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ABSTRACT
“Humans at rest tend to stay at rest. Humans in motion tend to cross
the road – Isaac Newton.” Even though this response is meant to be
a joke to indicate the answer is quite obvious, this important feature
of real world crowds is rarely considered in simulations. Answering
this question involves several things such as how agents balance be-
tween reaching goals, avoid collisions with heterogeneous entities
and how the environment is beingmodeled. As part of a preliminary
study, we introduce a reinforcement learning framework to train
pedestrians to cross streets with bidirectional traffic. Our initial
results indicate that by using a very simple goal centric representa-
tion of agent state and a simple reward function, we can simulate
interesting behaviors such as pedestrians crossing the road through
crossings or waiting for cars to pass.
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1 INTRODUCTION
The world around us is animated. We experience and interact with
human crowds daily in many places such as streets, workplaces,
shopping malls, football stadiums or concerts. Humans in crowds
participate in various types of interactions with various entities
such as other humans, cars and public transportation. The dynamics
of crowd motion and the richness of these interactions can signif-
icantly impact the ambiance and believability of a scene, and are
thus a crucial element of computer generated environments used
in computer games, movies, urban studies, safety, traffic control
and management and autonomous driving. Despite some really
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Figure 1: Agent state is defined relative to its current goal
and consists of consecutive agent observations; these are
found using three distinct sets of rays (vehicles, roads and
crossings).

high quality results, most of these systems do not take into account
important heterogeneous interactions between humans and traffic
such as pedestrians crossing the streets. Moreover, research has
shown that autonomous vehicles could potentially decrease road
accidents that are caused by human error, by up to 80% by 20401.
The development of safe autonomous vehicles and road networks
requires an in-depth analysis of the interaction of vehicles, pedes-
trians and the environment. In this work, we show initial results of
a deep reinforcement learning based framework to train agents to
cross streets with traffic. Our framework is able to simulate pedes-
trian street crossing behavior under various conditions without any
explicit knowledge of the rules that govern this behavior.

2 RELATEDWORK
Crowd simulation techniques can broadly be categorized as macro-
scopic or microscopic. In the macroscopic approaches, crowds are
modeled as a whole with no distinction of the individuals; these
methods fail to simulate variety in motion and behaviours. Mi-
croscopic approaches on the other hand consider each individual
separately allowing for more variety and aim to get emergent global
behaviour. Interested readers can refer to [Pelechano et al. 2016] for
a more comprehensive discussion on crowd simulation techniques.
Of particular interest to this work are the microscopic data-driven
models; the promise here is that agents will “learn” how to behave
from real-world examples [Charalambous and Chrysanthou 2014;
Lee et al. 2007; Lerner et al. 2007]. Some techniques use data to learn
parameter values for simulators [Moussaïd et al. 2010; Paris et al.
2007; Pettré et al. 2009]. Recently, several authors proposed Rein-
forcement Learning approaches to learn crowd simulation policies
by simulation [Lee et al. 2018; Long et al. 2017].

Rasouli et al. [2017] introduced datasets of interactions between
pedestrians and human-driven vehicles. Most studies agree that
pedestrian’s crossing decision depends mostly on vehicle dynamics
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Figure 2: Training environment.

which can be summarized using the time to collision (TTC) param-
eter [Markkula et al. 2018]. [Schneemann and Gohl 2016] show
that vehicle speed, is the most determinant factor of pedestrian’s
decision process. In addition to car dynamics, non-verbal commu-
nication between drivers and pedestrians was examined [Rasouli
et al. 2017]. For instance, pedestrians intending to cross a road, seek
to have eye contact communication with the oncoming vehicle’s
driver in order to agree if the driver will yield. Others showed that
crossing behavior also depends on features such as age, gender or
group size[Gorrini et al. 2016].

3 OVERVIEW
We propose a Reinforcement Learning (RL) framework to train
agents to cross streets.

The state of an agent is defined in a goal centric 2D-local coordi-
nate system; i.e., located at the current position of the agent with
a y-axis that is aligned towards the current goal of the agent Fig-
ure 1. We found that defining the state in a goal centric system
is a) more stable than defining it using the agent’s velocity, b) it
converges faster and c) this state representation generalizes better
than a global representation of state. The agent perceives the envi-
ronment in 220 degrees using three distinct batches of 13 rays that
record closest distances towards a) cars, b) streets and c) crosswalks.
Additionally, we record if the agent is currently on a crosswalk or
on a street. Three such consecutive observations define the agent
state s ∈ R123; this representation indirectly encodes the relative
movement of the agent as compared to cars, streets and crosswalks.
An action a ∈ R2 in our framework is velocity that is relative to the
agent’s local coordinate system.

To learn in the RL setting, an agent interacts with an environment
over a sequence of episodes trying to maximize expected cumula-
tive rewards. We employ a simple as possible environment that will
allow us to test different ideas and allow to incrementally extend
the learning system to more complex behaviors and environments.
We initialize a 25m ∗ 25m environment with two bidirectional roads
(Figure 2). We initialize cars with random speeds v ∈ [1, 10]m/s;
these cars decelerate a) when they approach slower moving cars
and b) when they reach a crosswalk. When cars leave one side of
the environment, they are translated to the opposite side with ran-
domized speed to help in generalization. We concurrently train 24
agents in similar environments using Proximal Policy Optimization
(PPO) [Schulman et al. 2017]. At each episode, agents and goals are
randomly placed in the environment. An episode finishes when

an agent a) reaches its goal, b) hits a car, c) leaves the bounds of
the environment or d) does 1000 simulation steps (20 seconds of
simulation time) failing to reach its goal. Agents make 10 decisions
per second.

The reward function R(s ,a, s ′) of transitioning between states s
and s ′ by taking an actiona defines the task. In the crossing scenario,
agents need to a) successfully reach their goals, b) avoid collisions
with cars, c) prefer to move through crossings and d) prefer to move
towards their goals. We give a reward of -1 if the agent collided
with a car and 0.5 if the agent reached its goals. In any other case
we define R(s ,a, s ′) = Rl + Rr + Rc + Rдm + Rд . Rl = −0.0001 is a
living penalty that motivates agents to move instead of standing
still, Rc = 0.001 is a reward if the agent is on a crossing, Rr = 0.002
is a penalty if the agent is on a road and Rд = 0.0001 ∗ gpr rewards
or punishes how much the agent progressed towards the goal (gpr
is the difference in distance towards the goal between consecutive
decisions of the agent.).

4 DISCUSSION
Initial results are very promising; we demonstrate agents with
interesting behaviors such as the ones we described in the previous
sections. We refer the interested reader to the accompanying video.
This is preliminary work and many things need to be considered
such as more complex environments and interactions.
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