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Abstract

In this dissertation we present the research work we have carried out on melody

and bass line extraction from music audio signals using chroma features. First

an introduction to the task at hand is given and important relevant concepts

are defined. Next, the scientific background to our work is provided, including

results obtained by state of the art melody and bass line extraction systems. We

then present a new approach to melody and bass line extraction based on chroma

features, making use of the Harmonic Pitch Class Profile (HPCP) [Gómez 06a].

Based on our proposed approach, several peak tracking algorithms for select-

ing the melody (or bass line) pitch classes are presented. Next, the evaluation

methodology and music collections and metrics used for evaluation are discussed,

followed by the evaluation results.

The results show that as a salience function our proposed HPCP based ap-

proach has comparable performance to that of other state of the art systems, in

some cases outperforming them. The tracking procedures suggested are shown to

require further work in order to achieve a significant improvement in the results.

We present some initial experiments on similarity computation, the results of

which are very encouraging, suggesting that the extracted representations could

be useful in the context of similarity based applications.

The dissertation is concluded with an overview of the work done and goals

achieved, issues which require further work and some proposals for future inves-

tigation.

i





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Musical Texture . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Melody . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Bass Line . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Salience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.5 Extraction Versus Transcription . . . . . . . . . . . . . . . 6

1.3 Musical Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Melodic and Bass Line Similarity . . . . . . . . . . . . . . 7

1.4 Application Contexts . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Query By Humming . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Audio Cover Song Identification . . . . . . . . . . . . . . . 8

1.4.3 Active Listening . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Goals and Organisation of the Thesis . . . . . . . . . . . . . . . . 9

2 Scientific Background 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 General Architecture for Melody Extraction . . . . . . . . . . . . 11

2.2.1 Step 1: Front End . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Step 2: Multiple F0 Estimation . . . . . . . . . . . . . . . 14

2.2.3 Step 3: Onset events . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Step 4: Post-processing . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Step 5: Voicing . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.6 Evaluation and Conclusion . . . . . . . . . . . . . . . . . . 19

2.3 State of the Art Systems . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Probabilistic Modeling and Expectation Maximisation . . 20

2.3.1.1 Font-end . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1.2 Core . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1.3 Back-end . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1.4 PreFEst Evaluation and Conclusion . . . . . . . 28

2.3.2 Multiple F0 Estimation by Summing Harmonic Amplitudes 28

2.3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . 29

2.3.2.2 Spectral Whitening . . . . . . . . . . . . . . . . . 30

2.3.2.3 Direct Method . . . . . . . . . . . . . . . . . . . 31

2.3.2.4 Iterative Method . . . . . . . . . . . . . . . . . . 33

2.3.2.5 Joint Method . . . . . . . . . . . . . . . . . . . . 34

iii



2.3.2.6 Evaluation and Conclusion . . . . . . . . . . . . 35

2.4 Chroma Feature Extraction . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Pitch Class Distribution - An Overview . . . . . . . . . . . 37

2.4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . 38

2.4.1.2 Reference Frequency Computation . . . . . . . . 40

2.4.1.3 Frequency Determination and Mapping to Pitch

Class . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1.4 Interval Resolution . . . . . . . . . . . . . . . . . 41

2.4.1.5 Post-Processing Methods . . . . . . . . . . . . . 42

2.4.2 Harmonic Pitch Class Profile . . . . . . . . . . . . . . . . . 42

2.4.2.1 Weighting Function . . . . . . . . . . . . . . . . . 43

2.4.2.2 Consideration of Harmonic Frequencies . . . . . . 43

2.4.2.3 Spectral Whitening for HPCP . . . . . . . . . . . 45

2.4.2.4 HPCP Normalisation . . . . . . . . . . . . . . . . 45

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Melody and Bass Line Extraction 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Chroma Features for Salience Estimation . . . . . . . . . . . . . . 47

3.2.1 Frequency Filtering . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 HPCP Resolution . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Window Size . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Peak Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Proximity-Salience based Tracking . . . . . . . . . . . . . 54

3.3.2 Note-Segmentation based Tracking . . . . . . . . . . . . . 57

3.3.2.1 Segment Creation . . . . . . . . . . . . . . . . . . 58

3.3.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.4 Voicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Pre-processing and HPCP Computation . . . . . . . . . . 64

3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Implementation of the Algorithms Presented in [Klapuri 06] 65

4 Evaluation Methodology 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Music Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 The Real World Computing Music Collection . . . . . . . 68



4.2.2 The MIREX 2004 and 2005 Collections . . . . . . . . . . . 69

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 MIREX 2004 Metrics . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 MIREX 2005 Metrics and RWC Metrics . . . . . . . . . . 71

4.4 MIREX 2004 and 2005 Evaluation Results . . . . . . . . . . . . . 73

4.5 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Alignment Verification and Offsetting . . . . . . . . . . . . 74

4.5.2 Format Conversion . . . . . . . . . . . . . . . . . . . . . . 79

4.5.2.1 Track Identification . . . . . . . . . . . . . . . . . 79

4.5.2.2 Introduction to Midi and the SMF . . . . . . . . 79

4.5.2.3 Tempo Calculation . . . . . . . . . . . . . . . . . 80

4.5.2.4 Reference Generation . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Results 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Salience Functions Performance . . . . . . . . . . . . . . . . . . . 83

5.2.1 Results for Melody Extraction . . . . . . . . . . . . . . . . 84

5.2.1.1 Effect of Window Size . . . . . . . . . . . . . . . 85

5.2.2 Results for Bass Line Extraction . . . . . . . . . . . . . . . 85

5.2.3 Voicing Experiment . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Tracking Performance . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Glass Ceiling . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Tracking Results . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Similarity Performance . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Distance Metric . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion 103

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Improving Current Results . . . . . . . . . . . . . . . . . . 104

6.2.2 Proposal for PhD Work . . . . . . . . . . . . . . . . . . . 105

6.2.2.1 Musical Stream Estimation From Polyphonic Au-

dio Based on Perceptual Characteristics . . . . . 105

6.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 107

v



A RWC Music Database File List 113



List of Figures

1.1 The “Music Information Plane”. . . . . . . . . . . . . . . . . . . . 2

1.2 Query-by-humming general system architecture. . . . . . . . . . . 8

2.1 Spectrogram of “pop3.wav” from the MIREX2004 Audio Melody

Extraction evaluation dataset. . . . . . . . . . . . . . . . . . . . . 12

2.2 Common melody transcription architecture . . . . . . . . . . . . . 13

2.3 The steps involved in computing the STFT, for one frame. . . . . 15

2.4 The PreFEst architecture. . . . . . . . . . . . . . . . . . . . . . . 23

2.5 STFT-based multirate filterbank. . . . . . . . . . . . . . . . . . . 24

2.6 The amplitude spectrum and the IF amplitude spectrum. . . . . . 25

2.7 Frequency responses of BPFs used for melody and bass line in

PreFEst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Tone models for melody and bass line fundamental frequencies. . . 26

2.9 The PreFEst tracking agents architecture. . . . . . . . . . . . . . 28

2.10 Power response for subbands Hb(k) applied in spectral whitening . 31

2.11 Spectral amplitude of a signal, before and after spectral whitening. 31

2.12 Results for multiple and predominant F0 estimation taken from

[Klapuri 06]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 Pitch-class profile example . . . . . . . . . . . . . . . . . . . . . . 38

2.14 General schema for pitch class distribution computation from audio. 39

2.15 Weighting function used in HPCP computation. . . . . . . . . . . 44

2.16 Weighting function for harmonic frequencies, s = 0.6. . . . . . . . 44

3.1 Chromagram for 5 second segment from RM-P047. . . . . . . . . 48

3.2 Original, melody and bass line chromagrams for RM-P047 . . . . 49

3.3 HPCP taken at different resolutions. . . . . . . . . . . . . . . . . 51

3.4 HPCP computed with different window sizes. . . . . . . . . . . . 53

3.5 Chroma circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 The parameters involved in the smoothing process. . . . . . . . . 62

3.7 Salience for RM-P047.wav computed by the Direct method. . . . 66

3.8 Salience for train05.wav computed by the Direct method. . . . . . 66

4.1 Alignment of RWC recording RM-P003 to the synthesised reference. 76

4.2 Alignment of RWC recording RM-P074 with the synthesised ref-

erence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Results for our HPCP based approach with the RWC database

using different window sizes. . . . . . . . . . . . . . . . . . . . . . 86

vii



5.2 Extracted melodies and bass line against references for all collections. 87

5.3 Pitch detection, voicing and overall performance for MIREX2004. 88

5.4 Pitch detection, voicing and overall performance for MIREX2005. 89

5.5 Extracted melody for daisy1.wav, with and without voicing detec-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Distance Matrix for RM-P003.wav (melody). . . . . . . . . . . . . 98

5.7 Confusion matrix for extracted melodies. . . . . . . . . . . . . . . 100

5.8 Confusion matrix for extracted bass lines. . . . . . . . . . . . . . 100



Acknowledgements

First and foremost, I would like to thank my tutor, Emilia Gómez, for her guid-
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brain-storming, Joan Serrà for his advice and suggestions, Anssi Klapuri, Matti

Ryynänen and Masataka Goto for their wilful correspondence. Thanks to Narćıs
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1
Introduction

1.1 Motivation

With the prevalence of digital media, we have seen exponential growth in the

distribution and consumption of digital audio. With musical collections reach-

ing vast numbers of songs, we now require novel ways of describing, indexing,

searching and interacting with music. Over the past years the Music Informa-

tion Retrieval (MIR) research community has made significant advances in our

ability to describe music through direct analysis of the audio signal. Being able

to extract various features of the music from the audio signal, or descriptors, is

key to the creation of automatic content description tools which would be highly

useful for music analysis, retrieval and recommendation.

Such descriptors are often classified as either low, mid or high-level descriptors,

depending on the degree of abstraction of the descriptor [Lesaffre 05]. Features

denoted as low-level are usually those which are closely related to the raw audio

signal, computed from the signal in either a direct or derived way. Such descrip-

tors will usually not be very musically meaningful for end-users, but are of great

value for computational systems. Examples of low-level descriptors are acoustic

energy, Mel Frequency Cepstral Coefficients (MFCCs) [Rabiner 93] and the Har-

monic Pitch Class Profile (HPCP) [Gómez 06a] which we present in detail in the

next chapters.

Mid to high-level descriptors are those we would consider more musically

meaningful to a human listener rather than a machine. Examples of such de-

scriptors are the beat, chords, melody, and even more abstract concepts such as

mood, emotions, or the expectations induced in a human listener by a piece of

music. When discussing music description, Serra proposes the “Music Informa-

tion Plane” [Serra 05], a plane where the relevant information about music is

placed in the context of two dimensions; one is the abstraction level of the de-

scriptors (from physical to knowledge levels) and the other includes the different

1



2 CHAPTER 1. INTRODUCTION

media (audio, text, image). A visualisation of this plane is provided in figure 1.1,

taken from [Serra 05] with the permission of the author.
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Slide 2: This is the “Music Information Plane”. The vertical axis represents the different abstraction levels 
of the musical descriptors: Signal Features, Content Objects and Human Knowledge. The “Semantic Gap” 
is located right before the Human Knowledge level. The horizontal axis divides the different musical media 
types: audio recordings, textual information, and images; these media divisions are very relevant for signal 

level descriptors but they fade away as we reach the knowledge level descriptors.  
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Slide 3: In the last few years a number of IST projects have focused in the automatic description of music. 
The projects shown in the slide are the ones in which our group has been part of. Good progress has been 
done in the extraction of relevant signal features and content descriptors from music recordings and text 

information. SIMAC is close to be finished and has been very successful at pushing our music descriptors 
towards high semantic levels. EmCap and Salero are two projects that just have started that should push our 

descriptors a bit higher. 

Figure 1.1: The “Music Information Plane”.

One of the important musical facets presented in figure 1.1 is the melody.

Melodic description has many potential applications and deserves proper atten-

tion. One such application is Query by Humming (QBH) - a content based search

system allowing the user to search for music by singing (or humming) the tune.

Currently, the large majority of existing QBH systems use databases of Midi files

(or similar symbolic representations) which need to be manually prepared. For

such search systems to be truly functional on a large scale basis, an automatic

method of extracting the melody is essential.

