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Graph Laplacian is a popular tool for analyzing graphs, particularly in graph par-
titioning and clustering. Given a notion of similarity (via an adjacency matrix),
graph clustering refers to identifying different groups such that vertices in the
same group are more similar compared to vertices across different groups. Data
clustering can be reformulated in terms of a graph clustering problem when the
given set of data is represented as a graph, also known as similarity graph. In
this context, eigenvectors of the graph Laplacian are often used to obtain a new
geometric representation of the original data set that generally enhances clus-
ter properties and improves cluster detection. In this work, we apply a bootstrap
algebraic multigrid (AMG) method that constructs a set of vectors associated
with the graph Laplacian. These vectors, referred to as algebraically smooth
ones, span a low-dimensional Euclidean space, which we use to represent the
data, enabling cluster detection both in synthetic and in realistic well-clustered
graphs. We show that, in the case of a good quality bootstrap AMG, the computed
smooth vectors employed in the construction of the final AMG operator, which
by construction is spectrally equivalent to the originally given graph Laplacian,
accurately approximate the space in the lower portion of the spectrum of the pre-
conditioned operator. Thus, our approach can be viewed as a spectral clustering
technique associated with the generalized spectral problem (Laplace operator
versus the final AMG operator), and hence, it can be seen as an extension of the
classical spectral clustering that employs a standard eigenvalue problem.
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1 INTRODUCTION

Our capability to understand complex systems in many areas, such as biology, social science, medicine, and technology,
is largely based on the science of networks and their representation in terms of graphs. Let X = {x1,…, xn} and W =
(wij)i, j= 1,… ,n, be a set of data and a matrix of nonnegative entries corresponding to some measure of similarity between
pairs of data, respectively. A way to represent the above set of data is the similarity graph, that is, a weighted undirected
graph G = (V,E,W), where the vertex set V consists of indices of the given data set, the edge set E corresponds to
connected data so that (i, j) ∈ E iff wij > 0, and W is the edge weight matrix. The cardinality or size of G is the dimension|V| = n of V. A very popular and powerful tool for studying the graph G is its Laplacian matrix, also known as graph
Laplacian, that is, L = D − W ∈ n×n, where D = diag(di)i= 1,… ,n, with di =

∑n
𝑗=1 wi𝑗 , is the diagonal matrix of weighted
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vertex degrees. We observe that L is a symmetric, positive semidefinite M-matrix, and its spectrum is a valuable tool for
studying the graph, eg, we note that rank(L) = n − c(G), where c(G) is the number of connected components of G.1

Real-life networks, such as social networks, biochemical networks, and information networks, generally have
well-expressed community structure, ie, they have a regular structure where we can identify groups or clusters of vertices
with many edges among vertices inside the group and only few connections among vertices in different groups. This fea-
ture and the capability of automatically detecting such groups have important implications for our deep understanding of
the networks. Given a graph partition V1,…,VK, that is, K nonempty sets V1,…,VK, so that Vk ⊂ V, Vk ∩ Vl = ∅,∀k ≠ l
and V1 ∪· · ·∪ VK = V, let W(Vk,Vk) =

∑
i∈Vk ,𝑗∈Vk

wi𝑗 be, where Vk is the complement of Vk in V. It is well-known that a
graph partition, which minimizes the following edge-cut functional:

RatioCut(V1,…,VK) =
1
2

K∑
k=1

W(Vk,Vk)|Vk| , (1)

can be obtained by computing the first K eigenvectors corresponding to the first K smallest eigenvalues of L.2 We observe
that a graph partition that minimizes (1) corresponds to a partition that minimizes the weight of the edges between
two different sets and maximizes the number of the vertices within a set. The above problem is known as the min-
cut problem in graph theory and is a widely used formulation for spectral clustering exploiting the eigenspace of graph
Laplacian as low-dimensional geometric space for graph embedding and analysis. There are many approaches to cluster-
ing, and for exhaustive reviews of methods and applications, we refer the reader to the works of Schaeffer,3 Fortunato,4

and Nascimento and de Carvalho.5

In order to avoid some technical details with the semidefiniteness of L, in what follows, we consider the graph Laplacian
of a connected graph and eliminate singularity by a rank-1 update of the matrix LS = L + 𝜆 e · eT , where e is a vector
of dimension n having nonzero components (unit values) only for the pair of indices i and j corresponding to a single
arbitrary edge (i, j) ∈ E. Note that, in the case of graphs with more than one connected component, we apply our method
to each of its connected components.

