
Probabilistic Abstract Argumentation Frameworks, A
Possible World View

Theofrastos Mantadelis1

Konstantinou Palaiologou 1, 1011 Nicosia, Cyprus

Stefano Bistarelli2

Via Vanvitelli 1, 06123 Perugia, Italy

Abstract

After Dung’s founding work in Abstract Argumentation Frameworks there has

been a growing interest in extending the Dung’s semantics in order to describe

more complex or real life situations. Several of these approaches take the direc-

tion of weighted or probabilistic extensions. One of the most prominent proba-

bilistic approaches is that of constellation Probabilistic Abstract Argumentation

Frameworks.

In this paper, we first make the connection of possible worlds and constel-

lation semantics; we then introduce the probabilistic attack normal form for

the constellation semantics; we furthermore prove that the probabilistic attack

normal form is sufficient to represent any Probabilistic Abstract Argumentation

Framework of the constellation semantics; then we illustrate its connection with

Probabilistic Logic Programming and briefly present an existing implementa-

tion. The paper continues by also discussing the probabilistic argument normal

form for the constellation semantics and proves its equivalent properties. Fi-

nally, this paper introduces a new probabilistic structure for the constellation

semantics, namely probabilistic cliques.
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1. Introduction

Argumentation is an everyday method of humanity to discuss and solve myr-

iad different situations where opinions or point of views conflict. Abstract Argu-

mentation Frameworks [1] or Dung’s Argumentation Frameworks (DAFs) aim

in modeling everyday situations where information is inconsistent or incomplete.5

Many different extensions of DAFs from Dung’s pioneering work have appeared

in order to describe different everyday situations. Sample works includes as-

sumption based argumentation [2], extending DAFs with support [3], introduc-

ing labels [4]. Furthermore, several generalizations of DAFs have been studied

such as, Argumentation Frameworks with Recursive Attacks [5] which model10

attacks that can attack other attacks, abstract dialectical frameworks [6] is an-

other generalization that allows acceptance conditions to arguments. Other di-

rections that have been investigated includes bipolarity in argumentation frame-

works [7], argumentation frameworks with preferences [8] and formalisms that

extend DAFs by introducing weights in elements of the DAF, such as [9, 10].15

Such approaches are powerful tools to model voting systems, belief in arguments

and argument strength. A very thorough study of such approaches can be found

at [11]

Knowledge representation with the use of probabilistic information has been

used in many areas of computer science. Probabilistic information, is a powerful20

medium to represent knowledge. Similarly, many researchers have extended

DAFs by adding probabilistic information. These very prominent extensions of

DAFs have been categorized in two big groups by Hunter [12]: the epistemic

approaches and the constellation approaches.

The epistemic approaches, such as those presented in [13, 14] describe prob-25

abilistic DAFs that the uncertainty does not alter the structure of the DAFs.

2



Furthermore, the epistemic approaches quantify the existing uncertainty (either

of arguments being part of extensions, or argument label) instead of introducing

new uncertainty.

The constellation approaches, such as those presented in [15, 16, 17, 18, 19]30

introduce probabilistic elements in the DAF in such a way that the structure of

the DAF becomes uncertain. In difference from most constellation approaches,

in [20] the authors define a constellation of DAFs by assigning probabilities

directly to the graphs. The constellation approaches generate a set of DAFs

with a probabilistic distribution and as such define a probabilistic distribution35

over the extensions of those DAFs.

In this paper we focus on the constellation approach from Li et al. [15]. [15]

introduced probabilistic elements to the structure of DAFs, resulting to a set of

DAFs. This allows for a set of arguments to be an (admissible, stable, ground,

etc.) extension in some of the DAFs that are represented by the constellation.40

This simple but yet powerful representation has the ability to represent naturally

many different uncertain scenarios.

The works of [21, 15] can be considered as the pioneering work on com-

bining probabilities with DAFs. In this paper, we (a) define the probabilistic

attack normal form for PrAAFs; (b) show how the normal form can represent45

any general PrAAF; and (c) illustrate the connection of the constellation se-

mantics with probabilistic logic programming. We also (d) define and prove

the same properties for the probabilistic argument normal form for PrAAFs

and finally, (e) present a new probabilistic element for constellation semantics,

namely probabilistic cliques.50

The rest of the paper is structured as follows. First, we briefly introduce

DAFs and PrAAFs. We then present the possible worlds notion, the probabilis-

tic attack normal form for PrAAFs and a transformation of general PrAAFs to

probabilistic attack normal form. We continue, by demonstrating the relation of

PrAAFs with probabilistic logic programming and provide an implementation.55

Finally, we conclude and present future work.
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2. Preliminaries

2.1. Abstract Argumentation

Dung [1], introduced abstract argumentation frameworks (DAFs) which have

been extended by many researchers.60

Definition 1. An abstract argumentation frameworks is a tupleDAF = (Args,Atts)

where Args is a set of arguments and Atts a set of attacks among arguments of

the form of a binary relation Atts ⊆ Args×Args.

• For arguments a, b ∈ Args, we use a → b as a shorthand to indicate

(a, b) ∈ Atts and we say that argument a attacks argument b.65

• We say an argument b is defended by a set S ⊆ Args ⇐⇒ ∀a ∈ Args, if

a→ b then ∃c ∈ S, c→ a.

Figure 1 illustrates an example DAF and the notions of attack and defense in

DAFs.

a c

b

d

Figure 1: Example DAF ({a, b, c, d}, {a → c, b → c, c → d}). Arguments are represented

as cycles and attacks as arrows. Arguments a, b are attacking argument c which attacks

argument d. We can also say that the set {a, d} defends argument d from the attack c→ d.

Given a DAF, and according to certain evaluation criteria (called semantics),70

the most common computational task in DAFs is to identify sets of arguments

(called extensions) that yield by the semantics. Two important notions for the

definitions of various kinds of extensions are conflict-free sets and acceptability

of arguments. A set of arguments S ⊆ Args is said to be conflict-free iff @a, b ∈ S

where a → b ∈ Atts. An argument a ∈ Args is acceptable with respect to set75
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S ⊆ Args if no argument attack a or if ∀b ∈ Args that ∃b → a ∈ Atts then

∃c ∈ S where c→ b ∈ Atts.

Given the above [1] gives semantics to DAF by the use of extensions over

subsets of arguments. Dung first defines the admissible semantics.

• A set S ⊆ Args is admissible ⇐⇒ S is conflict free and each a ∈ S is80

acceptable with respect to S.

• A set S ⊆ Args is preferred ⇐⇒ S is a maximal (with respect to set

inclusion) admissible set.

• A set S ⊆ Args is complete ⇐⇒ S is admissible and each argument that

is acceptable with respect to S is in S.85

• A set S ⊆ Args is grounded ⇐⇒ S is the minimal (with respect to set

inclusion) complete extension.