In addition to music searching, melody and bass line extraction would facil-

itate many other applications. Clustering variations of the same piece based on

the melody or the chord progression (related to the bass) could assist song cover

identification. Musicological research would benefit from the ability to group and

analyse common melodic and harmonic primitives. An extracted melody could

be used as a reduced representation (thumbnail) of a song in music applications,

or on limited devices such as mobile phones. A melody and bass line extraction

system could be used as a core component in other music computation tasks such

as score following, computer participation in live human performances, or a mu-

sic transcription system. For many years music transcription has been performed

manually by musically trained people, a very time consuming task and practically

infeasible for very large music collections. Extracting a mid-level symbolic rep-

resentation of the melody and bass line would assist in automating this process.
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In section 1.4 we examine more closely some of the potential application areas of

melody and bass line extraction.

Going back to figure 1.1, we see that Serra identifies a “semantic gap” – the

discrepancy between what can be recognised in music signals by current state-of-

the-art methods and what human listeners associate with music [Serra 07c]. As

noted by the authors, this “gap” is the main obstacle on the way towards truly

intelligent and useful musical companions. Whilst not by any means a solution

to the problem of the semantic gap, in developing tools for melody and bass

line extraction (themselves perceptual concepts rooted in music cognition) we

believe our work forms part of the effort in bridging this gap. Firstly, it provides

descriptors currently missing from the landscape of the Music Information Plane,

and one that could be used in attempt to reach higher-levels of abstraction still.

In addition, and not less important, research into melody and bass line extraction

also help us identify the inherent limitations of the bottom up approach and the

places where a more interdisciplinary and wider notion of musical understanding

is required.

1.2 Definitions

Before elaborating further on the task at hand, it is important that we clearly

define what it is exactly that we aim to achieve. Namely, what do we mean

by a “mid-level symbolic representation of the melody and bass line”. In order

to clarify this, we must have clear definitions of the terms “melody” and “bass

line”, of the source from which they are to be “extracted”, and of the form the

“extracted” result will take.

1.2.1 Musical Texture

The characteristics of the musical source heavily affect the nature of the intended

task and the relevant approaches. Of these characteristics, one of the most ele-

mentary ones is the musical texture of the source.

Musical Texture is traditionally divided into three1 classes [Copeland 57]:

• Monophonic – music with a single, unaccompanied line.

• Homophonic – a principal melodic line and a chordal accompaniment.

• Polyphonic – music consisting of two or more melodic lines.

1One might argue that it is four rather than three, if we include hetrophony, more common
to Native American, Middle Eastern, and South African music.
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Within the MIR community this classification is commonly narrowed down

to two classes - monophonic and polyphonic (with homophonic included in poly-

phonic), as they require significantly differently approaches for information re-

trieval, and quite often tasks related to polyphonic music are considerably harder2

than their polyphonic counterpart.

In this research we will focus on western popular music, which is usually

either homophonic or polyphonic, and shall henceforth be referred to simply as

polyphonic, in contrast to monophonic music.

1.2.2 Melody

Though seemingly intuitive, it is not a straight forward task to define what we

perceive as the melody of a musical piece. The term “melody” is a musicological

concept based on the judgement of human listeners [Poliner 07], and we can

expect to find different definitions for the melody in different contexts. In

[Ryynänen 08], Ryynänen and Klapuri note:

“The melody of a piece is an organized sequence of consecutive notes and

rests, usually performed by a lead singer or by a solo instrument. More infor-

mally, the melody is the part one often hums along when listening to a music

piece.”

Typke notes that there are certain characteristics which are important to

the perception of a melody [Typke 07], namely “melodic motion” (characterized

by successive pitch intervals) and contour. The authors of [Poliner 07] define a

melody in the following way:

“. . . the melody is the single (monophonic) pitch sequence that a listener

might reproduce if asked to whistle or hum a piece of polyphonic music, and that

a listener would recognise as being the ’essence’ of that music when heard in

comparison”.

The above definition is adequate for the purpose of our work, and we

adopt it as our definition of a melody for future reference.

2the challenges posed by polyphonic as opposed to monophonic music are explained section
2.2 of chapter 2.
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1.2.3 Bass Line

The above discussion can be similarly applied to the definition of the bass line

(perhaps more so in counterpoint music), however in the context of our work

on popular music the bass line can be relatively clearly defined. Adopting the

definition given in [Ryynänen 08], “the bass line consists of notes in a lower pitch

register [than the melody] and is usually played with a bass guitar, a double bass,

or a bass synthesizer”.

The bass line (played by such instruments) will most often have the following

characteristics:

• Low pitch – the bass instrument will usually be playing in the lowest register

out of the ensemble, with fundamental frequencies reaching all the way

down to the limit of perceptually audible sound (which is around 20Hz)3.

• Limited range – the bass line will usually be played within a limited pitch

range, a result of both the physical characteristics of the instrument, and

musicological reasoning (emphasising the harmony and avoiding clashes

with higher-pitched instruments).

• Slower note rate – quite often the bass line in western music will be played

at a slower rate relative to the other parts, setting the rhythmic “feel” of

the piece and following the harmony which changes at a slower rate than

the notes of the melody (by-and-large).

1.2.4 Salience

Throughout this work, we shall be discussing the extraction of the predominant

melody and bass line. As before, this requires that we define what we consider to

be predominant, or salient. When discussing salience in music, we are referring

to a musical part which “sticks out” more than the others, one which attracts

our attention. Indeed, one might describe the melody in terms of salience – the

melody is the most salient part of a piece of music, the part we listen to the most

in a piece of music and hence most likely to identify it the most with the piece.

More formally, we can define salience as the significance in perceptual terms of

an element of music [Byrd 02].

The notion of salience manifests itself in melody extraction systems in the form

of a Salience Function. That is, a function which given a candidate fundamental

3The biggest pipe in the King’s College pipe organ in Cambridge is said to sound at 18Hz,
whilst some of the biggest organs in the world go down to 8Hz!
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frequency (or harmonic pitch class profile, as shall be explained later) for a specific

frame, returns a value indicating its salience with relation to all other possible

candidates in that frame. Such salience functions stand at the core of most

melody extraction systems, as shown in section 2.2.

1.2.5 Extraction Versus Transcription

Another important distinction is between extraction and transcription. Music

transcription refers to the task of taking audible music and writing it down us-

ing a formal notation, most commonly musical notation or Midi4 as a digital

counterpart. This requires the segmentation of the melody (or bass line) into

notes, quantisation of the pitch into semitones and possibly the generation of

additional notations such as dynamics for example. The problem of transcription

is of course an important one, and has been addressed more recently in the work

of Ryynänen and Klapuri [Ryynänen 06, Ryynänen 07, Ryynänen 08]. However,

we must note that such a formal transcription is not always desirable. An ac-

tual musical performance is quite often (if not always) different from the formal

musical notation – the performer may vary the timing, sings with vibrato (which

causes a pitch modulation), or use other ornamentation not in the original score.

Furthermore, we might not be interested in the final score of the piece, for ex-

ample when wishing to compare a sung query to a song in a database – a full

score is not necessary for the computation of a similarity score. For these reasons,

this work will focus on the extraction of a “symbolic mid-level representation”.

Symbolic implies a textual/numeric representation other than the audio samples.

Mid-level means we are not performing musical transcription, but rather are aim-

ing for a representation which is sufficient for the purposes of computing musical

similarity. The exact format of this mid-level representation is detailed in chapter

3.

1.3 Musical Similarity

In the previous section we argued that the extracted representation should suffice

for computing musical similarity. It is thus important that we state how we define

melodic and bass line similarity. Similarly to the problem of how do we define a

melody, the task of determining what makes one melody more similar to another

is grounded in music cognition and musicological research.

4Musical Instrument Digital Interface [Midi ].
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1.3.1 Melodic and Bass Line Similarity

We have already noted Typke’s mention of the importance of melodic motion

and contour. From musicological studies [Selfridge-Field 98] we can assert that

the contour of a melody is indeed significant in its identification – small changes

to the timing or slight shifting of individual notes will not change the overall

identity of the melody. A melody’s contour is transposition and tempo invariant

– the melody maintains its identity when played either slower or faster, higher or

lower. The importance of contour in melodic similarity has been acknowledged

in musicological research for many years now [Fujitani 71, Dowling 78]. Thus, we

propose a simple approach to melodic similarity – the similarity of two melodies

is determined by a distance metric computed on the frequency (or in our case,

harmonic pitch class) contour of the compared items. Justification for the use

of this contour representation discussed in section 2.3.1. The selection of an

appropriate distance metric is also an important matter and can influence the

similarity judgement [Typke 07]. In section 5.4 we discuss the distance metric

used in our work for the purpose of similarity evaluation.

1.4 Application Contexts

1.4.1 Query By Humming

As mentioned in section 1.1, one application area of interest is Query by Example

(QBE) and Query by Humming (QBH) systems. QBH systems allow the user to

search for songs by singing or humming a query, which is then matched against a

database of songs. In light of the definitions of melody presented in section 1.2.2,

we can expect the vast majority of queries to be a segment of a song’s melody.

Notable early work on QBE is David Huron’s Themefinder [ThemeFinder ]

which allows searching through a symbolic database by specifying a pitch, interval

or contour sequence as a query. Much research has gone into QBE and QBH since,

however the majority still use databases which are built from Midi files (or some

format of symbolic data otherwise). Using manual annotations (in the form of

Midi files) does not scale well, and melody and bass line extraction can assist in

constructing large databases. The general architecture of a query-by-humming

system (using a symbolic database) is presented in figure 1.2.

Still, such existing systems are very much of interest to us as they have re-

sulted in the development of indexing algorithms, efficient search algorithms, and

research into symbolic melodic similarity. Of note is the Vocal Search system de-

veloped by [Pardo 04]. The system records a sung query and transcribes it to
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Figure 1.2: Query-by-humming general system architecture.

pitch and rhythm values (using a monophonic pitch tracker). Two approaches

were compared for matching a query against themes in a database, one based

on string matching techniques and the other on Hidden Markov Models (HMM).

Their work presents important ideas on how a good representation of the query

and targets can support robust matching (i.e. one which is key and tempo invari-

ant) using local alignment algorithms. Further work on QBH evaluation and a

comparative analysis of QBH systems are detailed in [Pardo 03, Dannenberg 07].

In this evaluation, string matching techniques which use a note interval sym-

bolic representation were shown to outperform approaches based on N-grams and

HMM, however Mean Reciprocal Rank (MRR) scores for the evaluation were still

fairly low (the highest reported value was 0.282), indicating that there is much

room for improvement.

1.4.2 Audio Cover Song Identification

Another important task is that of audio cover song identification. In addition

to finding a predetermined target, users might be interested in discovering new

music, for example through finding unknown cover versions of known songs. In

[Yang 01], the author classifies five types of “similar” music pairs, with increasing

levels of difficulty (in recognising that they are indeed a pair):

• Type I: Identical digital copy

• Type II: Same analog source, different digital copies, possibly with noise
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• Type III: Same instrumental performance, different vocal components

• Type IV: Same score, different performances (possibly at a different tempo)

• Type V: Same underlying melody, different otherwise, with possible trans-

position.

More elaborate classifications of cover song types can be found in [Gómez 06a]

and [Serrà 07b]. Examining types IV and V of the above classification, we note

that in the case of type IV, we expect the harmony and melody to be the same

for both versions of the song. It is a clear case of where both the bass line (which

will normally be strongly related to the harmony) and melody can be useful for

cover song identification. In type V, even the harmony of the song is altered, and

thus finding similarity between the melodies of both versions might be the only

way to recover such pairs5.

Recently, good performance in audio cover song identification was demon-

strated in [Serrà 07a] using tonal descriptors. As such, we could also utilise

melody and bass line extraction as a powerful additional tool to enhance perfor-

mance of existing systems, as opposed to using them as the base for a cover song

identification system on their own.