In this work, we propose to use as a new space for graph embedding, the space spanned by the algebraically smooth
vectors of the graph Laplacian, associated with an adaptive algebraic multigrid (AMG) method for solving linear systems.
More specifically, we generate a sequence of m vectors q1,…,qm, where each new vector qk is computed on the basis of the
previously computed ones qj, j = 1,…, k − 1. These k − 1 vectors are incorporated in k − 1 AMG hierarchies and define a
composite AMG solver B ∶= Bk− 1 composed of k − 1 V-cycles. The solver B is applied in a stationary iteration method to
solve the trivial system LSx = 0 starting with a random initial guess. By monitoring the error (note that the exact solution
is x = 0, so access to the error is available), we can very accurately measure the convergence rate of that composite AMG
method. If the method has not reached a prescribed quality (in terms of desired convergence factor), the iteration process
exposes an algebraically smooth vector in the lower portion of the spectrum of B−1LS, namely, the most recent iterate.
That iterate (after normalization) gives rise to the new vector qk. In the next step k, we build one more AMG hierarchy
using qk to guide the AMG process and define the new composite solver B ∶= Bk, and repeat. The process continues
until the method reaches a desired prescribed convergence factor. It is possible to show that the space spanned by the
above vectors gives an accurate approximation to the lower portion of the spectrum of a suitable generalized eigenvalue
problem associated with LS. Using this space for the graph embedding, a standard K-means algorithm6 is applied for data
clustering. This classifies our method as a spectral clustering one.

We evaluate the accuracy of the proposed methodology by comparing the estimated clustering with the outcome of
some popular clustering algorithms available in the R software framework.7 The comparison is performed by measuring
modularity function obtained by the different algorithms, as well as standard clustering similarity measures,8,9 such as
Variation of Information (VI). Experiments are carried out on a large set of similarity graphs coming both from commonly
used benchmarks and from real-life data sets.

This paper is organized as follows. In Section 2, we provide a brief background on spectral clustering exploiting the
graph Laplacian and describe some basic algorithms and quality metrics for clustering. In Section 3, we introduce the
concept of algebraically smooth vectors for graph Laplacian and discuss the rationale of our method for computing an
efficient low-dimensional graph representation as well as its relation with standard spectral clustering techniques. In
Section 4, we describe some main features of the data sets used for demonstrating the feasibility of our method as a data
clustering tool, while Section 5 includes some discussion on the obtained results. Concluding remarks and future work
are summarized in Section 6.
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2 BACKGROUND

2.1 Laplacian eigenvectors and graph partitioning
Given a partition V1,…,VK, let hk = (h1k,…, hnk)T be the K vectors that map the graph vertices to the partition sets,
defined as

hik =

{
1∕

√|Vk|, if xi ∈ Vk

0, otherwise
i = 1,…,n; k = 1,…,K. (2)

Let H ∈ n×K be the matrix whose columns are the K mapping vectors; H has orthonormal columns, that is, HTH = I,
where I is the identity matrix of dimension K. It is simple to show the following equalities2:

hT
k Lhk = 1

2
W(Vk,Vk)|Vk| = (HTLH)kk,

then, it holds

RatioCut(V1,…,VK) =
K∑

k=1
hT

k Lhk =
K∑

k=1
(HTLH)kk = Tr(HTLH),

where Tr(·) is the trace of a matrix. Therefore, the minimization of (1) can be reformulated in terms of the following trace
minimization problem:

min
V1,…,VK

Tr(HTLH), subject to HTH = I, with columns of H defined as in (2).

In practice, we relax the constraint (2) for the vectors hk, allowing them to take arbitrary real values, the solution of this
relaxed minimization problem is obtained by choosing for hk the first K eigenvectors of L. These K eigenvectors are used
as coordinate vectors for the graph vertices, which allows to apply standard spatial clustering algorithms, such as the
well-known K-means. It is known that, in the case of well-clustered graphs, ie, where communities are well separated,
the above spectral representation of the graph works quite well, giving a good approximation of optimal partitioning.10

We note that the above formulation penalizes clustering in which either of the sets is small and favors balanced divisions
over unbalanced ones; therefore, objective functionals alternative to (1), which correspond to normalized versions of
Laplacian, are often used in practice; see the works of von Luxburg2 and Newman11 for a discussion. We point out here
that our method can similarly be applied to each such symmetric positive definite (s.p.d.) versions of modified Laplacian
matrix.

