and, finally,
• extending the computation to the capsule-to-capsule case by subtracting to the distance the

radii of the capsules.

The closest points are then computed by projecting the closest points returned by the segment-to-
segment distance algorithm (lying on the segment by definition) on the capsule surface. Mathemat-
ically the problem is:

point_on_capsule1 = point_on_segment1 + r1 ∗ v1
point_on_capsule2 = point_on_segment2 + r2 ∗ v2

where

v1 =
point_on_segment2− point_on_segment1

normusing(point_on_segment2− point_on_segment1)

v2 =
point_on_segment1− point_on_segment2

norm(point_on_segment1− point_on_segment2)

The dist_capsule_to_paralellepipeds function is defined as follows:
1 int dist_capsule_to_parallelepiped(const Eigen::Vector3d& p1,
2 const Eigen::Vector3d& p2,const Eigen::Vector3d vertices[],
3 double r,double& distance ,Eigen::Vector3d& point_on_capsule ,
4 Eigen::Vector3d& point_on_parall)
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The function takes the coordinates of the two end-points of the capsule, the coordinates of the
vertices of the parallelepiped, the radius of the capsule as proper inputs, while uses three variables
passed by reference as inputs to store the results of computation in: (1) the distance between the
capsule and the parallelepiped, (2) the closest point on the capsule, and (3) the closest point on
the parallelepiped. The function returns an integer value that can have these values:

• -1: if the two objects intersects; in this case the distance is computed and is negative (to give
the user an idea of how much the objects are intersecting). The closest points are both set
to (0,0,0) by default;

• 0: if the two objects are tangent; the distance is zero and the closest points are coincident
and computed properly;

• 1: if the two objects do not intersect; the distance and the closest points are computed
properly.

1 int dist_capsule_to_parallelepiped(const Eigen::Vector3d& p1,
2 const Eigen::Vector3d& p2,const Eigen::Vector3d vertices[],
3 double r,double& distance ,Eigen::Vector3d& point_on_capsule ,
4 Eigen::Vector3d& point_on_parall)
5 {
6 double d1,d2,d;
7 Eigen::Vector3d point_c,point_p,point_c1 ,point_p1 ,point_c2 ,point_p2;
8 point_on_capsule <<0,0,0;
9 point_on_parall <<0,0,0;

10 int res1,res2;
11 res1=dist_sphere_to_parallelepiped(p1,vertices,r,d1,point_c1,point_p1);
12 if(res1==-1)
13 {
14 distance=d1;
15 return -1;
16 }
17 res2=dist_sphere_to_parallelepiped(p2,vertices,r,d2,point_c2,point_p2);
18 if(res2==-1)
19 {
20 distance=d2;
21 return -1;
22 }
23 if(d2<d1)
24 {
25 d=d2;
26 point_c=point_c2;
27 point_p=point_p2;
28 }using
29 else
30 {
31 d=d1;
32 point_c=point_c1;
33 point_p=point_p1;
34 }
35 Eigen::Matrix<double ,12,6> lines;
36 lines<< vertices[0][0],vertices[0][1],vertices[0][2],
37 vertices[1][0],vertices[1][1],vertices[1][2],
38 vertices[1][0],vertices[1][1],vertices[1][2],
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39 vertices[2][0],vertices[2][1],vertices[2][2],
40 vertices[2][0],vertices[2][1],vertices[2][2],
41 vertices[3][0],vertices[3][1],vertices[3][2],
42 vertices[3][0],vertices[3][1],vertices[3][2],
43 vertices[0][0],vertices[0][1],vertices[0][2],
44 vertices[0][0],vertices[0][1],vertices[0][2],
45 vertices[4][0],vertices[4][1],vertices[4][2],
46 vertices[4][0],vertices[4][1],vertices[4][2],
47 vertices[7][0],vertices[7][1],vertices[7][2],
48 vertices[7][0],vertices[7][1],vertices[7][2],
49 vertices[3][0],vertices[3][1],vertices[3][2],
50 vertices[4][0],vertices[4][1],vertices[4][2],
51 vertices[5][0],vertices[5][1],vertices[5][2],
52 vertices[5][0],vertices[5][1],vertices[5][2],
53 vertices[6][0],vertices[6][1],vertices[6][2],
54 vertices[6][0],vertices[6][1],vertices[6][2],
55 vertices[7][0],vertices[7][1],vertices[7][2],
56 vertices[1][0],vertices[1][1],vertices[1][2],
57 vertices[5][0],vertices[5][1],vertices[5][2],
58 vertices[2][0],vertices[2][1],vertices[2][2],
59 vertices[6][0],vertices[6][1],vertices[6][2];
60