1.4.3 Active Listening

In addition to the specific applications mentioned above, melody and bass line

extraction would facilitate a range of applications which could enhance users’

interaction with music through novel ways of exploring and browsing large col-

lections, in which the user takes an active part in searching and finding new

music. Melody and bass line extraction could stand at the core of novel inter-

faces for music interaction, for example allowing the user to skip or repeat parts

of a song by browsing through the melody, or jump from one song to the next by

targeting songs with similar bass riffs in selected locations. The enhancement of

the listening experience through interaction, Active Music Listening [Goto 07],

is an area of increasing importance, and with the growing capabilities of portable

media devices, we only expect it to grow further.

1.5 Goals and Organisation of the Thesis

The main goals of the thesis are the following:

5A good example of a cover version in which all but the melody is changed is modern jazz
group The Bad Plus’ version of the ABBA song “Knowing Me, Knowing You”.
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• Provide scientific background and a summary of the literature in the field

of melody and bass line extraction.

• Develop a new method for melody and bass line extraction based on chroma

features.

• Compile and prepare music collections for evaluation and an evaluation

methodology.

• Evaluate our method alongside state of the art systems.

• Discuss our results, conclude the work carried out and discuss future work.

In chapter 2 we present the scientific background underlying the work carried

out in this research. In section 2.2 we start by explaining the challenges involved

in melody and bass line extraction from polyphonic audio, and present a general

architecture for a melody extraction system which outlines the a structure com-

mon to most melody extraction systems presented in recent years. In section 2.3

we examine in greater details two state of the art systems, and in section 2.4 we

present chroma feature extraction and the descriptors used in our work.

In chapter 3 we explain our new approach to melody and bass line extrac-

tion using chroma features. We describe how we compute the chroma features

and adapt them for our purposes (3.2) and the tracking algorithms we have im-

plemented (3.3). Finally, we provide details about the implementation of our

system as well as other algorithms implemented for the purpose of a comparative

evaluation (3.4).

In chapter 4 we describe our evaluation methodology. This includes the selec-

tion of music collections for evaluation (4.2), the selection of appropriate evalua-

tion metrics (4.3) and the preparation of the ground truth (4.5). In chapter 5 we

present the results of the evaluation, including the results for salience function

performance, tracking and similarity measurement. We comment on the results

and draw some conclusions. We conclude the thesis in chapter 6, noting the goals

we have accomplished, unresolved issues which require further work, and ideas

for future investigation.



2
Scientific Background

2.1 Introduction

In the following sections we will provide the scientific background underlying the

work carried out in this research. The chapter is divided into three themes –

firstly, we start by giving an overview of the task of melody and bass line extrac-

tion in the literature, and outline a schematic architecture for melody and bass

line extraction through which we can examine and compare different systems.

Next, we examine more closely several relevant approaches and their implemen-

tation as state of the art systems. We then provide an overview of approaches

to chroma feature extraction, including the approach used in our work, the Har-

monic Pitch Class Profile (HPCP). We conclude this chapter with a discussion

of the approaches introduced, and outline our selected approach to melody and

bass line extraction.

2.2 General Architecture for Melody Extraction

Recognising the notes of different instruments in a piece of music is a relatively

trivial task for the human listener. However, this seemingly simple task for a

human has proven difficult and complex when we attempt to perform the same

analysis automatically using computers.

Work on automated transcription traces back to the 1970’s [Moorer 77],

and there are good results for the transcription of monophonic signals – a de-

tailed overview of techniques for monophonic pitch extraction can be found in

[Brossier 06]. The problem of transcribing polyphonic audio however is more

complex.

In monophonic music, the pitch of a single note is more easily ascertainable

from its waveform, which has a relatively stable periodicity and will have a set

of harmonics at integer multiples of the fundamental frequency under Fourier

11
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analysis). Polyphonic music, as alluded to in chapter 1, will often have several

overlapping notes. What is more, the fundamental frequencies of these notes

might be in simple integer ratios, such that their harmonics coincide. Under

Fourier analysis the spectral content of the different notes superimposes making

the task of attributing specific bands and energy levels to specific notes a highly

complex task, and an open research problem. Part of the problem is illustrated in

figure 2.1. The top pane displays the spectrogram of a song, and the bottom pane

displays the same spectrogram with the fundamental frequency of the melody

overlayed.
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Figure 2.1: Spectrogram of “pop3.wav” from the MIREX2004 Audio Melody

Extraction evaluation dataset.

In light of this problem, researchers started considering alternative formula-

tions of the task other than full polyphonic transcription, and focused on ex-

tracting a single predominant line from polyphonic audio. Since the turn of the
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millennium, many systems have been developed in what has grown into a very

active research field. Evidence of this is the Audio Melody Extraction task which

is part of the Music Information Retrieval Evaluation eXchange (MIREX) com-

petitions [Downie 05], the first of which took place in 2004 and have continued

annually since.

Following the MIREX competitions of 2004 and 2005 a review of the partic-

ipating systems was made by [Poliner 07]. From this review some general con-

clusions were made about the common structure of most participating melody

extraction systems, and the various differences and advantages of each system

were brought to light. A common extraction architecture was identified, and is

depicted in figure 2.2. It contains three main phases:

• Multi-pitch extraction: from an audio input, a set of fundamental frequency

(F0) candidates for each time frame is obtained.

• Melody identification: selecting the trajectory of F0 candidates over time

which forms the melody.

• Post processing: remove spurious notes or otherwise increase the smooth-

ness of the extracted melody contour.

Mul$‐pitch 
extrac$on 

Melody 
iden$fica$on 

Post‐processing 
(smoothing) 

Polyphonic 
music audio 

Pitch 
candidates 

Raw 
melody line 

Extracted 
melody line 

Figure 2.2: Common melody transcription architecture

Seven main algorithms out of the ones participating in the 2005 MIREX

competition are reviewed in [Poliner 07]. In the following sections we elaborate

on the general architecture presented above noting features common to most

algorithms as well as comparing and contrasting the differences between them.

The algorithms and their main characteristics are summarised at the end in table

2.1. In the sections that follow, we have further refined the architecture and

divide it into five steps.

2.2.1 Step 1: Front End

The first step involves the initial signal processing applied to the audio signal in

order to reveal the pitch content. Several different approaches are used, though
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by-and-large they can be classified into two groups: those which perform the

analysis in the time domain and those which perform the analysis in the frequency

domain, i.e. spectral analysis.

The majority of the algorithms take the second approach, the most popu-

lar technique being to take the magnitude of the Short Time Fourier Transform

(STFT). This involves taking small windows of the input audio (frames), calcu-

lating the Fourier Transform for each frame and taking the magnitude (denoted

|STFT|). The result can be visualised as a spectrogram, as seen in figure 2.1.

Pitched notes appear as a ’ladder’ of more or less stable harmonics. The STFT

can be summarised by the following formula:

Xl(k) =
N−1∑
n=0

w(n) · x(n+ lH) · e−jωkn l = 0, 1, . . .
�� ��2.1

where w denotes a real windowing function, l is the frame number and H is the

time-advance value in samples (the “hop-size”). The process of taking the STFT

is shown in figure 2.3, for one frame. The top pane contains the audio signal, the

second pain the window function, the third pain the windowed signal (for one

frame), and the bottom pane the magnitude spectrum of the Fourier Transform

of the windowed signal.

Approaches based on the STFT are used in [Dressler 05, Marolt 04, Goto 04b,

Ryynänen 06, Poliner 05]. Two of the algorithms do not use the STFT in this

manner, those of [Paiva 04] and [Vincent 05]. Though different, both are based

on the same popular time-domain method for fundamental frequency estimation,

the Autocorrelation Function (ACF)1. The maximum of the ACF corresponds to

the fundamental frequency of periodic signals. Given a sequence x(n) of length

K, the ACF is defined as:

r(n) =
K−n−1∑
k=0

x(k) · x(k + n)
�� ��2.2

2.2.2 Step 2: Multiple F0 Estimation

In the next step, the system must estimate which pitches are present in the audio

signal, given the output from the front end. The ’# pitches’ in table 2.1 states

how many simultaneous pitches may be reported by the system at any given time.

For the systems based on the |STFT|, the problem is to identify sets of har-

monics and to properly credit the energy (or salience) of each harmonic to the

1The ACF can actually be also computed in the frequency domain, but we have left out the
details for the sake of clarity.
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Figure 2.3: The steps involved in computing the STFT, for one frame.

appropriate fundamental, even though there need not be any energy at that fun-

damental for humans to perceive the corresponding pitch. As a result, one of

the weaknesses of the —STFT— based approach is the possibility of reporting a

fundamental frequency one octave too high, since if all the harmonics of a funda-

mental f0 are present, so will the harmonics for an alleged 2f0. For estimating the

pitches present in a given frame, the basic approach is to implement a “harmonic

sieve”, considering each possible F0 candidate and gathering evidence from the

energy of its predicted harmonics. [Ryynänen 05] identifies lower fundamentals

first and subtracts their spectrum from the overall spectrum before detecting

further candidates, thus reducing evidence for fundamentals with octave errors.

[Goto 04b] proposes a technique for estimating weights over all possible funda-

mentals to jointly explain the observed spectrum, which effectively lets different

fundamentals compete for harmonics, based on Expectation-Maximization (EM)

re-estimation of the set of unknown harmonic-model weights; this is largely suc-
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cessful in resolving octave ambiguities. Further details of these systems will be

presented in the following sections. [Marolt 04] and [Dressler 05] use a weighting

system based on fundamentals which are equal to, or one octave below actual ob-

served frequencies. A radically different approach is taken by [Poliner 05] which

prefers to feed the entire Fourier Transform magnitude at each frame into a

Support Vector Machine (SVM) classifier. This approach willfully ignores prior

knowledge about the nature of pitched sounds, on the principle that it is better to

let the machine learning algorithm figure this out for itself, where possible. The

classifier is trained to report only one pitch – the appropriate melody. [Paiva 04]

chooses the largest peaks of his ACF based front end, whilst Vincent uses a gener-

ative model for the time-domain wave form and selects the candidate fundamental

with the largest posterior probability for its parameters under the model.

2.2.3 Step 3: Onset events

This step refers to the segmentation of frames (each with candidate F0s) into

sets of distinct objects - individual notes or short strings of notes - each with a

distinct start and end time. As can be seen in table 2.1, only some of the systems

perform this step. [Goto 04b],[Poliner 05], and [Vincent 05] choose the best F0

candidate in each frame and return it at the final answer. [Dressler 05, Marolt 04]

form distinct fragments of more-or-less continuous pitch and energy that are

then the basic elements used in later processing. [Ryynänen 05] creates higher-

level constructs, using a hidden Markov model (HMM) providing distributions

over features including an onset strength which is related to the local temporal

derivative of the total energy associated with a pitch. The result is a per-note

HMM which groups F0 candidates over continuous frames.

2.2.4 Step 4: Post-processing

In this step the raw multi-pitch tracks are further cleaned up in order to get the

final melody estimate. [Dressler 05], [Marolt 04] and [Paiva 04] use a set of rules

that attempt to capture the continuity of good melodies in terms of pitch and

energy in order to select a subset of the note fragments and form a single melody

line (including gaps where no melody is selected). [Goto 04b] uses what he calls

“tracking agents”, agents which use a set of heuristics in order to compete for

the F0 candidates. Each agent has an accumulated strength depending on past

selected candidates and penalties, with agents killed and created depending on

strength thresholds. The path of the strongest agent is reported as the extracted

melody. Both [Ryynänen 05] and [Vincent 05] use HMMs, where Ryynänen feeds
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his per-note HMM into a higher level note transition HMM, whilst Vincent only

uses an HMM for smoothing the F0 contour.

2.2.5 Step 5: Voicing

The final step is that of voicing detection. This involves determining when the

melody is present and when it is not. Once again, not all algorithms perform

this step, and Goto and Vincent report their best pitch estimate at each frame.

Poliner uses a global energy threshold to gate his initially continuous output,

whilst Dressler, Marolt and Paiva’s selection of note fragments naturally leads

to gaps where there is no suitable element. Dressler further augments this with

a local threshold to discount low energy notes. The algorithms and their main

characteristics are summarised in table 2.1 below.
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Table 2.1: Melody extraction algorithms, main characteristics.
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2.2.6 Evaluation and Conclusion

As we have seen, the task of melody extraction can be approached in various ways.