Following our example DAF from Figure 1, the set {a, b, d} is admissible it is

also preferred, complete and grounded. Over time several different semantics

have been discussed such as stable [1], semi-stable [22], CF2 [23] etc. For further90

reading on DAFs semantics we direct the reader to [24].

2.2. Constellation based Probabilistic Abstract Argumentation Frameworks

Hunter [21], categorizes probabilistic abstract argumentation frameworks

(PrAAFs) in two different categories: the constellation and the epistemic PrAAFs.

For this paper we will focus on the constellation approaches and we base our95

work in the definition of PrAAFs by [15].

A constellation approach to PrAAFs defines probabilities over the structure

of the DAF graph. One can assign probabilities to either the arguments or/and

attacks of the DAF. We refer to arguments/attacks with assigned probabili-

ties less than 1 as probabilistic arguments/attacks and we refer as probabilistic100

elements to either probabilistic arguments or probabilistic attacks.

A probabilistic element e exists in a DAF with probability P (e). These

probabilistic elements correspond to random variables, which are assumed to
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be mutually independent3. As such, a PrAAF defines a probability distribution

over a set of DAFs.105

a c
0.4

0.3

b

0.7
d

Figure 2: Example PrAAF ({a, b, c, d}, {1, 1, 0.4, 1}, {a → c, b → c, c → d}, {0.3, 0.7, 1}).

Arguments are represented as cycles and attacks as arrows. The probability of each element

(unless if it equals with 1) appears over the attack or in the argument. Arguments a, b attack

with a likelihood c which is a valid (exists) with a likelihood and attacks argument d.

Definition 2. Formally, a PrAAF is a tuple PrAAF = (Args, PArgs, Atts, PAtts)

where Args, Atts define a DAF, PArgs is a function mapping a probability for

each a ∈ Args with 0 < PArgs(a) ≤ 1 and PAtts is a function mapping a

probability for each →∈ Atts with 0 < PAtts(→) ≤ 1.

We note that for the remainder of the paper probabilities are notated as110

rational numbers in (0, 1]. Finally, stating an argument or an attack having

probability 0 is redundant. A probabilistic argument or attack with 0 probability

is an argument or attack that is not part of any DAF that the constellation

represents. Figure 2, illustrates an example PrAAF with 3 different probabilistic

elements.115

2.3. Inducing DAFs by Imposing Restrictions

Li et al. [15], restricted the combinations of probabilistic elements of PrAAFs

to only those that generate valid DAFs. In order to successfully restrict the

combinations, they introduced extra restrictions and also stated that the prob-

abilities Patts are conditional probabilities instead the likelihood of existence for120

the attack. These restrictions appear in [15] as a separate definition, formally:

3As we are going to present later in the paper, the structure of DAF might impose depen-

dencies among otherwise assumed independent probabilistic elements.
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Definition 3 (Inducing a DAF from a PrAAF). A DAF (ArgsInd, AttsInd)

is said to be induced from a PrAAF (Args, PArgs, Atts, PAtts) iff all of the

following hold:

1. ArgsInd ⊆ Args125

2. AttsInd ⊆ Atts ∩ (ArgsInd ×ArgsInd)

3. ∀a ∈ Args such that PArgs(a) = 1, a ∈ ArgsInd

4. ∀a1 → a2 ∈ Atts such that PAtts(a1 → a2) = 1 and PArgs(a1) =

PArgs(a2) = 1, a1→ a2 ∈ AttsInd

Furthermore, PAtt(a1 → a2) is stated to be the conditional probability of130

the attack existing when both attacking and attacked argument exist in the

DAF (PAtt(a1→ a2|a1, a2 ∈ ArgsInd)).

DAF Possible World Prob. Admissible Sets

a

b

d

(¬a→ c∧¬b→ c∧¬c)∨

(¬a→ c∧ b→ c∧¬c)∨

(a→ c∧¬b→ c∧¬c)∨

(a→ c ∧ b→ c ∧ ¬c)

0.6 {}, {a}, {b}, {d}, {a, b},

{a, d}, {b, d}, {a, b, d}

a c

b

d ¬a→ c ∧ ¬b→ c ∧ c 0.084 {}, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c}
a c

b

d ¬a→ c ∧ b→ c ∧ c 0.196 {}, {a}, {b}, {a, b},

{b, d}, {a, b, d}
a c

b

d

a→ c ∧ ¬b→ c ∧ c 0.036 {}, {a}, {b}, {a, b},

{a, d}, {a, b, d}
a c

b

d

a→ c ∧ b→ c ∧ c 0.084 {}, {a}, {b}, {a, b},

{a, d}, {b, d}, {a, b, d}

Table 1: Induced DAF of our example PrAAF from Figure 2. Shaded rows, illustrate an

Induced DAF that contains multiple possible worlds that would generate an invalid DAF.

With arrows in the possible world column we denote attacks and not implication.
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Table 1 presents the induced DAFs from our example PrAAF4. Clearly, there

is an exponential number of induced DAFs that a PrAAF represents. We find

that the imposed restrictions from Li et al. [15] create a more complex and135

less intuitive PrAAF definition than what is necessary. By imposing these extra

rules, one cannot handle probabilistic arguments and probabilistic attacks in the

same way5. Furthermore, you cannot consider that probabilistic elements are

(binary) random variables that generate combinations. While, these restrictions

cause no theoretical problem, the require extra work when analyzing them and140

special handling when implemented.

3. Possible Worlds and DAFs

As mentioned a PrAAF defines a probability distribution for all the possible

non-probabilistic DAFs it contains. Each single possible set of probabilistic

elements (arguments or attacks) of the PrAAF can be called a possible world.145

Table 2 presents all possible worlds for the example PrAAF of Figure 2. One can

notice that having only three different probabilistic elements it generates eight

possible worlds. The possible worlds of a PrAAF are exponential in the number

of probabilistic elements (2N where N the number of probabilistic elements).

Definition 4 (Probability of Possible World). The probability of a possible

world equals to the product of the probability of each probabilistic element that

is in the possible world with the product of one minus the probability of each

probabilistic element that is excluded from the possible world.