61 for (int i=0;i<12;i++)
62 {
63 double d_c;
64 Eigen::Vector3d cap1,cap2;
65 int res=dist_capsule_to_capsule(p1,p2,
66 Eigen::Vector3d(lines(i,0),lines(i,1),lines(i,2)),
67 Eigen::Vector3d(lines(i,3),lines(i,4),lines(i,5)),
68 r,0,d_c,cap1,cap2);
69 if(res ==-1)
70 {
71 distance=d_c;
72 point_on_capsule <<0,0,0;
73 point_on_parall <<0,0,0;
74 return -1;
75 }
76

77 if(d_c<d)
78 {
79 d=d_c;
80 point_c=cap1;
81 point_p=cap2;
82 }
83 }
84 distance=d;
85 point_on_capsule=point_c;
86 point_on_parall=point_p;
87

88 if(distance >SMALL_NUM)
89 return 1;
90 else
91 return 0;
92

93

94 }
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The function checks the distance between the capsule and all the faces and the edges of the
parallelepiped; the distance between the capsule and the faces is computed calling the function
dist_sphere_to_parallelepiped on both the end-point while the distance between the cap-
sule and the edges is computed calling the dist_capsule_to_capsule function on each edge,
considering an edge as a capsule with the radius equal to 0.
The dist_sphere_to_parallelepiped function is defined as follows:

1 int dist_sphere_to_parallelepiped(const Eigen::Vector3d& s,
2 const Eigen::Vector3d vertices[],double r,double& distance ,
3 Eigen::Vector3d& point_on_sphere ,Eigen::Vector3d& point_on_parall);

The function takes the coordinates of the center of the sphere, the coordinates of the vertices of
the parallelepiped, the radius of the sphere as proper inputs, while uses three variables passed by
reference as inputs to store the results of computation in the following order: (1) the distance
between the sphere and the parallelepiped, (2) the closest point on the sphere, and (3) the closest
point on the parallelepiped. The function returns an integer value with the following meanings:

• -1: if the two objects intersects; in this case the distance is computed and is negative (to give
the user an idea of how much the objects are intersecting).The closest points are both set to
(0, 0, 0) by default;

• 0: if the two objects are tangent; the distance is zero, the closest points coincide and are
computed properly;

• 1: if the two objects do not intersect; the distance and the closest points are computed
properly.

1 int dist_sphere_to_parallelepiped(const Eigen::Vector3d& s,
2 const Eigen::Vector3d vertices[],double r,
3 double& distance ,Eigen::Vector3d& point_on_sphere ,
4 Eigen::Vector3d& point_on_parall)
5 {
6 point_on_sphere <<0,0,0;
7 point_on_parall <<0,0,0;
8 Eigen::Vector3d origin,x,y,z;
9 double roll,pitch,yaw;

10

11 get_parall_frame(vertices ,origin,x,y,z);
12 vers2rpy(x,y,z,roll,pitch,yaw);
13 Eigen::Matrix3d R=(Eigen::AngleAxisd(roll,Eigen::Vector3d::UnitX())
14 *Eigen::AngleAxisd(pitch,Eigen::Vector3d::UnitY())
15 *Eigen::AngleAxisd(yaw,Eigen::Vector3d::UnitZ())).toRotationMatrix();
16 Eigen::Matrix3d inv=R.inverse();
17 Eigen::Vector3d s_t=inv*s-origin;
18 Eigen::Vector3d vertices_temp[8];
19 for (int i=0;i<8;i++)
20 {
21 vertices_temp[i]=inv*vertices[i] -origin;
22 }
23 double max_x,max_y,max_z;
24 max_x=vertices_temp[1][0];
25 max_y=vertices_temp[4][1];
26 max_z=vertices_temp[3][2];
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27