Until recently, a number of obstacles have impeded an objective comparison of

these systems, such as the lack of a standardised test set or consensus regarding

evaluation metrics. In 2004, the Music Technology Group (MTG) at the Pompeu

Fabra University proposed and hosted a number of audio description contests in

conjunction with the International Conference on Music Information Retrieval

(ISMIR). These evaluations which included contests for melody extraction, genre

classification/artist identification, tempo induction, and rhythm classification,

evolved into the Music Information Retrieval Evaluation Exchange (MIREX)

[Downie 05] which took place during the summer of 2005, organised and run by

Columbia University and the University of Illinois at Urbana-Champaign.

In Chapter 4 we provide an overview of the MIREX competitions, examining

the test sets and metrics used, as well as the results obtained by the aforemen-

tioned algorithms. Following the reading of recent papers on melody and/or bass

line extraction, we note that the task of melody and bass line extraction still

lacks a uniform evaluation methodology incorporating evaluation metrics and

music collections for testing, however we believe that through the joint effort of

the research community and initiatives such as the MIREX competitions and the

Real World Computing music database (RWC) [Goto 04a] (discussed in detail in

chapter 4) that a uniform methodology can be established. In this work we have

made an effort to perform the evaluation in a way which supports a uniform and

comparable evaluation methodology.

2.3 State of the Art Systems

In this section we take a closer look at two state of the art melody extraction

systems. Firstly, we examine the PreFEst system by [Goto 04b], which has been

briefly introduced in the previous section. Next, we examine a system developed

by Klapuri and Ryynänen in [Klapuri 06]. Unlike the one by Goto, this is a

system for multiple F0 estimation. It serves as the core for a full melody and

bass line transcription system as well as a multiple F0 estimator, however we will

not examine the system beyond what is presented in [Klapuri 06]. Our interest

will be in evaluating this system as a Salience Function, as was described in

section 1.2.4.
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2.3.1 Probabilistic Modeling and Expectation Maximisa-

tion

Masataka Goto was the first to demonstrate successful melody and bass line ex-

traction from real world audio signals such as the ones recorded on commercially

distributed CDs [Goto 99, Goto 04b], in what is his now well-known PreFEest

(Predominant F0 Estimation Method) system.

In [Goto 04b], the author starts by relating to the work carried out in a

related field, which he refers to as Sound Source Segregation2. We can define it

as the task of extracting from an audio signal without additional knowledge a

set of audio signals whose mix is perceived similarly to the original signal, and

where every extracted signal on its own is meaningful to a human listener. A

full review of Audio Stream Separation is beyond the scope of this work, and we

refer the reader to [Vinyes 05] for a comprehensive overview of the task and the

different techniques used in attempt to solve it. What is important for us is what

Goto explains with relation to Audio Stream Separation, namely that segregation

is not necessary for understanding. That is, as human listeners we can make

sense of two auditory streams, without necessarily separating them beforehand.

This motivates the development of a method for musical understanding (in this

case melody and bass line extraction) which does not depend on Audio Source

Separation.

Goto then explains what he defines as the Music-Scene-Description problem.

Music-Scene-Description is a process by which we obtains a description represent-

ing the input musical audio signal. When considering the form of this description,

Goto notes that a transcription (in the form of a musical score) requires musical

training and expertise, and what is more, does not capture non-symbolic prop-

erties such as the expressive performance of music. Instead, he identifies the

requirements for a description as the following:

• An intuitive description that can be easily obtained by untrained listeners.

• A basic description that trained musicians can use as a basis for higher-level

music understanding.

• A useful description facilitating the development of various practical appli-

cations.

Following these requirements, Goto proposes a description consisting of five

sub-symbolic representations:

2Also referred to as Audio Stream Separation, Blind Source Separation (BSS), or simply
Source Separation.
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1. Hierarchical beat structure

2. Chord change possibility

3. Drum pattern

4. Melody line

5. Bass line

For melody and bass line, a continuous F0 contour is proposed as a fitting

sub-symbolic representation. The PreFEst system performs melody and bass line

extraction, and we now provide further details on how this is performed. Before

explaining the actual method however, we must first identify the challenges of

the task at hand, that is, of extracting a continuous F0 contour representing

the melody or bass line from a polyphonic signal. Goto identifies three main

problems, which for clarity we have named in the following way:

• The Range problem – Which F0 belongs to the melody and which to the

bass line in polyphonic music.

• The Estimation problem – How to estimate the F0 in complex sound

mixtures where the number of sound sources is unknown.

• The Selection problem – How to select the appropriate F0 when several

ambiguous F0 candidates are found.

In order to address these problems, we have to make the following assump-

tions:

• The Range assumption – The melody will have most of its harmonic con-

tent in the middle to high range frequencies, whilst the bass will be more

present in the low frequencies.

• The Estimation assumption – The melody and bass line have a harmonic

structure, and we can use this fact to attempt and infer the appropriate

F0s.

• The Selection assumption – The melody and bass line will tend to have

temporally continuous trajectories.

Finally, based on these assumptions, we can suggest potential solutions which

form the basis for the implemented system:
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• The Range solution – we can limit the frequency regions examined for

melody and bass line.

• The Estimation solution – we will regard frequency components as a

weighted mixture of all possible harmonic structure tone models.

• The Selection solution – in the selection of the F0s, we will consider tem-

poral continuity and select the most stable trajectory.

The PreFEst system can be divided into three parts. We will show how each

of these parts incorporates one or more of the steps mentioned in section 2.2 as

being part of a general melody extraction architecture. The three parts are:

• Front-end: performs spectral analysis on a limited frequency range of the

input signal to produce frequency components for further analysis. Equiv-

alent to step 1 (Front-end), as in section 2.2.1.

• Core: regards the observed frequency components as a weighted mixture

of all possible harmonic-structure tone models. It estimates weights for the

frequency components using Expectation Maximisation (EM), and the max-

imum weight model is considered the most predominant harmonic structure

and its F0 is obtained. By taking the top weighted models we get a set of

candidate F0s at each frame. This is step 2 (Multi-pitch), as in section

2.2.2.

• Back-end: given the F0 candidates, the most dominant and stable tra-

jectory is chosen using a tracking-agent architecture, and returned as the

resulting melody or bass line (depending on the frequency range used in

the Front-end). This is step 4 (Post-processing), as in section 2.2.4. Note

that steps 3 (Onset events) and 5 (Voicing) are not part of the system.

The PreFEst architecture is summarised in figure 2.4, taken from [Goto 04b]

with permission of the author. In the following sections we elaborate on each of

the three parts of the system.

2.3.1.1 Font-end

The Front-end divides further into three steps:

1) STFT

The first step involves taking the STFT of the signal. Differently from some of

the other approaches presented earlier which use the STFT directly, Goto uses
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• The melody and bass lines tend to have tempo-

rally continuous trajectories: the F0 is likely to

continue at close to the previous F0 for its dura-

tion (i.e., during a musical note).

These assumptions fit a large class of music with

single-tone melody and bass lines.

PreFEst basically estimates the F0 of the most

predominant harmonic structure within a limited

frequency range of a sound mixture. Our solutions

to the three problems mentioned above are out-

lined as follows: 3

(i) The method intentionally limits the frequency

range to middle- and high-frequency regions

for the melody line and to a low frequency

region for the bass line, and finds the F0

whose harmonics are most predominant in

those ranges. In other words, whether the

F0 is within the limited range or not, PreFEst

tries to estimate the F0 which is supported by
predominant harmonic frequency compo-

nents within that range.

(ii) The method regards the observed frequency

components as a weighted mixture of all pos-

sible harmonic-structure tone models without

assuming the number of sound sources. It

estimates their weights by using the Expecta-

tion-Maximization (EM) algorithm (Demp-
ster et al., 1977), which is an iterative

technique for computing maximum likelihood

estimates and MAP (maximum a posteriori

probability) estimates from incomplete data.

The method then considers the maximum-

weight model as the most predominant har-

monic structure and obtains its F0. Since the

above processing does not rely on the exist-
ence of the F0�s frequency component, it can

deal with the missing fundamental.

(iii) Because multiple F0 candidates are found in

an ambiguous situation, the method considers

their temporal continuity and selects the most

dominant and stable trajectory of the F0 as

the output. For this sequential F0 tracking,

we introduce a multiple-agent architecture in

which agents track different temporal trajec-

tories of the F0.

While we do not intend to build a psychoacous-

tical model of human perception, certain psycho-

acoustical results may have some relevance

concerning our strategy: Ritsma (1967) reported

that the ear uses a rather limited spectral region

in achieving a well-defined pitch perception;

Plomp (1967) concluded that for fundamental fre-
quencies up to about 1400 Hz, the pitch of a com-

plex tone is determined by the second and higher

harmonics rather than by the fundamental. Note,

however, that those results do not directly support

our strategy since they were obtained by using the

pitch of a single sound.

PreFEst consists of three components, the Pre-

FEst-front-end for frequency analysis, the PreFEst-
core to estimate the predominant F0, and the

PreFEst-back-end to evaluate the temporal conti-

nuity of the F0. Fig. 2 shows an overview of

PreFEst. The PreFEst-front-end first calculates

3 In this paper, we do not deal with the problem of detecting

the absence (activity) of melody and bass lines. PreFEst simply

estimates the predominant F0 without discriminating between

the sound sources.
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Fig. 2. Overview of PreFEst (predominant-F0 estimation

method).
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Figure 2.4: The PreFEst architecture.

an STFT-based multirate filterbank (figure 2.5). This involves taking the FFT

for the highest frequency range, and then low-pass filtering and downsampling

the signal before calculating the FFT for the next frequency range. This way

optimal analysis parameters can be chosen at each step depending on the

frequency range analysed, in order to get the best analysis possible given the

time-frequency resolution trade-off inherent to Fourier Analysis [Cohen 89].

2) Instantaneous Frequency (IF) Components

From the output of the filter bank, the instantaneous frequency (IF) is calcu-

lated. The IF is defined as the rate of change of the signal phase. This involves

the mapping of the center frequency ω of an STFT filter to the instantaneous

frequency λ(ωt), where:
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instantaneous frequencies by using multirate signal

processing techniques and extracts frequency com-

ponents on the basis of an instantaneous-fre-

quency-related measure. By using two bandpass

filters (BPFs), it limits the frequency range of these
components to middle and high regions for the

melody line and to a low region for the bass line.

The PreFEst-core then forms a probability density

function (PDF) for the F0 which represents the rel-

ative dominance of every possible harmonic struc-

ture. To form the F0�s PDF, it regards each set of

filtered frequency components as a weighted mix-

ture of all possible harmonic-structure tone models
and then estimates their weights which can be

interpreted as the F0�s PDF; the maximum-weight

model corresponds to the most predominant har-

monic structure. This estimation is carried out

using MAP estimation and the EM algorithm. Fi-

nally, in the PreFEst-back-end, multiple agents

track the temporal trajectories of promising salient

peaks in the F0�s PDF and the output F0 is deter-
mined on the basis of the most dominant and sta-

ble trajectory.

3.1. PreFEst-front-end: forming the observed prob-

ability density functions

The PreFEst-front-end uses a multirate filter

bank to obtain adequate time and frequency reso-
lution and extracts frequency components by using

an instantaneous-frequency-related measure. It

obtains two sets of bandpass-filtered frequency

components, one for the melody line and the other

for the bass line.

3.1.1. Instantaneous frequency calculation

The PreFEst-front-end first calculates the
instantaneous frequency (Flanagan and Golden,

1966; Boashash, 1992), the rate of change of the

signal phase, of filter-bank outputs. It uses an effi-

cient calculation method (Flanagan and Golden,

1966) based on the short-time Fourier transform

(STFT) whose output can be interpreted as a col-

lection of uniform-filter outputs. When the STFT
of a signal x(t) with a window function h(t) is de-

fined as

X ðx; tÞ ¼
Z 1

�1
xðsÞhðs � tÞe�jxsds ð3Þ

¼ aþ jb; ð4Þ

the instantaneous frequency k(x, t) is given by

kðx; tÞ ¼ x þ
a ob

ot � b oa
ot

a2 þ b2
: ð5Þ

To obtain adequate time–frequency resolution

under the real-time constraint, we designed an

STFT-based multirate filter bank (Fig. 3). At each

level of the binary branches, the audio signal is
down-sampled by a decimator that consists of an

anti-aliasing filter (an FIR lowpass filter (LPF))

and a 1/2 down-sampler. The cut-off frequency of

the LPF in each decimator is 0.45 fs, where fs is

the sampling rate at that branch. In our current

implementation, the input signal is digitized at 16

bit/16 kHz and is finally down-sampled to 1 kHz.