Pworld =
∏

ei∈DAFworld

P (ei) ·
∏

ej /∈DAFworld

(1− P (ej))

4For now we ask the reader to ignore the possible world column which is used later in the

paper.
5In Li et al. [15] is claimed that the probability of an induced DAF is the joint probability

of the independent probabilistic elements. But as probabilistic attacks are not completely

independent the probability of the induced DAF requires the sum (= 1) of the depended

probabilistic attacks when at least one of their connected arguments is not present. Doder

and Woltran addressed this issue theoretically at [17] at definition 10.
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DAF Possible World Prob. Admissible Sets

a

b

d ¬a→ c ∧ ¬b→ c ∧ ¬c 0.126 {}, {a}, {b}, {d}, {a, b},

{a, d}, {b, d}, {a, b, d}
a c

b

d ¬a→ c ∧ ¬b→ c ∧ c 0.084 {}, {a}, {b}, {c}, {a, b},

{a, c}, {b, c}, {a, b, c}
a

b

d ¬a→ c ∧ b→ c ∧ ¬c 0.294 {}, {a}, {b}, {d}, {a, b},

{a, d}, {b, d}, {a, b, d}
a c

b

d ¬a→ c ∧ b→ c ∧ c 0.196 {}, {a}, {b}, {a, b},

{b, d}, {a, b, d}
a

b

d

a→ c ∧ ¬b→ c ∧ ¬c 0.054 {}, {a}, {b}, {d}, {a, b},

{a, d}, {b, d}, {a, b, d}
a c

b

d

a→ c ∧ ¬b→ c ∧ c 0.036 {}, {a}, {b}, {a, b},

{a, d}, {a, b, d}
a

b

d

a→ c ∧ b→ c ∧ ¬c 0.126 {}, {a}, {b}, {d}, {a, b},

{a, d}, {b, d}, {a, b, d}
a c

b

d

a→ c ∧ b→ c ∧ c 0.084 {}, {a}, {b}, {a, b},

{a, d}, {b, d}, {a, b, d}

Table 2: Possible worlds of our example PrAAF from Figure 2. Shaded rows, illustrate possible

worlds that generate an invalid DAF. With arrows in the possible world column we denote

attacks and not implication.

9



While it is natural to use the notion of possible worlds in order to describe150

PrAAFs, unfortunately in general PrAAFs6 not all possible worlds generate a

valid DAF. Ideally, we want each possible world to generate a single unique

valid DAF.

A second pitfall for general PrAAFs, lies in the combination of the indepen-

dence assumption of PrAAFs probabilistic elements. We earlier stated that we155

assume each probabilistic element is independent from the other probabilistic

elements. When a probabilistic argument is connected with a probabilistic at-

tack and we consider a possible world where the probabilistic argument does

not exist we are implicitly also forcing the probabilistic attack not to exist, thus

creating an implicit dependency among probabilistic elements.160

To better illustrate this pitfall of general PrAAFs, we use the example

PrAAF of Figure 2. Consider the attack a→ c which has a 0.3 probability of ex-

istence for each generated DAFs. If you sum the possible worlds of Table 2 where

the edge a→ c exists you do get a probability of 0.3 but if you sum the possible

worlds of Table 2 where the edge a→ c exists and it is a valid DAF then you165

get a probability of 0.036 + 0.084 = 0.12 as it only exists in two possible worlds

(rows 6 and 8 of Table 2) instead of the expected four possible worlds (rows 5

to 8 of Table 2). In other words, the probability of the attack existing in a valid

DAF is not equal with the stated at the PrAAF and depends from the existence

probability of arguments. For our example, it depends from argument c with170

P (c) = 0.4 and P (a→ c ∈ inducedDAF ) = P (c) · P (a→ c) = 0.3 · 0.4 = 0.12.

Notice at Table 1 that the highlighted induced DAF represents the four

worlds that argument c is not part of the DAF. Also notice that the specific

induced DAF is not part of any possible world, but is the corrected DAF of the

four non valid DAFs that the possible worlds generate.175

Partially motivated from the extensive research on how to compute the prob-

6We refer to general PrAAFs, as any constellation PrAAF that uses a definition similar to

Definition 2. With the term general PrAAFs we do not include any extra restrictions imposed

to the PrAAF definition.
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abilities without explicitly enumerating all possible worlds, we illustrate how to

transform any general PrAAF to a PrAAF that its Induced DAFs coincide with

the possible worlds view. We point out some works from Probabilistic Logic

Programming that is closely related with PrAAFs. For efficient exact inference180

we direct the reader at [25, 26, 27, 28, 29], and for efficient approximate inference

at [30, 31, 32].

4. Probabilistic Attack Normal Form

In this section we introduce the Probabilistic Attack Normal Form for PrAAFs.

The normal formed PrAAFs definition does not require any added restrictions185

in order for the PrAAFs to generate possible worlds with only valid DAFs. Also

the probabilistic elements of normal formed PrAAFs are mutually independent

and the probabilities of probabilistic elements always represents their likelihood

of existence. These characteristics of normal formed PrAAFs allow for easier

reasoning and also define a clearer probabilistic distribution.190

Definition 5 (Probabilistic Attack Normal Form). A PrAAF P is in its prob-

abilistic attack normal form if it contains no probabilistic arguments (∀a ∈

Args, P (a) = 1).

The probabilistic attack normal form definition does not fall to the aforemen-

tioned pitfalls and does not require further restrictions like the general PrAAFs195

definition. The pitfalls in general PrAAFs originate in the interaction of con-

nected probabilistic arguments with probabilistic attacks. By having only prob-

abilistic attacks the two pitfalls do not appear. Furthermore, the probabilistic

attack normal form definition for PrAAFs is simpler and allows easier reasoning

about PrAAF properties.200

Finally, we are going to illustrate that having PrAAFs in the probabilistic

attack normal form does not reduce the representation power of PrAAFs and

that any probabilistic distribution that can be represented in general PrAAFs

it can also be represented in the probabilistic attack normal form for PrAAFs.
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Later on we also illustrate the same properties for the Probabilistic Argument205

Normal Form PrAAFs.

4.1. Transforming General PrAAFs to Probabilistic Attack Normal Form PrAAFs

In this section we present a transformation that illustrates that any gen-

eral PrAAF can be transformed to a Probabilistic Attack Normal Form. Both

the original and the transformed PrAAF have the same probabilistic distribu-210

tion over their extensions. Because of the existence of such a transformation

one could use PrAAFs with only Probabilistic Attacks in order to represent

any general PrAAF. Or, from a different perspective, one could define Proba-

bilistic Arguments as syntactic sugar using Probabilistic Attacks and definite

Arguments.215

4.2. Transforming Probabilistic Arguments to Probabilistic Attacks

Before we present the transformation of probabilistic argument to proba-

bilistic attack, we need to define a special argument that we call ground truth7:

Definition 6 (Ground Truth8). We introduce a special argument called Ground

Truth and shorthand it with the letter η. We say that η is undeniably true220

meaning that η is never attacked by any argument and is always included in all

extensions regardless the semantics used.

The η argument modifies the extensions of a DAF for all semantics in such a

way that η must always be included. For example, in the admissible semantics

of a DAF without η a valid extension is the empty set({}), but in a DAF that225

contains η the empty set is not a valid extension under the admissible semantics

and the equivalent extension to the empty set is {η}. Note, that the extensions

7We use the same notation for ground truth (η) as in [3], we note though that the uses of

ground truth in the two papers is different.
8The η argument is only a construct we use in order to illustrate how Probabilistic Ar-

guments can be transformed to Probabilistic Attacks and the PrAAF to retain the same

probabilistic distribution.
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of the original DAF and the extensions of a DAF with {η} have a one-on-one

correspondence for all semantics.