2.2 K-means algorithm
After embedding (ie, assigning coordinates to each vertex of the graph), the problem of clustering reduces to data partition
in a Euclidean space. This is one of the oldest and most important task in computational geometry; it can be formulated
in terms of the K-means problem: given an integer K and a set of n data points in Rnc (nc ≪ n), the objective is to choose
K centers that minimize the total squared distance between each point and its closest center. The K-means algorithm is
a local search optimization method.6 It seeks to find a partition V1,…,VK of K circular sets with centers c1,…, cK, which
minimizes the sum of the squared Euclidean distance between xi ∈ Rnc and the center of the set to which it is assigned

K∑
k=1

∑
xi∈Vk

||xi − ck||2.
The K-means algorithm, described in Algorithm 1, starts with K arbitrary centers, typically chosen uniformly at random
from the data points. Each point is then assigned to the nearest center, and each center is recomputed as the center of
mass of all points assigned to it: (ck)𝑗 = 1∕|Vk|∑xi∈Vk

(xi)𝑗 ∀𝑗 = 1,…,nc. This version of the algorithm provides a simple
and fast method for spatial clustering, although it offers no approximation guarantees; indeed, the final result largely
depends on the initial centers and it can lead to a poor approximation of the global minimum of the objective function;
however, the method is still among the widely used ones in practice after applying spectral embedding of the graphs.2
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2.3 Quality metrics
In this work, we focus on the feasibility of our method in obtaining good quality clusterings. In network science, it is
important to be able to analyze the quality of clustering algorithms and compare different methods. To accomplish this,
we rely on some standard quality metrics and refer the reader to the work of Carissimo et al9 for specific discussion and
methodologies for sensitivity analysis.

A well-accepted popular measure of the quality of graph partitioning is the modularity functional.11 It is defined as the
fraction of the edges that fall within the groups minus the expected value of such fraction if edges were distributed at
random. Let A be the adjacency matrix of our graph G. Given a partition of the graph and denoted by Vi, the set from
the partition to which vertex i is assigned, the number of edges that fall within the sets, for this particular partition, is
equal to 1∕2

∑
i𝑗Ai𝑗𝛿ViV𝑗

, where 𝛿ViV𝑗
is the Kronecker symbol. Suppose that, keeping the total number of edges the same

as the original graph and also preserving the degree of every vertex, we reposition the edges at random. Let Pi𝑗 =
kik𝑗
2m

be
the probability that vertices i and j are connected by an edge, where ki =

∑
𝑗Ai𝑗 is the degree of vertex i and m is the total

number of edges, then the expected number of edges within same sets, post-randomization, equals 1∕2
∑

i𝑗
kik𝑗
2m

𝛿ViV𝑗
. With

the above common choice of randomization, the modularity functional reads

Q = 1
2m

∑
i𝑗

(
Ai𝑗 −

kik𝑗

2m

)
𝛿ViV𝑗

. (3)

We observe that Q ∈ [−1, 1]. By definition of Q, graphs with high modularity have a dense set of connections between
vertices within the same set or module but sparser connections between vertices across different modules. Thus, modular-
ity is the state-of-the-art tool employed in detecting community structures within large graphs and graphs with a strong
community structure have high modularity. Indeed, many clustering algorithms are based on algorithms that maximize
modularity (see, for example, the works of Clauset et al12 and Blondel et al13).

In this paper, we also employ another metric, referred to as VI,8,9 used to measure the quality of a partition and to
compare partitions. Consider graph G and two partitions  = (k)K

k=1 and ′ = (k′ )K′

k′=1, with K and K′ nonempty sets,
respectively. We define P(k) = |k|∕n to be the probability of a vertex being in the set k, P(k′) = |k′ |∕n the probability
of a vertex being in the set k′ , and P(k, k′) = |k ∩ k′ |∕n as the probability that a point belongs to the set k in partition
 and to set k′ in partition ′. Then, VI is defined as

VI(,′) = H() + H(′) − 2I(,′), (4)

where H(C) is the entropy associated with partition 

H() = −
K∑

k=1
P(k) log(P(k)),

H(′) is the entropy associated with partition ′, and I(C,C′) is the mutual information between  and ′, ie, the
information that one partition has about the other

I(,′) =
K∑

k=1

K′∑
k′=1

P(k, k′) log P(k, k′)
P(k)P(k′)

.
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We have that VI ∈ [0, log(n)] and it represents a distance measure between the two different partitions.

3 BOOTSTRAP AMG FOR GRAPH EMBEDDING

The spectral methods for graph embedding generally use the first nc ≥ 1 eigenvectors corresponding to the lower portion
of the spectrum of the graph Laplacian associated with the given graph: Lqk = 𝜆kqk, where 𝜆1 ≤ 𝜆2 ≤· · ·𝜆n.

In this work, we propose to use as low-dimensional space for graph embedding, the space spanned by the algebraically
smooth vectors generated by a composite iterative process, where at each step, the quality of the currently available solver
is tested. If that solver has not reached a pre-selected convergence factor, the composite solver is updated with one more
component, and the process is repeated. To build the new component of the solver an algebraically smooth vector is
utilized, which guides the construction of a specific AMG solver of V-cycle type (to maintain linear complexity). For
our given matrix LS and a current solver B, an algebraically smooth vector is constructed as follows. We solve the trivial
equation Lsx = 0 by iterations starting with a random x0 and consecutively compute

x𝓁 = (I − B−1LS)x𝓁−1, 𝓁 = 1,…,𝓁max.