Then the STFT, whose window size is 512 samples,
is calculated at each leaf by using the Fast Fourier

Transform (FFT) while compensating for the time

delays of the different multirate layers. Since at 16

kHz the FFT frame is shifted by 160 samples, the

discrete time step (1 frame-time) is 10 ms. This

paper uses time t for the time measured in units

of frame-time.

3.1.2. Extracting frequency components

The extraction of frequency components is

based on the mapping from the center frequency

x of an STFT filter to the instantaneous frequency

= LPF (0.45 fs) + 1/2 down-sampler
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Fig. 3. Structure of the multirate filter bank.
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Figure 2.5: STFT-based multirate filterbank.

λ(ωt) = ω +
a∂b
∂t
− b∂a

∂t

a2 + b2

�� ��2.3

To get a and b we use a reformulation of the STFT for a signal x(t) and a window

function h(t):

X(ω, t) =

∫ ∞
−∞

x(τ)h(τ − t)e−jωτδτ

= a+ jb,
�� ��2.4

Using this, we can obtain a set of instantaneous frequencies:

Ψ
(t)
f =

{
ψ | λ(ψ, t)− ψ = 0,

∂

∂ψ
(λ(ψ, t)− ψ) < 0

} �� ��2.5

By calculating the power of these frequencies, given by the STFT spectrum at

Ψ
(t)
f , we can define the power distribution function Ψ

(t)
p (ω) as

Ψ(t)
p (ω) =

{
|X(ω, t)| if ω ∈ Ψ

(t)
f ,

0 otherwise

�� ��2.6

In figure 2.6 we show first the amplitude spectrum of a signal and then the IF

amplitude spectrum, reproduced from [Abe 96].

3) Limit Frequency Regions The final step is to limit the frequency regions

used for melody and bass line using two band-pass filters (BPF). The frequency

responses of the band-pass filters used for melody and bass line are given in figure

2.7, taken from [Goto 04b].
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Figure 2.6: The amplitude spectrum and the IF amplitude spectrum.

k(x, t) of its output (Charpentier, 1986; Abe et al.,

1996; Kawahara et al., 1999). If there is a fre-

quency component at frequency w, that frequency

is placed at the fixed point of the mapping and

the instantaneous frequencies around w stay
almost constant in the mapping (Kawahara et al.,

1999). Therefore, a set WðtÞ
f of instantaneous fre-

quencies of the frequency components can be

extracted by using the equation (Abe et al., 1997)

WðtÞ
f ¼ w j kðw; tÞ � w ¼ 0;

o

ow
ðkðw; tÞ � wÞ < 0

� �
:

ð6Þ
By calculating the power of those frequencies,
which is given by the STFT spectrum at WðtÞ

f , we

can define the power distribution function

WðtÞ
p ðxÞ as

WðtÞ
p ðxÞ ¼ j X ðx; tÞ j if x 2 WðtÞ

f ;

0 otherwise:

(
ð7Þ

3.1.3. Limiting frequency regions

The frequency range is intentionally limited by

using the two BPFs whose frequency responses

are shown in Fig. 4. The BPF for the melody line

is designed so that it covers most of the dominant
harmonics of typical melody lines and deempha-

sizes the crowded frequency region around the

F0: it does not matter if the F0 is not within the

passband. The BPF for the bass line is designed

so that it covers most of the dominant harmonics

of typical bass lines and deemphasizes a frequency

region where other parts tend to become more

dominant than the bass line.
The filtered frequency components can be

represented as BPF iðxÞW0ðtÞ
p ðxÞ, where BPFi(x)

(i = m,b) is the BPF�s frequency response for the

melody line (i = m) and the bass line (i = b), and

x is the log-scale frequency denoted in units of

cents (a musical-interval measurement). Frequency

fHz in Hertz is converted to frequency fcent in cents

as follows:

fcent ¼ 1200log2

fHz

440 � 2
3
12
�5

: ð8Þ

There are 100 cents to a tempered semitone and

1200 to an octave. The power distribution
W0ðtÞ

p ðxÞ is the same as WðtÞ
p ðxÞ except that the fre-

quency unit is the cent.

To enable the application of statistical methods,

we represent each of the bandpass-filtered fre-

quency components as a probability density func-

tion (PDF), called an observed PDF, pðtÞW ðxÞ:

pðtÞW ðxÞ ¼
BPF iðxÞW0ðtÞ

p ðxÞR1
�1 BPF iðxÞW0ðtÞ

p ðxÞdx
: ð9Þ

3.2. PreFEst-core: estimating the F0�s probability

density function

For each set of filtered frequency components

represented as an observed PDF pðtÞW ðxÞ, the Pre-

FEst-core forms a probability density function of

the F0, called the F0�s PDF, pðtÞF0ðF Þ, where F is

the log-scale frequency in cents. We consider each

observed PDF to have been generated from a

weighted-mixture model of the tone models of all

the possible F0s; a tone model is the PDF corre-
sponding to a typical harmonic structure and indi-

cates where the harmonics of the F0 tend to occur.

Because the weights of tone models represent the

relative dominance of every possible harmonic

structure, we can regard these weights as the F0�s
PDF: the more dominant a tone model is in the

mixture, the higher the probability of the F0 of

its model.

BPF for detecting bass line BPF for detecting melody line

1200 cent 2400 cent 3600 cent 4800 cent 6000 cent 7200 cent 8400 cent0 cent 9600 cent

16.35Hz 32.70 Hz 65.41 Hz 130.8 Hz 261.6 Hz 523.3 Hz 1047 Hz 2093 Hz 4186 Hz

1

Fig. 4. Frequency responses of bandpass filters (BPFs).
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Figure 2.7: Frequency responses of BPFs used for melody and bass line in PreFEst

This allows us to express the observed frequency components as a probability

density function (PDF) – the observed PDF, which will facilitate the use of

statistical techniques in further steps:

p
(t)
Ψ (x) =

BPFi(x)Ψ
′(t)
p (x)∫∞

−∞BPFi(x)Ψ
′(t)
p (x)δx

�� ��2.7

where Ψ
′(t)
p (x) is Ψ

(t)
p (ω) expressed in cents (a musical interval measurement based

on a logarithmic scale):

fcent = 1200 log2

fHz

440× 2
3
12
−5

�� ��2.8
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2.3.1.2 Core

The PreFEst core is responsible for taking the observed PDF produced by the

front end and outputting candidate F0s. We consider each observed PDF to

have been generated from a weighted-mixture model of the tone models of all

the possible F0s. A tone model is the PDF corresponding to a typical harmonic

structure and indicates where the harmonics of the F0 tend to occur. Figure 2.8

shows examples of four tone models – (a) and (b) are examples of tone models for

melody F0s, whilst (c) and (d) are for bass F0s. Because the weights of the tone

models represent the relative dominance of every possible harmonic structure in

the mixture, we can regard these weights as the F0’s PDF: the more dominant a

tone model is in the mixture, the higher the probability of the F0 corresponding

to the model.

5. Experimental results

The system was tested on excerpts from 10

musical pieces in the popular, jazz, and orchestral

genres (Table 3). The 20-s-long input monaural

audio signals––each containing a single-tone mel-

ody and the sounds of several instruments––were

sampled from compact discs. We evaluated the

detection rates by comparing the estimated F0s

with the correct F0s that were hand-labeled using

an F0 editor program we developed. This F0 edi-

tor program enables a user to determine, at each

Table 3

Detection rates for the melody and bass lines

Title Genre Detection rates [%]

Melody Bass

My Heart Will Go On (Celine Dion) Popular 90.8 91.2

Vision of Love (Mariah Carey) Popular 76.6 87.3

Always (Bon Jovi) Popular 94.2 85.4

Time Goes By (Every Little Thing) Popular 91.6 73.1

Spirit of Love (Sing Like Talking) Popular 90.1 76.4

Hoshi no Furu Oka (Misia) Popular 91.7 72.1

Scarborough Fair (Herbie Hancock) Jazz 95.3 65.8

Autumn Leaves (Julian ‘‘Cannonball’’ Adderley) Jazz 82.2 82.0

On Green Dolphin Street (Miles Davis) Jazz 92.9 80.8

Violin Con. in D, Op. 35 (Tchaikovsky) Classical 78.7 84.8

Average 88.4 79.9
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Fig. 8. Prior distribution of the tone-model shapes pðx j F ;m;lðtÞ
0i ðF ;mÞÞ in our experiments: (a) for melody line (i = m, m = 1, F = 4000

cent), (b) for melody line (i = m, m = 2, F = 4000 cent), (c) for base line (i = b, m = 1, F = 2000 cent), (d) for base line (i = b, m = 2,

F = 2000 cent).
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Figure 2.8: Tone models for melody and bass line fundamental frequencies.

Each tone model can be modeled mathematically as a Gaussian Mixture

Model (GMM). This way, we can model the observed PDF as a weighted sum

of all tone models. The goal is then to find the model parameters (tone model

weights) which give the Maximum A Posteriori (MAP) probability that the ob-

served PDF was generated by the model. We can then use the resulting F0

weighting function as a PDF for all F0s for a single frame, which is effectively

what we defined in section 1.2.4 as a Salience Function. This maximisation can

not be performed analytically, and so Goto makes use of the Expectation Max-

imisation (EM) algorithm in order to obtain the F0 PDF. A detailed account
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of the mathematics involved in the application of the EM algorithm for finding

the weights which give the MAP for the tone model mixture is beyond the scope

of this dissertation, and we refer the reader to [Goto 04b] for further details. A

good explanation of GMMs and the application of the EM algorithm can also be

found in [Master 00].

2.3.1.3 Back-end

Given an F0 PDF for every frame of the input signal, the task is then to select

the correct melody or bass line F0 at each frame – corresponding to one of the

peaks in the F0 PDF. As explained earlier, the goal is to select the most dominant

and stable F0 trajectory over the analysis frames, which is to be returned as the

extracted melody (or bass line).

Goto performs this selection using an architecture of “tracking agents” – alter-

nate hypotheses of the current and past pitch which compete to acquire the new

pitch estimates from the current frame, and live or die based on a continuously-

updated penalty that reflects the total strength of the past pitches they represent.

The steps involved in this process are presented below, and illustrated in figure

2.9 taken from [Goto 04b].

• A salience detector is used to select peaks higher than a set threshold from

the current frame’s PDF.

• The peaks are then assigned to existing agents according to the peak’s close-

ness to the previous peak selected by the agent, and the agent reliability.

• If any peaks are left unassigned, a new agent is created for them.

• Agents to which no peak is assigned receive a penalty.

• If the agent penalty reaches a set threshold, the agent dies.

• The reliability of an agent is determined by its reliability on the previous

frame and the current peak’s salience.

• The output F0 sequence is the peak trajectory of the agent with the highest

reliability and greatest total power along the trajectory, where the total

power is the power of all harmonics of the selected F0 at each frame.
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(2) If there are generated agents, they interact to

exclusively allocate the salient peaks to agents

according to the criterion of peak closeness
between the peak frequency and the agent-

tracking frequency. If more than one agent

claims the same peak, the peak is allocated

to the most reliable agent. If the most salient

peak has not been allocated, a new agent for

tracking its peak is generated.

(3) Each agent has an accumulated penalty. The

penalty of an agent to which a salient peak
has been allocated is reset. An agent to which

a salient peak has not been allocated is penal-

ized a certain value and the agent tries to find

its next peak in the F0�s PDF directly. When

the agent cannot find the peak even in the

F0�s PDF, it is further penalized a certain

value. An agent whose accumulated penalty

exceeds a certain threshold is terminated.
(4) Each agent evaluates its own reliability by

using the reliability at the previous frame

and the degree of the peak�s salience at the

current frame.

(5) The output F0 Fi(t) is determined on the basis

of which agent has the highest reliability and

greatest total power along the trajectory of

the peak it is tracking. The power Ai(t) is
obtained as the total power of the harmonics

of the F0 Fi(t).