Definition 7 (Acceptable Extensions). For DAFs that contain η, an acceptable230

extension E is one that includes η (η ∈ E).

By using {η} now we can define a transformation for general PrAAFs to

Probabilistic Attack Normal Form as follows.

Transformation 1 (General PrAAF to Probabilistic Attack Normal Form).

Any PrAAF P , can be transformed to an equivalent PrAAF P ′ by removing235

any probabilistic information attached to an argument a ∈ Args, with P (a) and

introducing a probabilistic attack from the ground truth η to argument a with

probability 1− P (a).

Important note, η is a construct we use in order to illustrate that any gen-

eral PrAAF can be transformed to a Probabilistic Attack Normal Form PrAAF.240

When someone would define their own PrAAFs the η construct would not ap-

pear to the user as: 1) you either do not use probabilistic arguments; 2) if you

use the would be automatically converted by syntactic sugar to probabilistic

attacks and a hidden to the user η. The semantics of PrAAFs and the prob-

abilistic distribution would remain identical for the user but for the underline245

algorithm it would be required to only evaluate probabilistic attacks instead

both probabilistic attacks and probabilistic arguments.

Definition 8. We notate P ≡σ|η P
′ the standard equivalence [33] of PrAAF

P with PrAAF P ′ under semantics σ by ignoring the existence of η in the

acceptable extensions.250

Theorem 1 (Equivalence of transformed PrAAF). The admissible extensions

E′ containing η of the transformed PrAAF P ′ and the admissible extensions E

of the original PrAAF P follow the same (equivalent) probabilistic distribution.

Proof. We split the proof in two parts. First we show that PrAAF P generates

DAFs that have the same admissible sets with the generated DAFs from PrAAF255
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P ′. We point out that for PrAAF P ′ acceptable admissible sets are only the

ones that contain the ground truth argument which we ignore its existence

when comparing admissible sets. For example, the empty admissible set of P

is equivalent with the {η} admissible set of P ′. A probabilistic argument pa

generates two different sets of DAFs, set S1 where pa exists and S2 where pa260

does not exist.

PrAAF P ′ generates S′
1 the equivalent sets of S1 when η → pa does not exist

and the equivalent S′
2 sets of S2 when η → pa exists. When comparing a DAF

with pa versus a DAF without η → pa the only difference is the existence of η

as we only consider admissible sets that contain it and we ignore its existence in265

the admissible sets the two graphs are equivalent thus the S′
1 sets are equivalent

with the S1 sets.

For S2 where pa does not exist, the equivalent S′
2 contains DAFs where

the argument pa is been attacked by η and is not defended by any other argu-

ment. Clearly, as η is included in every extension that we consider then every270

attack originating from pa is defended; thus, the DAFs of S2 generate the same

admissible extensions with the DAFs of S′
2.

Next part is to show that the probability of each extension is the same.

The probability that a set is an admissible extension is been computed by the

summation of the possible worlds where that set is admissible. As S1, S2 are275

equivalent with S′
1, S

′
2 and produce equivalent DAFs then the possible worlds

are equivalent too. The probability of each possible world is also the same as

when pa would exist the possible world probability is multiplied by P (pa). In

the equivalent case the attack η → pa does not exist and the possible world

probability is multiplied by 1 − (1 − P (pa)) = pa. Similarly, for the possible280

worlds that pa does not exist.

Corollary. PrAAF P ′ has equivalent acceptable extensions with PrAAF P for

all semantics where acceptability of an argument is necessary for the inclusion

of the argument in the extension. Such semantics include: complete, preferred,

ground and stable semantics. Similarly, as the probabilistic distributions are285
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equivalent then all acceptable extensions of P ′ will have equal probability with

their equivalent extension from P .

We also want to point out that each general PrAAF can be transformed to a

unique Probabilistic Attack Normal Form containing η. Also any Probabilistic

Attack Normal Form that contains η is reversible to the general PrAAF. For290

those reasons we can claim that the transformation is a one-to-one reversible

transformation.

Proposition 1 (Reversibility of the transformation). The general PrAAG to

Probabilistic Attack Normal Form transformation is reversible and creates a

one-on-one equivalent PrAAF.295

Proof. Any argument a that is attacked by η is transformed to a Probabilistic

Argument with (1 − P (η → a)) probability. Finally, one can drop η to return

to the original general PrAAF.

By using the general PrAAF to Probabilistic Attack Normal Form trans-

formation to the PrAAF of Figure 2 we get the PrAAF of Figure 3. Table 3300

presents the possible worlds of the PrAAF of Figure 3. Now, each possible world

represents a valid DAF that generates the equivalent acceptable admissible sets

like the original PrAAF. Furthermore, the probabilistic distribution is identical.

a c0.3

b

0.7

η

d

0.6

Figure 3: Example transformed PrAAF ({a, b, c, d, η}, {1, 1, 1, 1, 1}, {a→ c, b→ c, c→ d, η →

c}, {0.3, 0.7, 1, 0.6}).

Proposition 2 (Complexity of the Transformation). The general PrAAF to305

Probabilistic Attack Normal Form transformation has linear complexity O(N)
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DAF Possible World Prob. Acceptable Admissible Sets

a c

b η

d ¬a → c ∧ ¬b → c ∧

η → c ≡ ¬a → c ∧

¬b→ c ∧ ¬c

0.126 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},

{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d ¬a → c ∧ ¬b → c ∧

¬η → c ≡ ¬a→ c ∧

¬b→ c ∧ c

0.084 {η}, {η, a}, {η, b}, {η, c}, {η, a, b},

{η, a, c}, {η, b, c}, {η, a, b, c}

a c

b η

d ¬a → c ∧ b → c ∧

η → c ≡ ¬a → c ∧

b→ c ∧ ¬c

0.294 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},

{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d ¬a → c ∧ b → c ∧

¬η → c ≡ ¬a→ c ∧

b→ c ∧ c

0.196 {η}, {η, a}, {η, b}, {η, a, b},

{η, b, d}, {η, a, b, d}

a c

b η

d a → c ∧ ¬b → c ∧

η → c ≡ a → c ∧

¬b→ c ∧ ¬c

0.054 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},

{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d a → c ∧ ¬b → c ∧

¬η → c ≡ a → c ∧

¬b→ c ∧ c

0.036 {η}, {η, a}, {η, b}, {η, a, b},

{η, a, d}, {η, a, b, d}

a c

b η

d a→ c∧ b→ c∧η →

c ≡ a → c ∧ b →

c ∧ ¬c

0.126 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},

{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d a → c ∧ b → c ∧

¬η → c ≡ a →

c ∧ b→ c ∧ c

0.084 {η}, {η, a}, {η, b}, {η, a, b},

{η, a, d}, {η, b, d}, {η, a, b, d}

Table 3: Possible worlds after transforming PrAAF of Figure 2. With arrows in the possible

world column we denote attacks and not implication.
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to the number of probabilistic arguments N that the original PrAAF contains.