Note that the iterates x𝓁 are actually the true errors (since the exact solution is the null vector). This allows us to estimate
the convergence factor 𝜚 of the iteration process very accurately. If the estimated factor stays above a pre-selected desired
factor 𝜚desired after 𝓁max iterations, the current iterate x𝓁 is declared to be algebraically smooth in the sense that it is spanned
mostly by the eigenvectors in the lower portion of the spectrum of B−1LS. After m such steps, we end up with a composite
solver BBAMG that has the representation I − B−1

BAMGLS =
∏m

r=1(I − B−1
r LS), where each component Br is a V-cycle AMG

constructed on the basis of the rth smooth vector qr (which is the corresponding iterate x𝓁max at the rth step of the boot-
strap process, after normalization). The application of the composite solver BBAMG, which is a composition of coarse-grid
solves complemented by smoothing iterations over hierarchy of levels, effectively removes all error components whereas
its coarsest level solves, by construction, eliminate all error components associated with the space spanned by the set of
algebraically smooth vectors {qr}m

r=1. In summary, the bootstrap AMG solver exploits implicitly two processes, the elimi-
nation of the error components associated with the space spanned by the vectors q1,…,qm and a complementary process,
composed by smoothing iterations over hierarchy of levels, giving rise to a mapping M. In the next subsection, we describe
the relation of the convergence of the bootstrap AMG solver with a specific generalized eigenvalue problem that serves
as a motivation of using the set {qr}m

r=1 for graph embedding similar to standard spectral clustering methods.

3.1 Rationale to use algebraically smooth vectors
In this section, we describe the construction of a set of algebraically smooth vectors of the graph Laplacian LS to serve
as coordinate directions in embedding a given graph into nc , with 1 ≤ nc ≪ n. We show that the estimated smooth
vectors span a coarse space that represents well the global information associated with the original graph relying on the
convergence theory of two-level hierarchical methods.14

Given the modified graph Laplacian matrix LS, we can define a two-level method for solving the linear system LSx = b.
Let Vc be the space spanned by a set of smooth vectors {qr}m

r=1 of LS with respect to a s.p.d. operator M, having the
composite form M = MT

1 (M1 + MT
1 − LS)−1M1, with M1 being invertible. Let {𝜙i}

nc
i=1 provide a basis of Vc, and let P =

[𝜙1,…, 𝜙nc ] be the interpolation matrix mapping vectors from Vc to V and (LS)c = PTLSP the corresponding coarse
Laplacian matrix. Consider the following two-level iterative method.

• Initialize x ∶= 0, r ∶= b
• Pre-smoothing: Solve M1y = r and update x ∶= x + y, r ∶= b − LSx
• Solve the coarse problem: (LS)cxc = rc ∶= PTr
• Update the iterate: x ∶= x + Pxc and the respective residual r ∶= b − LSx
• Post-smoothing: Solve MT

1 z = r
• Update x ∶= x + z

The iteration matrix of the above two-level iteration process can be written in the form

B−1 = M−1 +
(

I − M−T
1 LS

)
P(LS)−1

c PT (
I − LSM−1

1
)
,



6 of 17 D'AMBRA ET AL.

where M = M1(M1 + MT
1 − LS)−1MT

1 is the so-called symmetrized smoother, such that I − M−1LS = (I − M−T
1 LS)(I −

M−1
1 LS). Assuming that M1 is a symmetric and convergent smoother in the LS-norm, the following spectral equivalence

result holds14:
vTLSv ≤ vTBv ≤ C vTLSv,

where the optimal constant C is given by the formula

C = max
v

‖v − 𝜋v‖2
M‖v‖2

LS

. (5)

Here, 𝜋 ∶ V → Vc ⊂ V is the projection in the M-inner product. The spectral equivalence result shows that, if we can keep
the iterates M-orthogonal to the coarse space, the error will be efficiently reduced by the composite smoother M. In other
words, by the nature of our bootstrap AMG solver (defined in the previous subsection), the essential global information is
propagated by the coarse solve due to the coarse space Vc spanned by the algebraically smooth vectors {qr}m

r=1, whereas the
complementary process corresponding to the smoothing steps with M1 and MT

1 will have more local nature (with respect
to the hierarchy of levels). The following result will make the above statement more precise.