4. System implementation

PreFEst has been implemented in a real-time

system that takes a musical audio signal as input

and outputs the detected melody and bass lines

in several forms: computer graphics for visualiza-

tion, audio signals for auralization, and continu-

ous quantitative values (with time stamps) for

use in applications. The audio-synchronized
graphics output (Fig. 7) shows a window repre-

senting the scrolling F0 trajectories on a time–fre-

quency plane (Fig. 7(b)), and adjacent interlocking

windows representing the frequency components

(Fig. 7(a)) and the F0�s PDF for the melody and

bass lines (Fig. 7(c) and (d)). The output audio sig-

nals are generated by sinusoidal synthesis on the

basis of the harmonics tracked along the estimated
F0.

Our current implementation for experiments

uses two adaptive tone models with the parameter

values listed in Table 2. Since we cannot assume

perfect harmonicity in real-world audio signals,

the standard deviation of the Gaussian distribu-

tion, Wm and Wb, is effective to take care of any

inharmonicity of the harmonic components and
its value was set according to psychoacoustical

experiments (Kashino and Tanaka, 1994) on the

auditory segregation of sounds with a mistuned

harmonic. For the prior distribution of the tone-

model shapes l(t), we use

cðtÞ0i ðh j F ;mÞ ¼ ai;mgm;hGðh; 1;UiÞ; ð46Þ

where m is 1 or 2, ai,m is a normalization factor,

gm,h is 2/3 (when m = 2 and h is even) or 1 (other-

wise), Um = 5.5, and Ub = 2.7. Fig. 8 shows these

tone-model shapes which are invariable for all F0

ranges and for all the time. We did not use the

prior distribution of w(t) (prior knowledge regard-

ing rough F0 estimates). For the parameters bðtÞ
wi

and bðtÞ
li ðF ;mÞ, we use

bðtÞ
wi ¼ 0; ð47Þ

bðtÞ
li ðF ;mÞ ¼ Bi exp � F � Fli

Fhi � Fli

� �2
,

0:2

" #
; ð48Þ

where Bm = 15 and Bb = 10.

The system has been implemented using a dis-

tributed-processing technique so that different sys-

tem functions––such as audio input and output (I/

O), main calculation, and intermediate-state and

output visualization––are performed by different
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Fig. 6. Sequential F0 tracking with the multiple-agent

architecture.
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Figure 2.9: The PreFEst tracking agents architecture.

2.3.1.4 PreFEst Evaluation and Conclusion

The PreFEst system was tested on ten musical excerpts taken from compact disc

recordings, in the genres of popular, jazz and orchestral music. Each excerpt was

20 seconds long and contained a single-tone melody and several instruments. The

evaluation was performed by comparing the extracted F0 for every frame with a

hand labelled F0 determined using an F0 editor developed by the author. The

extracted F0 was judged correct if its distance from the labelled F0 was under

50 cents (i.e. if the extracted F0 was within a range of one semitone centred on

the labelled F0). Only frames in which a melody was present were taken into

consideration, i.e. performance was evaluated for voiced frames only.

The system obtained an average correct extraction rate of 88.4% for melody

and 79.9% for bass line. These were amongst the first significant results to be

obtained by a melody and bass line extraction system. It is important to note

that the test set was very limited at the time (only 10 songs and only 20 seconds

for each song), which is an example of the lack of evaluation data which was

one of the problems in the early days of this field. PreFEst was later evaluated

again using more test data and a larger set of metrics as part of the MIREX

competitions, as discussed in chapter 4.

2.3.2 Multiple F0 Estimation by Summing Harmonic Am-

plitudes

We now present a second approach to melody extraction. Whilst the previous

system is fairly complex in its mathematical detail and implementation, the fol-

lowing takes a simple approach, which is also computationally efficient. We shall
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examine it through the work of Klapuri, presented in [Klapuri 06]. It is important

to note that unlike the previous system which is presented as a complete melody

and bass line extraction solution, the following algorithms are presented as mul-

tiple F0 estimators. As such, they are closer to a Salience Function, without the

final post-processing step standard to melody extraction systems.

2.3.2.1 Introduction

In [Klapuri 06], the author presents three algorithms for multiple F0 estimation.

At their core, they are all based on the same concept, which we present below.

We then explain each of the three algorithms, labelled the Direct method, the

Iterative method and the Joint method. The underlying approach common to

all three algorithms has two primary steps:

1. Take the STFT of the input signal, and perform spectral whitening

2. Compute a salience value for candidate F0s, using a salience function cal-

culated as the weighted sum of the amplitudes of the harmonic partials of

the candidate F0.

For the three algorithms here, we work with candidate periods rather than

candidate F0s, where the relation between a period τ and its corresponding fre-

quency f is

τ =
fs
f

�� ��2.9

where fs is the sampling frequency of the input signal which for all data used in

our work has the value of 44,100Hz. Klapuri defines the salience s(τ) of a period

candidate τ as follows:

s(τ) =
M∑
m=1

g(τ,m)|Y (fτ,m)|
�� ��2.10

where Y (f) is the STFT of the whitened time-domain signal, fτ,m = m · fs/τ is

the frequency of the m:th harmonic partial of a F0 candidate fs/τ , M is the total

number of harmonics considered and the function g(τ,m) defines the weight of

partial m of period τ in the summation. Klapuri notes however that there is no

efficient method for computing the salience function as given in equation 2.10,

and proposes to replace it with a discrete version:

ŝ(τ) =
M∑
m=1

g(τ,m) max
k∈κτ,m

|Y (k)|
�� ��2.11
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where the set κτ,m defines a range of frequency bins in the vicinity of the m:th

overtone partial of the F0 candidate fs/τ

κτ,m = [〈mK/(τ + ∆τ/2)〉 , . . . , 〈mK/(τ −∆τ/2)〉]
�� ��2.12

where ∆τ = 0.5, the spacing between fundamental period candidates τ is half

the sampling interval.

2.3.2.2 Spectral Whitening

One of the challenges in a melody extraction system is to make it robust to

different sound sources, or rather to different timbres. This can be achieved by

the flattening of the spectral envelope of the signal, which largely defines the

timbre of the sound. This process is referred to as Spectral Whitening. Klapuri

achieves this by performing the following steps:

• Given a signal x(t), we take the discrete Fourier Transform to get X(k)

(using a Hann window and zero padding to twice the window size).

• Next, a band-bass filterbank is simulated in the frequency domain, with

the centre frequencies of the subbands uniformly distributed in a critical-

band scale. Each subband with centre frequency cb has a triangular power

response starting at cb−1 and ending at cb+1. The centre frequencies are

given by equation 2.13, and the power response of the subbands is shown

in figure 2.10.

cb = 229× (10(b+1)/21.4 − 1) b = 1, . . . , 30
�� ��2.13

• Next, we calculate the standard deviations σb within the subbands b, where

K denotes the size of the Fourier Transform

σb =

(
1

K

∑
k

Hb(k)|X(k)|2
)1/2 �� ��2.14

• From these σb we can then calculate bandwise compression coefficients γb =

σν−1
b , where ν is a parameter determining the degree of spectral whitening

to be applied and was determined experimentally and set to 0.33.

• Finally we can obtain an expression for the whitened spectrum Y (k) as

Y (k) = γ(k)X(k)
�� ��2.15
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Figure 2.10: Power response for subbands Hb(k) applied in spectral whitening

In figure 2.11 we provide an example of the effect of spectral whitening. The

blue curve shows the original amplitude spectrum of the signal. The red curve

shows the amplitude spectrum after spectral whitening. As expected, the re-

sulting spectrum maintains the peak locations of the original spectrum, but it

flattens the spectral shape such that all peaks have roughly the same amplitude.
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Figure 2.11: Spectral amplitude of a signal, before and after spectral whitening.

2.3.2.3 Direct Method

Based on the background provided above, Klapuri suggests three algorithms for

multiple F0 estimation. In this section we present the first of the three and the
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simplest, appropriately labelled by the author the “Direct” method.

The idea is to evaluate the salience function ŝ(τ) for a range of values of τ , and

pick the desired number of local maxima as the estimated F0s. For predominant

F0 estimation we would choose the greatest maximum at each frame, and the

simplest extension to melody extraction would be to output this value as the

melody F0.

In order to do this calculation the only thing missing is to define the weighting

function g(τ,m) in a way which minimises the estimation error. Rather than

attempting to find an analytical solution, the author solves this using optimisation

with a large amount of training material:

• Training material is generated, consisting of random mixtures of musical

instrument sounds with varying degrees of polyphony, starting with only

one line (monophony), through 2, 4 and up to 6. 4,000 training instances

were used in total.

• For every instance Klapuri performs both multiple F0 estimation and pre-

dominant F0 estimation, where the output for the predominant F0 estima-

tion is deemed correct if it matches any of the reference F0s in the mixture3.

The optimisation is aimed at minimising the average of the error rates of

both multiple and predominant F0 estimations. For further details about

the optimisation procedure we refer the reader to [Klapuri 06]. Finally, the

author was able to obtain a functional representation for g(τ,m) of the

following form

g(τ,m) =
fs/τ + α

mfs/τ + β

�� ��2.16

The values for α and β used by the author in later experiments are 27Hz

and 320Hz respectively for a 46ms frame (analysis window of 2048 samples

when fs = 44100Hz), and 52Hz and 320Hz respectively for a 93ms frame

(analysis window of 4096 samples).

Now that we have an expression for g(τ.m), ŝ(τ) can be computed using the

Direct method, and all that is needed is to select a frequency range to examine.

Needles to say, having to go through every candidate period τ in the range will be

computationally expensive, and as we shall see the next method, in addition to

introducing a more elaborate approach, is also amenable to efficient computation.

3This form of evaluation can not be applied to melody extraction where there is always only
one correct F0 in the mixture.
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2.3.2.4 Iterative Method

One of the shortcomings of the Direct method is that while the highest peak is

a good indicator of one of the true periods τ , other peaks in ŝ(τ) might be a

result of the same period τ , appearing at integer multiples of the corresponding

F0. Klapuri suggests solving this through iterative estimation and cancellation

– the spectrum of each detected sound is cancelled from the mixture and s(τ) is

updated before estimating the next F0. We outline the algorithm in five steps:

1. Initialise a residual spectrum YR(k) to equal Y (k), and a spectrum of de-

tected sounds YD(k) to zero.

2. Estimate a fundamental period τ̂ using YR(k) and Algorithm 1 (presented

shortly). τ̂ is chosen as the maximum of ŝ(τ).

3. The harmonic partials of τ̂ are located in YR(k) at bins 〈mK/τ〉. We es-

timate each partial’s frequency and amplitude and use it to calculate the

magnitude spectrum at the few surrounding frequency bins. The magni-

tude spectrum of the m:th partial is weighted by g(τ̂ , m) and added to the

corresponding position of the spectrum of detected sounds YD(k).

4. Recalculate the residual spectrum as YR(k) ← max(0, Y (k) − dYD(k)),

where d controls the amount of subtraction.

5. If there are any sounds remaining in YR(k), return to step 2.

Unlike the Direct method which requires scanning through all candidate peri-

ods in order to find the maximum of ŝ(τ), the Iterative method can be computed

using an efficient divide-and-conquer algorithm (Algorithm 1) which avoids cal-

culating ŝ(τ) for every possible period τ . For further details on Algorithm 1 the

reader is referred to [Klapuri 06].

These five steps are repeated until the desired number of sounds has been

detected. When the number of sounds is not given, it has to be estimated. The

task of polyphony estimation is performed by repeating the iteration until the

newly-detected period τj at iteration j no longer increases the quantity

S(j) =

∑j
i=1 ŝ(τ̂i)

jγ

�� ��2.17

where γ = 0.70 was determined empirically.
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Algorithm 1: Fast search for the maximum of ŝ(τ)

1. Q← 1; τlow(1)← τmin; τup(1)← τmax; qbest ← 1;

2. while τup(qbest)− τlow(qbest) > τprec do

3. #Split the best block and compute the new limits

4. Q← Q+ 1

5. τlow(Q)← (τlow(Qbest) + τup(qbest))/2

6. τup(Q)← τup(qbest)

7. τup(qbest)← τlow(Q))

8. #Compute new saliences for the two block-halves

9. for q ∈ {qbest, Q} do

10. Calculate smax(q) using equations 2.11-2.12 with g(τ,m) = fs/τlow(q)+α
mfs/τup(q)+β

where τ = (τlow(q) + τup(q))/2 and ∆τ = τup(q)− τlow(q)

11. end

12. #Search the best block again

13. qbest ← arg maxq∈[1,Q] smax(q)

14. end

15. Return τ̂ = (τlow(qbest) + τup(qbest))/2

ŝ(τ̂) = smax(qbest)

2.3.2.5 Joint Method

As we have seen, the iterative method is both faster to compute and takes into

consideration the issue of falsely detecting partials of a present F0 as other F0s.