It grows the size of the original PrAAF by one argument and by N attacks.

The transformation does not affect the worst case complexity of computing any

extension or the probability that a set is any type of an extension.310

4.3. A Short Discussion on η

Baring in mind that we have introduced the construct η we want to have a

short discussion on its actual meaning. There is three major discussion points

relating η.

1. η is used as a construct in order to define a transformation from proba-315

bilistic argument to probabilistic attack and thus provide a tool to define

probabilistic arguments as syntactic sugar in any implementation.

2. With the transformation that uses η its proven that any PrAAF has an

equivalent PrAAF in probabilistic attack normal form. As a result one

can use PrAAFs only with probabilistic attacks. Thus, all formal work320

can be restricted to the simpler PrAAFs and proofs can be simplified to

only those.

3. Finally, we are giving η the meaning of ground truth, an argument that is

not being attacked and is always believed (and for that reason it replaces

the empty set in all extensions).325

We do not want to confuse the reader thinking that η must appear in PrAAFs,

the opposite actually. We use η only when we require to transform a PrAAF

that contains a probabilistic argument to one that does not contain any. Our

suggestion is to only use probabilistic attacks and not probabilistic arguments

as you get equal expressible and simpler PrAAFs.330

5. Implementing PrAAFs with Probabilistic Logic Programming

In Probabilistic Logic Programming (PLP), a probabilistic distribution is

defined by introducing probabilities over logic clauses or logic facts. The Distri-

bution Semantics [34] formalized the meaning of such probabilities and clarified
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that each possible world is a logic program. Later the work presented in [35]335

illustrated that attaching probabilities in different ways can be transformed in

equivalent Probabilistic Logic programs under the different formulations that

used the Distribution Semantics.

With our work we illustrated that general PrAAFs can be transformed to

generate possible worlds instead of induced DAFs while maintaining the same340

probabilistic distribution. As a result, one can convert any PrAAF to a Proba-

bilistic Logic program that has an equivalent probabilistic distribution.

In order to implement a solver for PrAAFs we used MetaProbLog [36]9 and

the web interface of ConArg [37]. MetaProbLog is a PLP framework based on

ProbLog [27] semantics. The PrAAF implementation first appeared in [38] and345

is publicly available10.

5.1. ProbLog

A ProbLog program T [27] consists of a set of facts annotated with probabil-

ities pi :: pf i – called probabilistic facts – together with a set of standard definite

clauses h : −b1, . . . , bn. that can have positive and negative probabilistic literals350

in their body. A probabilistic fact pf i is true with probability pi. These facts

correspond to random variables, which are assumed to be mutually independent.

Together, they thus define a distribution over subsets of LT = {pf1, . . . , pfn}.

The definite clauses add arbitrary background knowledge (BK) to those sets of

logical facts. To keep a natural interpretation of a ProbLog program we assume355

that probabilistic facts cannot unify with other probabilistic facts or with the

background knowledge rule heads.

Definition 9. ProbLog Program: Formally, a ProbLog program is of the form

T = {pf1, . . . , pfn} ∪BK.

Given the one-to-one mapping between ground definite clause programs and360

Herbrand interpretations, a ProbLog program defines a distribution over its

9MetaProbLog is available at: www.dcc.fc.up.pt/metaproblog
10http://www.dmi.unipg.it/conarg/
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Herbrand interpretations.

The distribution semantics are defined by generalising the least Herbrand

models of the clauses by including subsets of the probabilistic facts. If fact

pfi is annotated with pi, pfi is included in a generalised least Herband model365

with probability pi and left out with probability 1− pi. The different facts are

assumed to be probabilistically independent, however, negative probabilistic

facts in clause bodies allow the user to enforce a choice between two clauses.

As such, a ProbLog program specifies a probability distribution over all its

possible non-probabilistic subprograms. The success probability of a query is370

defined as the probability that the query succeeds in such a random subprogram.

ProbLog follows the distribution semantics [34].

5.2. PrAAF to ProbLog Transformation

We automatically transform any PrAAF in probabilistic attack normal form

described by the ConArg web interface to a MetaProbLog program. For example375

the PrAAF of Figure 3 generates the following MetaProbLog Program:11.

arg(a).

arg(b).

arg(c).

arg(d).380

arg(eta).

0.3::att(a,c).

0.7::att(b,c).

1.0::att(c,d).

0.6::att(eta,c).385

Then as Background knowledge we can introduce any semantics of Argumenta-

tion Frameworks as MetaProbLog predicates like in Figure 4. As we are going

11The graphical interface annotates probabilistic attacks as att(a,c):-0.3. and probabil-

ities of 1.0 can be omitted.
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to use dynamic programming for our computations cyclic handling is left for the

MetaProbLog engine.

Finally, we need to define our query. As shown earlier a PrAAF describes390

an exponential number (to the probabilistic elements) of DAFs, and each DAF

has its own extensions. For that reason we focus our queries on computing the

probability that a set is an extension under some semantics. For example: :-

problog exact(admissible([a,d,eta])). and leave the computation to the

MetaProbLog engine.395

5.3. MetaProbLog Inference

MetaProbLog provides several different efficient probabilistic inference meth-

ods such as: (i) exact inference based on Reduced Ordered Binary Decision Dia-

grams (ROBDDs) and dynamic programming [25]; (ii) program (DAF) sampling

with memoization [39]; (iii) any-time inference using an iterative deepening al-400

gorithm [40].

For now the web interface exposes two forms of probabilistic inference: exact

and DAF sampling. The exact inference method computes the exact probability;

the DAF sampling inference method is an approximation method. In most cases

the exact inference is able to compute the result faster than most approximation405

methods, such as the DAF sampling inference. But there exist cases where exact

inference is intractable and a user is forced to use an approximation method,

for those cases we provide the DAF sampling inference.

MetaProbLog’s exact inference follows three steps to prove a query and

calculate the probability of its success.410

1. SLD resolution is used to prove the query and collect Boolean formulae

that represent the possible worlds.

2. Boolean formulae preprocessing is used to optimize the collected

Boolean formulae.

3. ROBDD compilation is used to compile all collected Boolean formulae415

in Reduced Order Binary Decision Diagram (ROBDD).
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:- problog_table conflict_free/1.

:- problog_table admissible/1.