Theorem 1. Consider the operator B defined by the two-level algorithm with smoother M1, symmetrized smoother M,
and coarse space Vc. Consider the generalized eigenvalue problem

LSqk = 𝜆kMqk, (6)

where 0 ≤ 𝜆1 ≤ 𝜆2 ≤· · ·≤ 𝜆m < 𝜆m+1 ≤· · ·≤ 𝜆max, and assume that the coarse space Vc contains the first m ≥ 1 eigen-
vectors qk. Then, the following estimate holds for the spectral equivalence constant C (or the corresponding convergence
factor 𝜚):

C = 1
1 − 𝜚

≤
1

𝜆m+1
.

Proof. Using the eigenvectors {qk} of (6), which are chosen to be M-orthonormal, we can decompose any vector v as
v =

∑
kvkqk. Since the coarse space contains the first m eigenvectors qk, for the M-orthogonal projection 𝜋 onto the

coarse space Vc, we have that

||v − 𝜋v||2M = min
vc∈Vc

‖v − vc‖2
M

≤ min
{wk}m

k=1

‖‖‖‖‖v −
m∑

k=1
wkqk

‖‖‖‖‖
2

M

=
∑
k>m

v2
k

≤
1

𝜆m+1
‖v‖2

LS
.

The latter shows the desired estimate C = 1
1−𝜚

≤
1

𝜆m+1
.

In the bootstrap AMG algorithm, described in the previous subsection, we compute a set of vectors {qr}m
r=1 that effec-

tively try to ensure that the constant C in (5) is below a certain value 1
1−𝜚desired

. That is, we do not actually solve the above
generalized eigenvalue problem (6); instead, we select vectors qk, one at the time, by monitoring the error that the cur-
rently constructed AMG solver is unable to reduce effectively. These vectors are used to build an improved hierarchy until
we obtain a solver with desired convergence factor 𝜚 = 𝜚desired. In other words, we have by construction

C ≤
1

1 − 𝜚
≃ 1

𝜆m+1
.

This indicates that our bootstrap AMG constructed vectors {qr}m
r=1 approximate very well the space spanned by the lower

portion of the spectrum of M−1LS; therefore, in that sense, it is related to the more classical spectral clustering, although
it effectively uses a different spectral problem. We also note that we do not actually have M explicitly, rather we have the
inverse actions of B = BBAMG (which implicitly define M−1 as a complementary process to the coarse solves).

We mention that, using the notion of algebraically smooth vectors for defining distance on graphs has been studied
previously, see, for example, the works of Ron et al15 and Chen and Safro.16 Our approach can be viewed as an exten-
sion of the above approaches, since we utilize a more general B in a multilevel setting, whereas previously B was chosen
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to be a single-level smoother, as the Jacobi method, which cannot ensure estimates of the form (5) for a small num-
ber of vectors, while bootstrap AMG makes it feasible to obtain small 𝜚. Furthermore, we note that an efficient AMG
method specifically tailored for fast graph Laplacian linear solver was introduced in the work of Livne and Brandt,17 while
other adaptive/bootstrap AMG methods, meant as reliable and flexible linear solvers when no a priori information on
the near-kernel space of the linear operator is available, were previously introduced in the works of Brezina et al18,19 and
Brandt et al.20

3.2 Some details on using bootstrap AMG
In our bootstrap process, we build a linear solver B composed from a number of different AMG cycles leading to the
following error propagation matrix:

I − B−1LS =
(

I − B−1
r LS

)
· · ·

(
I − B−1

1 LS
) (

I − B−1
0 LS

)
, (7)

where each Br is an AMG cycle operator built by a suitable coarsening algorithm, referred to as coarsening based on
compatible weighted matching. For details on the coarsening scheme and the bootstrap AMG, we refer the reader to other
works.21,22 Each Br is an AMG V-cycle built on the basis of a conducted by the method (algebraically smooth) vector qr.

The process is iterated and m vectors {qr}m
r=1 can be computed. As discussed previously, these vectors represent approx-

imations of the eigenvectors of preconditioned versions of the graph Laplacian LS. The number m of computed vectors,
in general, depends on the desired factor 𝜚 we use to build the composite solver BBAMG defined from the product iteration
matrix

I − B−1
BAMGLS =

(
I − B−1

m LS
)
· · ·

(
I − B−1

1 LS
) (

I − B−1
0 LS

)
.

For a given 𝜚 ∈ (0, 1), the number of components m (equivalently, the number of smooth vectors associated with the
components Br) is such that by construction, we have

‖‖I − B−1
BAMGLS‖‖LS

≤ 𝜚.