28 double dx,dy,dz;
29 Eigen::Vector3d temp;
30 temp<<-s_t[0],0,s_t[0]-max_x;
31 dx=temp[0];
32 if(temp[1]>dx)
33 dx=temp[1];
34 if(temp[2]>dx)
35 dx=temp[2];
36 temp<<-s_t[1],0,s_t[1]-max_y;
37 dy=temp[0];
38 if(temp[1]>dy)
39 dy=temp[1];
40 if(temp[2]>dy)
41 dx=temp[2];
42 temp<<-s_t[2],0,s_t[2]-max_z;
43 dz=temp[0];
44 if(temp[1]>dz)
45 dy=temp[1];
46 if(temp[2]>dz)
47 dx=temp[2];
48 distance=Eigen::Vector3d(dx,dy,dz).norm()- r;
49 if(distance < SMALL_NUM)
50 return -1;
51

52 if(s_t[0]>SMALL_NUM)
53 dx=-dx;
54 if(s_t[1]>SMALL_NUM)
55 dy=-dy;
56 if(s_t[2]>SMALL_NUM)
57 dz=-dz;
58 Eigen::Vector3d direz= Eigen::Vector3d(dx,dy,dz).normalized();
59 point_on_sphere=s_t+r*direz;
60

61

62 point_on_parall=point_on_sphere+distance*direz;
63 point_on_sphere=R*point_on_sphere+origin;
64 point_on_parall=R*point_on_parall+origin;
65 if(distance >SMALL_NUM)
66 return 1;
67

68 return 0;
69

70 }

This function computes the distance between an end-point of the axis of the capsule and the faces of
the parallelepipeds modeling the point as a sphere, since it is the center of the hemispherical termi-
nation of the capsule. Given the chosen naming convention for the vertices of the parallelepipeds, it
is easy to align both the sphere and the parallelepiped to a conventional reference frame. This allows
to relate the position of the end-point to the parallelepipeds which leads to improved computation
efficiency. These closest points, when unique, are computed as follows:

point_on_sphere = S + r ∗ dir;
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point_on_parall = point_on_sphere+ distance ∗ dir;

where S is the center of the sphere,distance is the output distance and dir is an unit vector whose
components are the normalized distance components which are computed in the algorithm. Since
both dist_capsule_to_capsule and dist_sphere_to_parallelepiped functions can compute
the closest points on the surfaces, also dist_capsule_to_parallelepiped function can compute
them.
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7 Visual Collision Feedback

The system implements an augmented reality visual collision feedback to convey information re-
garding the collision events computed in the ROS node presented in Section 6. The basic concepts
behind 3D information projection in the 2D plane is presented in the “Colliding Regions Display-
ing” section of deliverable D3.1 – Multi-modal human-robot interfaces and architecture for the
MULTIROBOTS-SURGERY platform. This implementation follows the color-coding convention to
represent the information regarding collision events as provided by the collision detection node.

7.1 Visualization Framework ROS Implementation

The described visual feedback functionality is provided by a ROS nodelet, which is a high-performance
event-driven spin of the standard ROS node. It employs multi-threaded subscribers on image and
tool pose topics and acquires the transforms between the latter and the camera frame evaluated in
the calibration phase (Section 4). By using a nodelet, the time required for data transfer with the
system is reduced thanks to a pre-defined zero-copy policy; consequently, the computation appears
transparent to the user’s perception.
The main nodelet class is defined as:

1 class VisualFeedback : public nodelet::Nodelet
2 {
3 public:
4 VisualFeedback();
5

6 virtual ~VisualFeedback();
7

8 ros::NodeHandle *nh;
9 image_transport::ImageTransport *it;

10

11 private:
12 virtual void onInit();
13

14 void onLeftPoseReceived(const geometry_msgs::PoseStamped::ConstPtr &msg);
15 void onLeftImageReceived(
16 const sensor_msgs::Image::ConstPtr &msg);
17

18 void onRightPoseReceived(
19 const geometry_msgs::PoseStamped::ConstPtr &msg);
20 void onRightImageReceived(
21 const sensor_msgs::Image::ConstPtr &msg);
22

23 void onInfoReceived(
24 const std_msgs::Float64MultiArray::ConstPtr &msg);
25

26 void processCameraInfo(
27 const sensor_msgs::CameraInfo &cam_info , const int cam);
28 // cam = 0 -> LEFT; cam = 1 -> RIGHT
29 void drawLines(cv::Mat &image, const int cam);
30