:- problog_table admissible/2.

attacked(A, B) :-

att(B, A), arg(B).

conflict_free([]).

conflict_free([A|S]) :-

member(X, [A|S]),

problog_not(attacked(A, X)),

problog_not(attacked(X, A)),

conflict_free(S).

acceptable(A, _S) :-

problog_not(attacked(A, _X)).

acceptable(A, S) :-

attacked(A, B),

member(C, S),

attacked(B, C).

admissible([]).

admissible(S) :-

conflict_free(S),

admissible(S, S).

admissible([], _).

admissible([A|T], S) :-

acceptable(A, S),

admissible(T, S).

Figure 4: Conflict free and admissible definitions in MetaProbLog. problog table/1 directive

activates SLG resolution for probabilistic programs, for more details we refer the reader to [25].

problog not/1 is implementing general negation for probabilistic logic programs, for more

details we refer the reader to [36].
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For a descritpion of the implementation of MetaProbLog’s exact inference we

address the reader to [25, 27]. The implementation depends heavily in dynamic

programming in order to avoid recomputations and to provide efficient inference.

The program sampling inference is based on the use of Monte Carlo meth-420

ods, that is, to use the ProbLog program to generate large numbers of random

subprograms12 and to use those to estimate the probability. More specifically,

such a method proceeds by repeating the following steps:

1. sample a logic (sub)program L from the ProbLog program

2. search for a proof of the initially stated query q in the sample L ∪BK425

3. estimate the success probability as the fraction P of samples which hold

a proof of the query

The implementation of this approach for MetaProbLog, is similar with the one

described at [39], and takes advantage of the independence of probabilistic facts

to generate samples lazily while proving the query, that is, sampling and search-

ing for proofs which are interleaved. To assess the precision of the current es-

timate P , for each N samples the width δ of the 95% confidence interval is

approximated as

δ = 2 ·
√
P · (1− P )

N
(1)

If the number of samples N is large enough the interval of confidence becomes

smaller, and the probability that the estimate is close to the true probability of

the query increases.430

6. Probabilistic Argument Normal Form

Similarly with the Probabilistic Attack Normal Form one could allow only

probabilistic arguments for PrAAFs, defining a Probabilistic Argument Nor-

mal Form for PrAAFs. In this section we are going to illustrate that both

normal forms are viable and equivalent. Still the probabilistic distribution of435

12We note that, each sampled ProbLog program corresponds to sampling a DAF.
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the Probabilistic Argument Normal Form introduces a bit of complexity. By

(explicitly) defining a probability at arguments one also (implicitly) defines a

probability at the connected attacks. For that reason one should extend the

scope of the probability attached to an argument from the existence of the ar-

gument to the existence of both the argument and the attacks connected to440

that argument. Formally, if PArgs(a) is the likelihood that a ∈ ArgsInd; then

P (a → b) is the (implicit) likelihood that a → b ∈ AttsInd and is computed as

P (a→ b) = PArgs(a) · PArgs(b); similarly for P (b→ a).

Definition 10 (Probabilistic Argument Normal Form). A PrAAF P is in its

probabilistic argument normal form if it contains no probabilistic attacks (∀x→445

y ∈ Atts, P (x→ y) = 1).

Like with Probabilistic Attack Normal Form PrAAFs, also PrAAFs in Prob-

abilistic Argument Normal Form have possible worlds that are valid DAFs.

Furthermore, in a similar way with Probabilistic Attack Normal Form, one can

illustrate that Probabilistic Argument Normal Form PrAAFs have equal rep-450

resentation power with general PrAAFs and that any probabilistic distribution

that can be represented in general PrAAFs it can also be represented in Prob-

abilistic Argument Normal Form PrAAFs.

6.1. Transforming Probabilistic Attacks to Probabilistic Arguments

In this section, we present two transformations from Probabilistic Attack455

to Probabilistic Argument. The first transformation is simpler to apply and in

most cases is the preferable transformation. The second transformation while

slightly more complex in some cases produces smaller PrAAFs. Furthermore,

it is interesting that there exist two different transformations for the second

normal form.460

Transformation 2 (Probabilistic attack to probabilistic argument). Any PrAAF

P , can be transform to an equivalent PrAAF P ′ by:

1. removing probabilistic attack x→ y ∈ Atts, with 0 < P (x→ y) < 1
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2. adding two auxiliary probabilistic arguments xy1, xy2 with probability

P (xy2) = P (x→ y)465

3. adding attacks x→ xy1, xy1→ xy2 and xy2→ y

Theorem 2 (Equivalence of transformed PrAAF). The admissible extensions

E′ not containing any auxiliary probabilistic arguments the transformed PrAAF

P ′ and the admissible extensions E of the original PrAAF P follow the same

(equivalent) probabilistic distribution.470

Proof. In order to prove that the generated extensions from the transformed

PrAAF P ′ are equivalent with the original P we break the proof in two parts.

First step, as P ′ maintained the same amount of probabilistic elements with the

same probabilities the possible worlds that P ′ generates is clearly equivalent

with the same probability with the possible worlds that P generates. Second475

step is to show that the extensions that are generated and selected from P ′ are

equivalent with the ones generated from P . Lets consider the possible worlds

that the probabilistic attack x → y of the original PrAAF is present. These

worlds are equivalent with the worlds of P ′ when the probabilistic argument

xy is present. For P ′, x attacks the auxiliary argument xy1 which is the only480

argument that attacks the auxiliary argument xy2 thus xy2 would be defended

whenever x is defended, thus xy2 will attack y whenever x is defended which

has the same effect on the extensions of P ′ as the original x→ y attack would

have on the extensions of P . Similarly for, the case where the attack x → y

would not be part of the possible worlds. Of course for getting the identical485

extensions we need to drop all extensions that include the auxiliary argument

as the are redundant. We want to note, that not dropping the extensions that

contain the auxiliary arguments does not affect the probabilities of the original

extensions and can be used normally for probabilistic inference.

For a short clarification in the probabilistic attack normal form transforma-490

tion, the probability that a set is an extension over some semantics was the

same with the probability that the union of the set and the ground truth is an

extension of the same semantics. In the probabilistic argument normal form
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transformation the probability of a set being an extension of some semantics is

the same, just extensions that include the auxiliary arguments also exist which495

can be ignored (for example when generating all possible extensions under some

semantics).

This transformation grows significantly the DAF as it introduces two auxil-

iary arguments and three attacks for each probabilistic attack that is removed.

Figure 5 presents the equivalent transformed PrAAF for our example PrAAF500

of Figure 2.

a ac1

b bc1

c 
 0.4 d

ac2 
 0.3

bc2 
 0.7

Figure 5: Example transformed PrAAF ({a, b, c, d, ac1, bc1, ac2, bc2},

{1, 1, 0.4, 1, 1, 1, 0.3, 0.7}, {a → ac1, ac1 → ac2, ac2 → c, b → bc1, bc1 → bc2, bc2 →

c, c→ d}, {1, 1, 1, 1, 1, 1, 1}).