In order to obtain a set of orthogonal vectors, we apply a singular-value decomposition (SVD) to the computed set of
vectors {qr}m

r=1 and use the ith component of each left-singular vector {ur}
nc
r=1 as coordinate vector of the general point

xi in the vector space spanned by the smooth vectors computed with our bootstrap AMG. More precisely, we add to
the nc orthogonal vectors obtained by SVD of the smooth vectors also the vector of all ones (1,…, 1)T, as representative
eigenvector corresponding to the null eigenvalue of L, also used as starting smooth vector in the bootstrap process. This
new representation of the original data set is employed as input of a K-means algorithm to generate clusters of the original
data set. Our algorithm for spectral clustering is described in Algorithm 2.
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We implemented Algorithm 2 in the context of the BootCMatch software framework, which is an open-source C code
implementing all the functionalities for building and applying the boostrap AMG involved in this work and described in
other works.21,22

4 BENCHMAK DATA SETS

In the following, we discuss results of experiments carried out both on synthetic graphs obtained by a well-known gener-
ative model and on some freely-available real-life networks. Our main aim here is to evaluate the ability of our procedure
to define a suitable low-dimensional representation of the graphs, which preserves its key information and allows us to
identify possible group structures using standard K-means. In what follows, we describe the main features of the test
graphs.

4.1 Synthetic graphs generated by stochastic block model
The Stochastic Block Model (SBM) is a generative model for random graphs, which assigns a probability value to each
edge (i, j) of the graph of dimension n. In the basic model, the SBM is defined by a scalar value K, defining the number
of groups in the network; a vector g of dimension n, where gi gives the group index of vertex i; a K × K matrix M, where
the matrix entry Ml1l2 is the probability that a vertex in group l1 is connected to a vertex in group l2. Given the above
parameters, to each pair i, j is assigned a probability of forming an edge by first looking at g, which gives gi and gj, and
then looking at the entry Mgi,g𝑗 of M to find the probability that such an edge exists.

In our simulations, we generated random network graphs using the Degree Corrected SBM (DCSBM). Similarly to the
examples provided in the work of Carissimo et al9 and Cutillo and Signorelli,23 we implemented the approach proposed in
the work of Karrer and Newman.24 The DCSBM model is a modification of SBM in order to obtain more realistic graphs.
Indeed, SBM assumes that vertices within a block have the same degree that in contrast to many real-life networks;
whereas in the DCSBM, the probability value for an edge between nodes depends both on the communities to which the
vertices belong and on specified vertex weights. These weights are defined in a way such that the average vertex weight
in each block is equal to 1 and allows us to set variable vertex degrees in the communities. In particular, we simulated
different scenarios where, per each graph, we fixed a unique edge probability, Mout, between any couple of communities,
while the edge probability within each community, Min, was uniformly generated in [0.3, 0.7], leading to an average value
Min = 0.5. Varying the value of Mout ∈ [0.001, 0.8] allows us to directly control the modularity; indeed, a low value of
Mout corresponds to a high value of modularity and vice-versa. We considered a total of 144 graphs of increasing dimension
n = 1000, 2000, 3000, 4000 and sparsity degree ranging in [0.01, 0.35]. For each dimension, we considered different values
for K = 4, 8, 12, 16 and, varying Min and Mout as explained before, we selected nine graphs with increasing modularity
for each K, leading to a total of 36 graphs, numbered from 1 to 36 corresponding to increasing values of K.

4.2 Real-life networks
We also discuss some results of experiments obtained on realistic networks where we have no information about possible
community structure. We considered a small size biological network from the data set available in the igraphdata package
for the R software framework,7 and some increasing in size information and technological networks from the work of
Newman25 and the DIMACS 10th challenge collection,26 which includes various graphs particularly challenging for graph
partitioning and clustering. The main features of the selected graphs are summarized in Table 1 where we report the name
of the graph (Name), the number of graph vertices (n), the number of its edges (nnz), the maximum and minimum vertex
degree (maxdeg and mindeg), and the sparsity degree (2nnz∕(n2 − n)). Note that, in the cases of original graphs with
more than one connected component, we chose the connected component with the largest number of vertices, which we
obtained using a C implementation of the Tarjan algorithm.27

In Figure 1, we visualize the smallest graph and the sparsity pattern of its adjacency matrix. It represents the
immunoglobulin interaction network whose vertices correspond to amino acids and an edge is drawn between two amino
acids if the shortest distance between their C𝛼 atoms is smaller than the threshold value 𝜃 = 8 Ångström.
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TABLE 1 Main features of selected graphs (maximum connected component)

Name n nnz maxdeg mindeg sparsity

immuno 1316 6300 17 3 7.28 × 10−3

as22july-06 22963 48436 2390 1 1.84 × 10−4

email-Enron 33696 180811 1383 1 3.19 × 10−4

ct2010 67578 168176 53 1 7.37 × 10−5

caidaRouterLevel 190914 607610 1071 1 3.33 × 10−5

FIGURE 1 Immunoglobulin interaction network. Graph (left) and sparsity pattern of adjacency matrix (right)