One issue still remains however, and that is the possibility that the iterative pro-

cess of estimation and cancellation has some undesirable effect on the results. To

examine this, Klapuri suggests to factor the cancellation into the salience func-

tion and compute a joint estimation for all F0s simultaneously. This procedure

is described in five steps as follows:

1. Calculate the salience function ŝ(τ) according to equation 2.11.

2. Choose the I highest local maxima of ŝ(τ) as candidate fundamental period

values τi with i = 1, . . . , I.

3. For each candidate i, compute the following quantities:

(a) The frequency bins of the harmonic partials ki,m

(b) The candidate spectrum Zi(k)

4. Let us denote the number of simultaneous F0s to estimate by P , and a set

of P different candidate indices i by I.



2.3. STATE OF THE ART SYSTEMS 35

5. Then, find such an index set I that maximises

G(I) =
∑
i∈I

∑
m

g(τi,m)|Y (ki,m)|
∏
j∈I\i

(1− Zj(ki,m))
�� ��2.18

Equation 2.18 can be broken down relatively simply – the summation at the

centre of the expression is the salience function ŝ(τ) as we have seen in before.

The product to its right is the cancellation factor from all other candidates i

in the examined set I, and finally the summation on the extreme left sums the

resulting salience value for all candidates i in I, giving us an overall salience value

for the set I. A problem with equation 2.18 is that the computational complexity

of evaluating G(I) for all
(
I
P

)
different index combinations I is too great for it to

be feasible. A reasonably efficient implementation is possible by making use of

the lower bound G̃(I) of G(I). The complete details are beyond the scope of this

section, but the reader is referred to [Klapuri 06] for the full mathematical detail

and a relatively efficient algorithm for performing the computation. What should

be noted, is that since an initial set of I maxima needs to be found, Algorithm

1 can not be used in this case, and so the Joint method can not be computed as

efficiently as the Iterative method.

2.3.2.6 Evaluation and Conclusion

The three algorithms were evaluated using a significantly different approach to

that used by Goto or the MIREX competitions (as detailed in chapter 4).

The test data for the evaluation was generated by the authors, by creating

random mixtures of musical instrument samples with F0s between 40 and 2100

Hz. First an instrument was allotted randomly, and then a sound from the pre-

scribed range was randomly selected. The process was repeated until the desired

number of sounds was obtained, which were then mixed with equal mean-square

levels. The authors used a total of 2842 samples from 32 musical instruments.

As polyphony estimation is a difficult task in its own right, polyphony estimation

and multiple F0 estimation were evaluated separately, and we only present the

results for the latter.

The three algorithms, Direct, Iterative and Joint (labelled in the diagram as

d,i and j respectively) were compared against three reference algorithms, pre-

sented in [Tolonen 00], [Klapuri 03] and [Klapuri 05] (labelled in the diagram as

[3], [4] and [5] respectively). An extracted F0 was judged correct if it deviated

less than 3% from the reference F0. The authors also evaluated predominant F0

estimation, by judging an F0 to be correct if it matches any of the true F0s in

the mixture. We note again how this evaluation methodology is highly different
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from the one we saw earlier for the evaluation of Goto’s PreFEst. As such, it

is hard to directly compare the results with those we have seen earlier. Kla-

puri and Ryynänen did however present a complete melody extraction system

[Ryynänen 05] (though it is based on a different approach to the one presented

here), which took part in the MIREX evaluations and can be more easily com-

pared to other systems. More recently, a full system for melody, bass line and

chord estimation based on the salience function we have presented above was de-

veloped by Ryynänen and Klapuri [Ryynänen 08], and evaluated using the RWC,

more on which in chapter 4. The evaluation results for the Direct, Iterative and

Joint methods are presented in figure 2.12, taken from [Klapuri 06] with the

permission of the authors.
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Figure 4. Multiple-F0 estimation and predominant-F0 estima-
tion results in 46 ms and 93 ms analysis frames. Reading left to
right, each stack of six thin bars corresponds to the error rates
of the direct (d), iterative (i), joint (j), and reference methods
[3], [4], and [5] in a certain polyphony.
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Figure 5. Histograms of polyphony estimates for the iterative
method and a 93 ms analysis frame. The asterisks indicate the
true polyphony (1, 2, 4, and 6, from left to right).

320 Hz, and 1.0, respectively, for 46 ms analysis frame, and
52 Hz, 320 Hz, and 0.89, respectively, for 93 ms frame.

Figure 4 shows the F0 estimation results of the proposed
and the reference methods. Here the number of concur-
rent sounds (polyphony) was given as a side-information
to the estimators. The error rates are practically the same
for the proposed iterative and joint methods and the refer-
ence method [5], and these three outperform the methods
[3] and [4]. This is a very nice result, since the best refer-
ence method [5] involves computation of an auditory model,
including e.g. Fourier transforms at 70 subbands. The pro-
posed methods are considerably simpler and computation-
ally more efficient. In monophonic cases (polyph. 1), about
50% of the errors are caused by F0s between 40 and 65 Hz.

The lower panels of Figure 4 show predominant-F0 es-
timation accuracies. Here the error rates are practically the
same for the proposed direct and the iterative method and
for the reference method. The accuracy of the joint method,
however, is clearly better in high polyphonies.

Figure 5 illustrates the results of polyphony estimation
for the iterative method and a 93 ms analysis frame. Results
for the joint method were very similar and are not shown.
The asterisk indicates true polyphony in each panel, and bars
show a histogram of the estimates. The results are not fully
satisfactory, and it seems that robust estimation of the num-
ber of sounds requires more than one analysis frame.

4. Conclusions
The principle of summing harmonic amplitudes as given by
(1) is very simple, yet it suffices for predominant-F0 estima-
tion in polyphonic signals provided that the weights g(τ,m)
of different partials and periods are appropriate. In multiple-
F0 estimation, both the iterative and the joint estimator were
successful, but the iterative method admits a fast implemen-
tation and is therefore more appealing. The joint estimator,
in turn, achieves better predominant-F0 estimation. Both
methods can be seen to implement the model embodied in
the goodness measure (9), which is very simplistic consider-
ing the wide range of instruments and F0 values addressed.
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Figure 2.12: Results for multiple and predominant F0 estimation taken from

[Klapuri 06].

As seen in figure 2.12, the performance of the Iterative and Joint approaches

for multiple F0 estimation is almost the same and outperforms the rest. For

predominant F0 estimation, the error rates for the Direct and Iterative methods

are similar to that of [5], whilst the Joint method outperforms the rest for high

polyphonies. Though not comparable to other results we have presented so far for

melody and bass line extraction (or those presented in chapter 4), we can make

the overall observation that these approaches seem to perform well and are com-
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parable (if not better in some cases) to the more elaborate (and computationally

expensive) approaches presented in [Tolonen 00, Klapuri 03, Klapuri 05]. This

further motivates us to investigate the use of a simple salience function based on

the summation of harmonic amplitudes for the purpose of melody and bass line

extraction, as explained in the following chapters.

2.4 Chroma Feature Extraction

In the previous sections we reviewed the general architecture for melody and bass

line extraction, as well as two relevant state of the art systems and the details

of the “Salience Functions” used at their core. In this section we provide the

scientific background for what forms the Salience Function at the core of our

system, namely Chroma Feature Extraction.

2.4.1 Pitch Class Distribution - An Overview

Chroma features refer to the induction of tonality information from the audio

signal. The nomenclature for this feature is varied and also includes pitch-class

distribution (PCD), pitch histograms and pitch-class profile (PCP). Most of these

refer to the same concept, though their method of computation can vary signif-

icantly. Generally speaking, the pitch-class distribution of music is a vector of

features describing the different tones (or pitches) in the audio signal (the gran-

ularity of the analysis can be as coarse as a complete audio signal or as fine

as a single analysis frame), and it is directly related to the tonality of a piece.

[Fujishima 99] proposed a chord recognition system based on the pitch-class pro-

file (henceforth PCP), defined by Fujishima as a twelve dimensional vector repre-

senting the intensities of the twelve semitone pitch classes. An example of such a

PCP (otherwise referred to as a 12-bin chroma histogram) is given in figure 2.13.

The twelve bins correspond to the pitch classes A, A],. . . ,G,G].

In [Gómez 06a], Gómez defines the requirements that should be fulfilled by

reliable a pitch class distributions:

1. Represent the pitch class distribution of both monophonic and polyphonic

signals.

2. Consider the presence of harmonic frequencies – the first harmonics of a

complex tone belong to the major key defined by the pitch class of the

fundamental frequency, and all but the 7th harmonic belong to its tonic

triad.
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Figure 2.13: Pitch-class profile example

3. Be robust to noise: ambient noise (e.g. live recordings), percussive sounds,

etc.

4. Be independent of timbre and instrument type.

5. Be independent of loudness and dynamics.

6. Be independent of tuning, so that the reference frequency can be different

form the standard A 440Hz.

Gómez points out that all approaches for computing the instantaneous evolu-

tion of the pitch class distribution follow the same schema, shown in figure 2.14.

In the following sections we briefly review the different approaches taken towards

computing each step of this schema, and in the final section we present the Har-

monic Pitch Class Profile, an extension of the PCP presented in [Gómez 06a] and

the tonal descriptor used in our work on melody and bass line extraction.

2.4.1.1 Pre-processing

The main task of this step is to prepare the signal for pitch class distribution

description, enhancing features that are relevant for the analysis. As such it

should help fulfil the third requirement mentioned above, i.e. provide robustness

against noise.

All approaches found in the literature are based on spectral analysis in the fre-

quency domain. Fujishima [Fujishima 99, Fujishima 00] uses the Discrete Fourier
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Figure 2.14: General schema for pitch class distribution computation from audio.

Transform (DFT) with a frame size of 2048 samples and a sampling rate of 5.5KHz

(i.e. a 400ms frame). The DFT is also used for computing the HPCP as we shall

see in section 2.4.2. It is also common to restrict the frequency range for the anal-

ysis – different approaches use various ranges (63.5Hz-2032Hz in [Fujishima 99],

25Hz-5000Hz in [Pauws 04], 100Hz-5000Hz in [Gómez 06a], and there are several

other variations). As we shall see in chapter 3, limiting the frequency range for

the HPCP computation plays an important role in our system.

An alternative to the DFT is the constant-Q transform [Brown 91, Brown 92],

used for the constant-Q profile [Purwins 00] and pitch profile [Zhu 05]. It is

beyond the scope of our work to give further details about this approach, and

the reader is referred to [Gómez 06a] and the above cited papers for further

information.

Finally, there are several other pre-processing steps in addition to frequency

analysis utilised by some of the authors. [Fujishima 99] uses non-linear scal-

ing and silence and attack detection to avoid noisy features. [Gómez 06b] uses
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transient detection and peak selection for considering only local maxima of the

spectrum.

2.4.1.2 Reference Frequency Computation

Whilst A 440Hz is considered as the standard reference frequency for pitch class

definition, we cannot assume that bands (or orchestras) will always be tuned to

this reference frequency. Though a series of approaches uses a fixed reference

frequency ([Fujishima 99, Purwins 00, Pauws 04] and others), there are several

approaches which try to take this issue into consideration.

[Fujishima 00] adjusts the PCP values according to the reference frequency

after the PCP is computed. The technique is based on ring shifting the PCP

with a resolution of 1 cent and computing the mean and variance for 12 semi-

tone width segments, where the minimum variance indicates the unique peak

position. [Zhu 05] determines the tuning frequency before computing the PCD,

and then uses this frequency for the frequency to pitch mapping. The approach

is based on statistical analysis of the frequency positions of prominent peaks of

the constant-Q transform, and a similar approach is proposed in [Gómez 06a].