31 private:
32 // ros workers
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33 image_transport::Subscriber left_image_sub_;
34 image_transport::Subscriber right_image_sub_;
35

36 ros::Subscriber left_pose_sub_;
37 ros::Subscriber right_pose_sub_;
38

39 ros::Subscriber info_sub_;
40

41 image_transport::Publisher left_image_pub_;
42 image_transport::Publisher right_image_pub_;
43

44 tf2_ros::Buffer tfBuffer;
45 tf2_ros::TransformListener tfListener;
46

47 // stored data
48 sensor_msgs::CameraInfo left_cam_info_;
49 sensor_msgs::CameraInfo right_cam_info_;
50

51 cv_bridge::CvImagePtr left_capture_;
52 cv_bridge::CvImagePtr right_capture_;
53

54 cam_params cam_param_[2];
55 std::vector<double> collison_distances;
56 CvSize sz_[2];
57 std::vector<std::vector<cv::Point3f>> points;
58

59 cv::Scalar colors[2];
60

61 // ros time
62 ros::Time start_time;
63 ros::Time current_time;
64 ros::Timer left_pose_timer;
65 ros::Timer right_pose_timer;
66

67 // utilities
68 std::mutex mut_pose;
69 std::mutex mut_collision;
70 };

It declares the subscribers for left and right images, poses, for the collision distances and the transform
listener for the tools to camera roto-translation matrix. It declares also two mutex for sharing
variables between multiple threads. Finally, it declares the image publishers which transmit the
left/right augmented reality images towards the virtual reality headset. Information is drawn on the
images as sets of circles and lines using the namesake OpenCV drawing functions circle and line
delimited by the projected tool points.

1 void VisualFeedback::drawLines(cv::Mat &image, const int cam)
2 {
3 // point order has to be: [left_ee , right_ee , left_shaft , right_shaft]
4 cv::Matx31d trasl;
5 trasl(0, 0) = cam_param_[cam].P.col(3)(0, 0) / 1e3;
6 trasl(1, 0) = cam_param_[cam].P.col(3)(1, 0) / 1e3;
7 trasl(2, 0) = cam_param_[cam].P.col(3)(2, 0) / 1e3;
8 cv::Matx31d rvec;
9 rvec(0, 0) = 0.0;
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10 rvec(1, 0) = 0.0;
11 rvec(2, 0) = 0.0;
12 cv::Matx33d K = cam_param_[cam].P.get_minor <3, 3>(0, 0);
13 // cv::Rodrigues(cv::Matx33d::eye(), rvecR);
14

15 std::vector<cv::Point3f> left_in_points(2);
16 std::vector<cv::Point3f> right_in_points(2);
17 if (mut_pose.try_lock())
18 {
19 left_in_points = points.at(0);
20 right_in_points = points.at(1);
21 mut_pose.unlock();
22 }
23 std::vector<cv::Point2f> left_out_points;
24 std::vector<cv::Point2f> right_out_points;
25 cv::projectPoints(
26 left_in_points , rvec, trasl,
27 K, cv::noArray(), left_out_points);
28 cv::projectPoints(
29 right_in_points , rvec, trasl,
30 K, cv::noArray(), right_out_points);
31

32 cv::Point2i left_img_shaft_1(left_out_points.at(0));
33 cv::Point2i left_img_shaft_2(left_out_points.at(1));
34 cv::Point2i right_img_shaft_1(right_out_points.at(0));
35 cv::Point2i right_img_shaft_2(right_out_points.at(1));
36

37 bool left_in_borders = check_perimeter(
38 left_img_shaft_2 ,
39 cam_param_[cam].width,
40 cam_param_[cam].height);
41 bool right_in_borders = check_perimeter(
42 right_img_shaft_2 ,
43 cam_param_[cam].width,
44 cam_param_[cam].height);
45