5 RESULTS
We discuss results of the application of Algorithm 2 to the selected graphs. Our procedure is implemented in BootCMatch,
but for the final spatial clustering, at the present, we rely on the K-means MATLAB implementation. In order to reduce
sensitivity of the K-means algorithm with respect to the starting cluster centers, we run Algorithm 1 for 100 times with
the same input data and chose the partition corresponding to the maximum value of the computed modularity. In the
application of our method, we built m smooth vectors, where m = min(40,K), with K the number of AMG operators built
to obtain a final multiplicative operator of type (7) with a desired convergence rate less than 𝜚 = 10−8. Each AMG operator
is a symmetric V-cycle with one forward/backward Gauss-Seidel sweep as pre/post-smoothing. A direct LU factorization
is used as coarsest solver. Default parameters are used for the coarsening implemented in BootCMatch, for details, we
refer the reader to other work.22 In these experiments, we used 𝓁max = 15 iterations to estimate both a new smooth
vector and the convergence rate of the composite bootstrap AMG of type (7) at each bootstrap iteration. The experiments
were carried out with BootCMatch rel. 0.9 on one core of a 2.6 GHz Intel Xeon E5-2670, running Linux 2.6 and GNU
compiler 4.6.

5.1 Results on DCSBM graphs
In Figure 2, we show a clustering obtained by our bootstrap method for one of the selected graphs. In detail, on the left,
we have the original graph with n = 1000 vertices, corresponding to K = 4 blocks and a true modularity Q = 0.62.
On the right, we report the picture obtained by projecting the graph vertices in the four-dimensional Euclidean space
generated by three smooth vectors built by our bootstrap procedure and the unit vector. Different colors represent the
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FIGURE 2 Original graph (left); clustering obtained with BootCMatch (right)

FIGURE 3 Stochastic Block Model (SBM) graphs (n= 1000): comparison of modularity values among different clustering

different groups identified by the K-means algorithm. We can see that our method is able to detect four well-separated
groups with high connection density in the network and compute a clustering corresponding to a modularity of 0.6192.

In Figures 3 to 6, we report modularity values, for different values of K and for all the considered graph dimensions n.
We compare modularity values of clustering computed for data sets represented by the vectors obtained by BootCMatch
with expected true modularities. For comparison aim, we also considered modularities obtained by applying two algo-
rithms available in the R software environment. The cluster_leading_eigen function (LeadingEigen), which implements
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FIGURE 4 Stochastic Block Model (SBM) graphs (n= 2000): Comparison of modularity values among different clustering

FIGURE 5 Stochastic Block Model (SBM) graphs (n= 3000): Comparison of modularity values among different clustering

the leading eigenvector method described in the work of Newman,28 based on the computation of the eigenvector corre-
sponding to the largest positive eigenvalue of the modularity matrix associated to the modularity functional defined in (3)
and the cluster_louvain function (Louvain), implementing the greedy modularity optimization method described in the
work of Blondel et al.13
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FIGURE 6 Stochastic Block Model (SBM) graphs (n= 4000): comparison of modularity values among different clustering

We observe that our method obtains good values for modularities in the case of DCSBM graphs with medium and
high modularities. In particular, for each value of graph dimension and of group number, when Q ≥ 0.4, the clusterings
obtained by our method give modularity values that are in a very good agreement with the true modularities as well as with
modularities obtained by Louvain, which have the best general behavior. We point out that LeadingEigen in many cases,
also for large modularities, obtains clustering with smaller values of modularity with respect to the expected ones and
our method outperforms it. This general behaviour is confirmed by the VI curves versus modularity, plotted in Figures 7
to 10, where we compare VI of the clustering obtained by the different methods when the expected (true) blocks are
considered as reference partition. Near null values of VI correspond to a good agreement between clustering computed
by the considered method and the true network blocks. We can see that, for increasing values of modularity (generally
larger than 0.4), we obtain clustering in a good agreement with the true one, and also in terms of VI, our results appear
generally better than LeadingEigen. Poor results for small modularities graphs are well known in the context of spectral
clustering, due to the behavior of the K-means procedure in these cases, indeed our possible future goal is to substitute
K-means with more reliable methods for spatial clustering, such as linear ordering.4,5,10

5.2 Results on real-life networks
Here, we discuss first results obtained by application of our method on the real networks summarized in Section 4.2. Since
we do not have information on the number of possible blocks, we applied the K-means algorithm requiring a number
of clusters depending on a version of the so-called eigengap heuristic. It is a widely used heuristic to set the number of
possible clusters in spectral clustering, which finds the rationale in the eigenspace perturbation theory2 and it seems to
work well if the clusters are very well defined. Applying to the singular values of our smooth vectors, the same motivation
driving the eigengap heuristic, we set K = argmaxi|𝜎i + 1 − 𝜎i|, with 𝜎i singular values of smooth vectors, as number
of blocks for K-means. In Table 2, we report the number of clusters K and the corresponding modularity Q computed by
our method exploiting BootCMatch, as well as the results from LeadingEigen and Louvain. We also report VI for the first
2 methods, using Louvain as reference clustering.