Proposition 3 (Complexity of the Transformation). The probabilistic attack to

probabilistic argument transformation has linear complexity O(N) to the number

of probabilistic attacks N . Similarly, the size of the PrAAF grows by 2 ∗ N

arguments and 2 ∗ N attacks. Again, this transformation does not affect the505

worst case complexity of computing any extension or the probability that a set

is an extension.

Finally, we also present an alternative more complex transformation for a

probabilistic attack to probabilistic argument that in some cases can be more

compact.510

Transformation 3 (Probabilistic attack to probabilistic argument). Any PrAAF

P , can be transform to an equivalent PrAAF P ′ by:

1. removing probabilistic attack x→ y ∈ Atts, with 0 < P (x→ y) < 1

2. adding an auxiliary probabilistic argument xy with probability P (xy) =

P (x→ y)515

3. adding attack xy → y
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4. ∀z → x ∈ Atts with P (z → x) = 1 add an attack z → xy.

5. ∀yz ∈ Args, where yz are introduced auxiliary arguments, add an attack

xy → yz.

Theorem 3 (Equivalence of transformed PrAAF). The admissible extensions520

E′ not containing any auxiliary probabilistic arguments the transformed PrAAF

P ′ and the admissible extensions E of the original PrAAF P follow the same

(equivalent) probabilistic distribution.

Proof. Similarly, with the previous theorem.

Figure 6 presents the equivalent transformed PrAAF for our example PrAAF525

of Figure 2.

a ac 
 0.3

b bc 
 0.7

c 
 0.4 d

Figure 6: Example transformed PrAAF ({a, b, c, d, ac, bc}, {1, 1, 0.4, 1, 0.3, 0.7}, {ac→ c, bc→

c, c→ d}, {1, 1, 1}).

Proposition 4 (Complexity of the Transformation). The probabilistic attack

to probabilistic argument transformation has linear complexity O(N+M) to the

number of probabilistic attacks N plus the number of incoming attacks M that

attack arguments that a probabilistic attack originates. Similarly, the size of the530

PrAAF grows by N arguments and M attacks (this transformation also removes

N original attacks and replaces them with N attacks originating from auxiliary

nodes). Again, this transformation does not affect the worst case complexity of

computing any extension or the probability that a set is an extension.

The second transformation produces a smaller graph for an argument that535

one or more probabilistic attack(s) originate when 4∗N > N+M →M < 3∗N

with N the probabilistic attacks and M the attacks directed to the originating

probabilistic node. Both transformations could be used in order to produced
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the smallest transformed graph. For the rest of the paper we focus on the

Probabilistic Attack Normal Form for PrAAFs from Definition 5.540

7. Cliques in PrAAFs

Up until now, we have only discussed PrAAFs for which we assume indepen-

dence among their probabilistic elements (attacks or arguments). In this section,

we introduce a new form of probabilistic elements that (a) is compatible and

may co-exist in a PrAAF with the existing probabilistic elements (probabilistic545

attacks in our case); (b) in a transparent way introduce dependencies among

probabilistic element. We refer to these probabilistic elements as Probabilistic

Cliques. Probabilistic cliques are an extension to the probabilistic semantics of

PrAAFs.

But before we introduce probabilistic cliques lets start by defining what a550

clique is in a DAF.

Definition 11 (Cliques in DAFs). We call a Clique in DAF {Args,Atts} a set

of Arguments C ⊆ Args that each argument in C attacks each other. Formally:

∀A,B ∈ C∃A→ B ∈ Atts ∧B → A ∈ Atts.

Cliques in DAFs are implicitly representing a mutual exclusive relation555

among the clique arguments over the extensions of the framework. Take for

example the DAF of Figure 7, only one (or none) of the arguments a, b, c can

appear in any extension (in order to be conflict-free) of the DAF. This mutual

exclusive relation, as illustrated in [21], imposes a problem to the assumption of

probabilistic element independence of [15]. It is not in the context of this paper560

to re-discuss the distribution problems of cliques in general PrAAFs, neither

the solution suggested by [21]. On the other hand we want to point out that

our proposed probabilistic cliques does not have the problem discussed in [21].

7.1. Mutual Exclusive Probabilistic Arguments

In probabilistic reasoning [41], it is common to use mutually exclusive proba-565

bilistic elements to define different probabilistic logics; examples include [34, 42].
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mf

sa

su

ex

wo

ch

ho

Figure 7: Example of a DAF ({ho,mf, sa, su, ch, wo, ex}, {ho → mf, ho → wo,mf →

sa,mf → su,mf → ex, sa → mf, sa → su, sa → ch, sa → wo, su → mf, su → sa, su →

wo,wo→ ex}) with a clique ({mf, sa, su}). Arguments are represented by cycles and attacks

are represented by arrows. Cliques in DAFs have the characteristic that only one of their

arguments can be a member of any admissible set. For this reason we can say that each

argument of a clique is mutually exclusive to the rest arguments of the clique in relation to

the admissible extensions.

Furthermore, other probabilistic logics are extended to support mutually exclu-

sive probabilistic elements such as [43, 44]. These mutually exclusive probabilis-

tic elements have found different applications and are used to realize Hidden

Markov Models [45], Bayesian Networks and can be a crucial tool in expressing570

knowledge for probabilistic models.

We introduce the notion of Mutual Exclusive Probabilistic Arguments in

PrAAFs as a set PC of dependent probabilistic arguments, where
∑

∀A∈PC P (A) =

1. We refer to each such set of mutual exclusive probabilistic arguments as a

Probabilistic Clique. Furthermore, at each possible world exactly one and only575

one mutual exclusive probabilistic argument from each probabilistic clique can

exist. More formally:

Definition 12 (Probabilistic Clique & Mutual Exclusive Probabilistic Argu-

ment). A Probabilistic Clique (PC), in PrAAFs, is a set of Mutually Exclusive

Probabilistic Arguments (A) so that:
∑

∀A∈PC P (A) = 1 and for each possible580

world PW , if A ∈ PW, ∀B ∈ PC ∧B 6= A =⇒ B 6∈ PW .

The above definition extends the definition of possible worlds from Section 3

so that a possible world cannot contain two or more mutually exclusive proba-
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bilistic arguments. For set notation we denote a probabilistic cliques as a single

argument that has the mutual exclusive sub arguments and we do not men-585

tion the attacks among each mutual exclusive argument. Figure 8 presents the

Probabilistic clique {[mf ; sa; su]}, {[0.7; 0.15; 0.15]} in a PrAAF.

mf
0.70

sa
0.15

su
0.15

ex

wo0.8

ch

ho
0.1

Figure 8: Example of a General PrAAF with a probabilistic clique

({ho, [mf ; sa; su], ch, wo, ex}, {0.1, [0.7; 0.15; 0.15], 1, 1, 1}, {ho → mf, ho → wo,mf →

ex, sa → ch, sa → wo, su → wo,wo → ex}, {1, 1, 1, 1, 0.8, 1, 1}). Arguments are represented

by cycles, arguments that are members of the probabilistic clique are notated with double

circles, finally attacks are represented by arrows.