46 cv::Scalar l_color(130, 255, 0);
47 cv::Scalar r_color(130, 255, 0);
48

49 if (mut_collision.try_lock())
50 {
51 l_color = colors[0];
52 r_color = colors[1];
53 mut_collision.unlock();
54 }
55 if (l_color != cv::Scalar(0,0,0))
56 {
57 if (left_in_borders)
58 {
59 cv::line(image,
60 left_img_shaft_1 , left_img_shaft_2 ,
61 l_color, 3);
62 cv::circle(image, left_img_shaft_1 , 1.5, l_color, 1.5);
63 cv::circle(image, left_img_shaft_2 , 1.5, l_color, 1.5);
64 }
65 else
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66 {
67 cv::circle(image, left_img_shaft_2 , 2, l_color, 2);
68 }
69 }
70 if (r_color != cv::Scalar(0,0,0))
71 {
72 if (right_in_borders)
73 {
74 cv::line(image,
75 right_img_shaft_1 , right_img_shaft_2 ,
76 r_color, 3);
77 cv::circle(image, right_img_shaft_1 , 1.5, r_color, 1.5);
78 cv::circle(image, right_img_shaft_2 , 1.5, r_color, 1.5);
79 }
80 else
81 {
82 cv::circle(image, right_img_shaft_2 , 2, r_color, 2);
83 }
84 }
85 }

Color information is read from the ROS topic message containing the evaluated set of distances and
shared with the draw function via mutex; a parametric collision threshold discriminates between the
three operational regions.

86 void VisualFeedback::onInfoReceived(
87 const std_msgs::Float64MultiArray::ConstPtr &msg)
88 {
89 collison_distances = msg->data;
90 if (mut_collision.try_lock())
91 {
92 // left/right tools
93 for (int i = 0; i < 2; ++i)
94 {
95 if (collison_distances.at(i) <= COLLISION_THRESHOLD)
96 {
97 // RED
98 colors[i] = cv::Scalar(255, 76, 0);
99 }

100 else if (collison_distances.at(i) > COLLISION_THRESHOLD
101 && collison_distances.at(i) < WARNING_THRESHOLD)
102 {
103 // YELLOW
104 colors[i] = cv::Scalar(0, 255, 243);
105 }
106 else
107 {
108 // GREEN
109 colors[i] = cv::Scalar(130, 255, 0);
110 }
111 }
112 // collision_distance index 2 & 3 are for PSM1 and PSM2
113 mut_collision.unlock();
114 }
115 }
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8 Contact Forces Estimation

As presented in section Vision based force sensor of deliverable D3.1 – Multi-modal human-robot
interfaces and architecture for the MULTIROBOTS-SURGERY platform, the system evaluates con-
tact forces by analyzing the images taken from the endoscopic stereo camera and reflects them
on the user; this allows to avoid using external force sensors on the tooltips of the laparoscopy
instruments without removing this useful feedback for the assistant surgeon. Information about the
contact forces is transmitted via a custom ROS message defined as

116 float64 depth
117 geometry_msgs/Vector3 direction

where depth indicates the amount of estimated contact penetration with vector direction to
provide the 3D contact location in the environment. With this information, the ROS node evaluates
the contact force separately for each laparoscopy instrument as an elastic interaction with constant
Kskin; the evaluation is computed as follows:

118 vnorm = sqrt(
119 direction[0]*direction[0] +
120 direction[1]*direction[1] +
121 direction[2]*direction[2]);
122 geometry_msgs::Twist msg;
123 msg.linear.x = depth*Kskin*direction[0]/vnorm;
124 msg.linear.y = depth*Kskin*direction[1]/vnorm;
125 msg.linear.z = depth*Kskin*direction[2]/vnorm;
126 msg.angular.x = 0.0;
127 msg.angular.y = 0.0;
128 msg.angular.z = 0.0;

The force is, then, published as a twist message at a rate of 60Hz.

57



D7.2 – SW/HW architecture of the MRS platform

9 Conclusions

This deliverable collects useful information about software and hardware aspects of the MULTIROBOTS-
SURGERY platform. Several pieces of code are inserted to explain how the theoretical results
described in other deliverables are implemented within the SARAS architecture.
This deliverable will be exploited as a reference for further improvements of the software and the
hardware, and as a starting point for the deliverables D7.3 – Software/Hardware architecture for
the SOLO-SURGERY platform and D7.4 – Software/Hardware architecture for the LAPARO2.0-
SURGERY platform due at months 24 and 36, respectively.
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