We note that, for the graphs ct2010 and caidaRouterLevel, our bootstrap AMG is not able to obtain the desired conver-
gence rate within the fixed number of iterations and we obtain a final composite AMG with convergence rate 𝜚 ≈ 10−3 and
𝜚 ≈ 10−6, respectively. In the cases of immuno, as22july-06 and email-Enron, we need 33, 26, and 39 AMG components
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FIGURE 7 Stochastic Block Model graphs (n= 1000): Variation of Information (VI) values of different clustering with respect to (w.r.t.) the
true clustering

FIGURE 8 Stochastic Block Model (SBM) graphs (n= 2000): Variation of Information (VI) values of different clustering with respect to
(w.r.t.) the true clustering
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FIGURE 9 Stochastic Block Model (SBM) graphs (n= 3000): Variation of Information (VI) values of different clustering with respect to
(w.r.t.) the true clustering

FIGURE 10 Stochastic Block Model (SBM) graphs (n= 4000): Variation of Information (VI) values of different clustering with respect to
(w.r.t.) the true clustering
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TABLE 2 Clustering obtained by different methods: quality measures

BootCMatch LeadingEigen Louvain
Name K Q VI K Q VI K Q

immuno 21 0.821 1.55 12 0.863 1.03 9 0.826
as22july-06 24 0.431 3.95 4 0.307 3.20 39 0.662
email-Enron 37 0.085 2.67 6 0.394 3.17 291 0.579
ct2010 39 0.954 1.57 20 0.230 4.04 80 0.964
caidaRouterLevel 38 0.315 3.75 2 0.061 4.26 645 0.831

FIGURE 11 Clustering of immuno network. BootCMatch (left) and Louvain (right)

respectively to reach the desired convergence rate. If we compare modularity obtained by our clusterings with the other
two methods, we see that, in all the cases but email-Enron, we have a larger value than that obtained by LeadingEigen.
Louvain obtains the larger modularities in all the cases and this confirms its good ability to obtain clusterings that maxi-
mize modularity; however, we have comparable results in the case of immuno and ct2010 networks, as also confirmed by
VI values. In all the cases in which Louvain obtains modularities much larger than our method, we observe a very large
number of groups in the Louvain clustering. The analysis of this aspect requires more investigation, since it can be a lim-
itation of the eigengap heuristic used to fix the number of clusters for K-means processing. Furthermore, we observe that
the networks on which our method obtains clustering with significantly smaller modularity with respect to the Louvain
method have an inhomogeneous distribution of vertex degree. In these cases, the use of normalized Laplacian seems to
be more reliable.2

The above first results on realistic networks indicate the feasibility of our method as a tool for spectral clustering
that overcomes the need to compute Laplacian eigenvectors, giving a linear complexity algorithm to estimate the above
eigenvectors with an arbitrary accuracy.

For illustrative purposes, in Figure 11, we visualize the clustering obtained with our method (left) and the clustering
obtained by the Louvain method (right) on the immuno network.

6 CONCLUDING REMARKS

We discussed first results of the application of a bootstrap AMG as a tool for spectral clustering. The results are very
promising when dealing with networks with medium and high modularities, ie, when the block structure is well defined.
Thus, our method can serve as valid alternative to modularity-based methods, such as the Louvain method, when there is
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no “ground truth” for better guarantee of results. Our method is also different from more traditional spectral clustering;
it exploits approximations of generalized eigenvalue problems (6), where the operator B changes at each bootstrap step;
therefore, we have a natural way to decide how many steps to perform, namely, when we reach an operator B that is
spectrally equivalent to the original graph Laplacian. For the more standard spectral clustering, it is not as clear how many
eigenvectors to choose in advance in order to get satisfactory clustering results. The guarantee that our method provides
is a desired property in practice and we view it as an advantage over the more standard spectral clustering approaches.
We finally observe that our method has a linear computational complexity (with proportionality constant that grows with
the number of vectors used) and can be very competitive for large-scale data sets. Future work includes analysis of the
impact of the K-means algorithm on the poor results for small modularities graphs and also of the eigengap heuristic in
the case of unknown number of clusters. Furthermore, the exploitation of normalized versions of Laplacian matrix for
studying largely irregular networks of increasing size will be considered.
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