The use case behind probabilistic cliques, is to introduce knowledge that

is known to be exclusive. For example, a probabilistic clique could contain

as arguments what day of the week is like Monday-Friday, Saturday, Sunday590

enumerating all possible values. Each argument could be attacked or attack

any other external argument. Like, if it is Sunday then I was not at work, etc.

Probabilistic cliques enforce that only one such argument exists at all times

describing a set of PrAAFs one for each clique argument. In order to describe

a none of these arguments case an extra argument needs to be added in the595

probabilistic clique, such an argument could be implicitly defined by providing

a distribution that sums less than 1.0 then the system would automatically

define the none argument with the remaining probability.

Probabilistic cliques extend the semantics of general PrAAFs by introduc-

ing a third type of probabilistic element: probabilistic attack, probabilistic ar-600

gument and probabilistic clique. Similarly, with general PrAAFs, probabilistic

cliques require us to impose the same restrictions like in Definition 3 and adds
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the following restriction: ∀PC∃!A ∈ PC∧A ∈ ArgsInd,∀B ∈ PC∧B 6= A =⇒

B 6∈ ArgsInd. Probabilistic cliques share similarities with the mutual exclusive

elements introduced in [46].605

7.2. Probabilistic Cliques, Induced DAFs and Possible Worlds

Probabilistic cliques induce multiple (one for each argument in the clique)

PrAAFs which in their own respect induce multiple DAFs. We use the general

PrAAF example that uses all three different probabilistic elements in order

to illustrate the induced DAFs and their respective possible worlds. Table 4,610

enumerates the induced DAFs of the general PrAAF with a probabilistic clique

of Figure 8. Notice that the possible world column now contains a non binary

random variable, the probabilistic clique.

7.3. Epistemic Properties of Probabilistic Cliques

Probabilistic cliques with dependent arguments (as the ones we introduced)615

introduce epistemic properties in constellation semantics. A clique (which is

also a cyclic relation) introduces ambiguity in a DAF even before we extend the

DAF with probabilistic elements. Probabilistic cliques quantify this ambiguity

and for that reason the have an epistemic meaning. While it is not in the scope

of this paper, it can be shown that PrAAFs that contain only probabilistic620

cliques have equivalent epistemic probabilistic DAFs as defined in [13, 14]. For

an example we refer the reader to Examples 9 and 10 of [14]. The epistemic

approach for probabilistic DAFs concluded that for the coherent semantics the

probabilities of the two surveillance cameras must sum to 1, and ”naturally”

formed a probabilistic clique.625

8. Conclusion and Future Work

In this paper, we (a) make the connection of induced DAFs with possi-

ble worlds; (b) formally introduce the Probabilistic Attack Normal Form for

PrAAFs; (c) illustrate that the Probabilistic Attack Normal Form is sufficient to

represent any general PrAAF as defined by [15]; (d) demonstrate that PrAAFs630
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DAF Possible World Prob. Admissible Sets

mf ex

wo

ch (PC = mf ∧ ¬ho ∧

¬sa→ wo)∨(PC =

mf ∧ ¬ho ∧ sa →

wo)

0.63 {}, {ch}, {mf}, {wo}, {ch,

mf}, {ch, wo}, {mf, ch}, {ch,

mf,wo}

mf exho

wo

ch (PC = mf ∧ ho ∧

¬sa→ wo)∨(PC =

mf ∧ho∧ sa→ wo)

0.07 {}, {ch}, {ho}, {ch, ho}, {ho,

ex}, {ch, ho, ex}

sa ch

wo ex
PC = sa ∧ ¬ho ∧

¬sa→ wo

0.027 {}, {wo}, {sa}, {wo, sa}

sa

wo

ch

ex
PC = sa ∧ ¬ho ∧

sa→ wo

0.108 {}, {sa}, {sa, ex}

sa

wo

ch

ho ex
PC = sa∧ho∧sa→

wo

0.012 {}, {ho}, {sa}, {ho, sa}, {ho,

ex}, {ho, sa, ex}

sa ch

ho wo ex
PC = sa ∧ ho ∧

¬sa→ wo

0.003 {}, {ho}, {sa}, {ho, sa}, {ho,

ex}, {ho, sa, ex}

su wo ex

ch (PC = su ∧ ¬ho ∧

¬sa→ wo)∨(PC =

su∧¬ho∧sa→ wo)

0.135 {}, {ch}, {su}, {ch, su}, {su,

ex}, {ch, su, ex}

su

wo

ho

ex

ch (PC = su ∧ ho ∧

¬sa→ wo)∨(PC =

su ∧ ho ∧ sa→ wo)

0.015 {}, {ch}, {su}, {ho}, {ch, su},

{ch, ho}, {su, ho}, {su, ex},

{ho, ex}, {ch, su, ho}, {ch, su,

ex}, {ch, ho, ex}, {su, ho, ex},

{ch, su, ho, ex}

Table 4: Induced DAFs of our example PrAAF with a probabilistic clique from Figure 8.

With arrows in the possible world column we denote attacks and not implication.
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have a strong relation with PLP; (e) we take advantage of the existing work from

the PLP community to provide an efficient system that implements PrAAFs;

(f) define the Probabilistic Aurgument Normal Form for PrAAFs and prove

the same properties as in the Probabilistic Attack Normal Form; and finally,

introduce a new probabilistic element, the Probabilistic Cliques, that transpar-635

ently introduce dependent probabilistic arguments in constellation semantics

PrAAFs.

Our motivation with this paper is to provide a simpler but powerful def-

inition for constellation PrAAFs; furthermore, we give a clear insight in the

constellation semantics and its restrictions from the point of view of generating640

possible worlds. Finally, by introducing probabilistic cliques we have extended

the knowledge representation power of PrAAFs to combine both independent

and dependent probabilistic elements in the same graph. We want to point out

that one can define more probabilistic elements in a PrAAF in order to describe

even more complex relations, for example: a probabilistic two way attack, a645

probabilistic element depended on a variable, mutually exclusive attacks, etc.

The combination of these formulations would allow more complex probabilis-

tic distributions to be described. A different approach would be to directly

assign a probabilistic distribution to the desired graphs like in [20]. We want

to point out that constellation approaches describe a probabilistic distribution650

over an exponential number of graphs making cumbersome to simulate them by

enumerating each and every one of those.

For future work, we want to investigate to what degree the constellation

semantics can contain epistemic constructs and what relations are between the

two approaches; another topic for future research direction is, how to combine655

probabilities with coalitions [47]; furthermore, it is interesting to investigate

what probabilistic inference tasks could be defined for PrAAFs; finally, we are

planning to examine how the properties of DAF can be used to simplifying

probabilistic inference in PrAAFs.
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