2.4.1.3 Frequency Determination and Mapping to Pitch Class

Following the transformation of the signal to the frequency domain and determi-

nation of the reference frequency, the next step is to determine the pitch class

values.

[Leman 00] and [Tzanetakis 02] take a multipitch estimation oriented ap-

proach, applying periodicity analysis to the output of a filter-bank using autocor-

relation. They extract a set of K predominant frequencies fpk, where k = 1 . . . K,

which are used for tonal description. Leman matches these to pitch classes using

PCD(n) =
∑

fpk s.t. M(fpk)=n

1
�� ��2.19

where n = 1 . . . 12 (12 pitch classes), and the function M(fpk) maps a frequency

value to the PCD index

M(fpk) = round(12 · log2

(
fpk
fref

)
mod 12)

�� ��2.20

where fref is the reference frequency and goes into PCD(0). Although pitch class

C is often assigned to this bin, in our work we will assign pitch A, such that

fref = 440Hz for a piece tuned to this frequency.
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[Fujishima 99] considers all frequencies of the DFT rather than just predomi-

nant ones. The weight given to each frequency is determined by the square of its

spectral amplitude:

PCD(n) =
∑

i s.t. M(i)=n

|XN(i)|2
�� ��2.21

where n = 1 . . . 12 and i = 0 . . . N/2 and N is the size of the DFT. M(i) maps a

spectrum bin index to the PCP index:

M(i) =

{
−1 if i = 0

round(12 · log2

(
fs·i/N
fref

)
mod 12) if i = 1, 2, . . . , N/2

�� ��2.22

where fs is the sampling rate, fref is the reference frequency that falls into

PCP (0), and fs · i/N is the frequency of the spectrum at bin i. Other ap-

proaches (e.g. [Purwins 00]) use the magnitude |XN(i)| in place of the squared

magnitude |XN(i)|2.

[Gómez 06a] introduces a weighting scheme based on a cosine function as de-

tailed in section 2.4.2. Another important issue is the consideration of harmonics.

Several approaches such as [Pauws 04] and [Zhu 05] take harmonics into account

in different ways, and we explain the one used for the computation of the HPCP

shortly.

2.4.1.4 Interval Resolution

An important aspect of the PCD is the frequency resolution used to describe the

pitch classes, the traditional value being a resolution of one semi-tone (i.e. 12

PCD bins each of 100 cents), as used in [Pauws 04]. However, increasing the

resolution can help improve robustness against tuning and other frequency oscil-

lations. [Fujishima 99] and [Zhu 05] use 12 bin PCDs, but use greater resolutions

(1 and 10 cents respectively) during the first analysis steps. [Purwins 00] and

[Gómez 06b] use 36 PCD bins, i.e. a resolution of one third of a semitone. When

it comes to melody and bass line extraction, we care about the resolution even

more, since the greater the resolution, the more accurate the contour we extract

to describe the melody or bass line. As we shall see in chapter 3, we employ

a PCD (the HPCP) with 120 pitch class bins – a resolution of one tenth of a

semitone.
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2.4.1.5 Post-Processing Methods

Similarly to the melody extraction systems we reviewed earlier, PCD computa-

tion is also often followed by some post-processing. As one of the requirements

for PCDs is robustness to variations in dynamics, [Gómez 06b] normalises each

PCD frame by its maximum value. [Leman 00] adds to each feature vector a

certain amount of the previous one, whilst [Fujishima 00] proposes a more com-

plex peak enhancement procedure based on summing the correlations between

ring-shifted versions of the PCP and the original version. Others propositions

include summing over larger time segments and smoothing by averaging.

2.4.2 Harmonic Pitch Class Profile

Following our review of different approaches for the computation of a pitch class

distribution, we now provide further details of the approach used in this work, the

Harmonic Pitch Class Profile (HPCP) introduced by Gómez in [Gómez 06a]. In

this section we explain how the HPCP is computed once the signal has already

been processed and the tuning frequency determined. For full details of these

steps please see the above reference.

The HPCP is based on the Pitch Class Profile (PCP) presented earlier which

was proposed by [Fujishima 99]. To reiterate, this vector measures the intensity

of each of the twelve semitones of the diatonic scale. The HPCP introduces three

main modifications to the PCP:

1. Weighting – a weight is introduced into the feature computation.

2. Harmonics – the presence of harmonics is taken into consideration (hence

the ’H’ in HPCP).

3. Higher resolution – a higher PCD bin resolution is used.

[Gómez 06a] uses a frequency range of 100Hz to 5000Hz, i.e. only considering

spectral peaks whose frequency is within this interval. In chapter 3 we shall see

how the frequency range under consideration is further adjusted for the task of

melody and bass line extraction. The HPCP vector is defined as:

HPCP (n) =
nPeaks∑
i=1

w(n, fi) · a2
i n = 1 . . . size

�� ��2.23

where ai and fi are the linear magnitude and frequency of peak i, nPeaks is the

number of spectral peaks under consideration, n is the HPCP bin, size is the
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size of the HPCP vector (the number of PCD bins) and w(n, fi) is the weight of

frequency fi for bin n.

2.4.2.1 Weighting Function

Instead of having each frequency fi contribute to a single HPCP bin, we define a

weighting function w(n, fi) such that fi contributes to the HPCP bins contained

in a certain window around this frequency. The contribution of peak i is weighted

using a cos()2 function centred around the frequency of the corresponding bin.

For a given bin n, the weight is adjusted according to the distance between fi
and the centre frequency of the bin fn:

fn = fref · 2
n
size n = 1 . . . size

�� ��2.24

The distance d is measured in semitones and given by:

d = 12 · log2

(
fi
fn

)
+ 12 ·m

�� ��2.25

where m is an integer chosen to minimise |d|. Thus, the weight is computed by:

w(n, fi) =

{
cos 2

(
π
2
· d

0.5·l

)
if |d| ≤ 0.5 · l

0 if |d| > 0.5 · l
�� ��2.26

where l is the length of the weighting window. l is a parameter of the algorithm

and [Gómez 06a] empirically sets it to 4
3

of a semitone. In figure 2.15 we show

the weighting function when we use a resolution of 1
3

of a semitone (36 bins) and

l = 4
3

of a semitone. The red bar indicates one bin in the HPCP, and we see how

each spectral peak contributes to four HPCP bins.

2.4.2.2 Consideration of Harmonic Frequencies

The frequency spectrum of a note will contain peaks at several of its harmon-

ics, that is frequencies which are integer multiples of the fundamental frequency

(f, 2f, 3f, 4f, . . .). These harmonics affect the HPCP, and we must assure that

harmonics contribute to the pitch class of the fundamental frequency. To do

so, [Gómez 06a] proposes a weighting procedure – each spectral peak at fre-

quency fi contributes to all frequencies for which it is a harmonic frequency(
fi,

fi
2
, fi

3
, fi

4
, . . . , fi

nHarmonics

)
, where the contribution decreases according to the

curve:

wharm(n) = sn−1
�� ��2.27
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Figure 2.15: Weighting function used in HPCP computation.

where n is the harmonic number and s < 1, and set by the author to 0.64. This

curve is shown in figure 2.16.
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Figure 2.16: Weighting function for harmonic frequencies, s = 0.6.

4Ideally the value of s should be set according to the timbre of the instrument.
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2.4.2.3 Spectral Whitening for HPCP

As previously explained, spectral whitening increases robustness against timbre

variations. The process of spectral whitening was explained in detail in section

2.3.2.2. Using timbre normalisation, notes in high octaves will contribute equally

to the HPCP vector as notes in a lower pitch range.

2.4.2.4 HPCP Normalisation

The HPCP is computed for each analysis frame of the signal, an its values are

normalised with respect to its maximum in the specific analysis frame:

HPCPnormalised(n) =
HPCP (n)

maxn(HPCP (n))
n = 1 . . . size

�� ��2.28

Together with peak detection, this process makes the HPCP independent of

dynamics, overall volume and the present of soft noise. Only spectral peaks

beyond a threshold are selected, so that very low energy frames will return a flat

HPCP. Normalisation means the peak of every HPCP is set to one, such that

amplitude variations in the signal do not affect the HPCP.

2.5 Discussion

In this chapter we provided an extensive scientific background to the work under-

taken in the following chapters. We started by reviewing the general architecture

used in most melody extraction systems. This architecture will also form a rough

schema for our melody and bass line extraction method presented in chapter 3.

We then examined two state of the art systems in greater detail. When review-

ing the work carried out by [Goto 04b], we noted why a mid-level contour based

representation may be desirable, as opposed to full transcription. We adopt the

same approach in our system, extracting a mid-level representation. We also

examined the use of peak tracking for the purpose of melody and bass line se-

lection out of a set of candidate F0s, and this too will form part of our work.

Next we reviewed three different algorithms (or salience functions) for multiple

and predominant F0 estimation, presented in [Klapuri 06]. We observed how a

simple approach based on the summation of harmonic amplitudes can produce

good results for predominant F0 estimation, indicating its potential for melody

and bass line extraction. Furthermore, we introduced some important spectral

analysis steps such as spectral whitening. Following this review, we can identify

several important principles which we shall follow in our selected approach:
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• We will extract a mid-level contour based representation.

• Pre-processing steps such as spectral whitening to increase robustness

against timbre variation and frequency range splitting for melody and bass

line will be employed.

• A simple approach based on summation of harmonic amplitudes has the

potential of providing good results for melody and bass line extraction.

• Tracking rules can be employed for the selection of the melody or bass line.

Based on these observations, we identified the HPCP as a technology with

the potential of being beneficial for melody and bass line extraction:

• It includes spectral processing steps such as peak selection and spectral

whitening which have been shown to be beneficial for this kind of task.

• The HPCP is in essence a pitch-class based salience function. As detailed

in chapter 3, we will make the assumption that the tonality of a musical

signal in the low frequency region is strongly affected by the bass line, whilst

the tonality in the mid to high frequency region is affected by the melody.

The frequency range examined by the HPCP can be easily modified, hence

allowing us to use different frequency range for melody and bass line.

• The HPCP is based on the summation of harmonic amplitudes, an approach

that has been shown to be promising. One important difference from the

salience functions presented in [Klapuri 06] is that by definition, the HPCP

does not contain any octave information. Whilst in accordance with the

notion of a mid-level representation, one of our goals will be to examine

how this lack of octave information affects performance.

An overview of pitch class distribution computation was given, and the spe-

cific details of the HPCP were explained. In chapter 3, we further elaborate

on our selected approach. In chapter 4 we explain our evaluation methodology

and the process of preparing music collections for evaluation. This includes the

implementation of the three algorithms proposed in [Klapuri 06] and reviewed

in section 2.3.2 for the purpose of a comparative evaluation. In chapter 5 we

present the specific experiment we have carried out and the results we have ob-

tained. Finally in chapter 6 we conclude our work with a discussion of the results

and future directions for the work carried out in this research.



3
Melody and Bass Line Extraction

3.1 Introduction

In this chapter we explain our selected approach in detail. Following our overview

of the HPCP, we start by explaining how we adapt the HPCP as presented in

[Gómez 06a] for the purpose extracting a mid-level representation of the melody

and bass line. As we shall see, this corresponds to steps 1 and 2 from the general

melody extraction architecture as explained in section 2.2. Similarly to the ap-

proach taken by Goto in [Goto 04b], we do not perform onset detection or voicing

detection, and we extract a continuous contour as our representation. Finally,

we explain how our method was implemented.

3.2 Chroma Features for Salience Estimation

Following the reasoning given in section 2.5, we propose the use of the Harmonic

Pitch Class Profile (HPCP) as a salience function for melody and bass line ex-

traction. As previously explained, the HPCP returns a relative (or absolute,

depending on whether normalisation is performed) salience value for each pitch

class in the analysed segment, which depends on the presence of its harmonic

frequencies in the frequency spectrum of the signal. In the following sections we

explain how this “salience function” is fine tuned for the purposes of our specific

task.

3.2.1 Frequency Filtering

The HPCP as formulated in [Gómez 06a] examines a relatively wide range of

the audible spectrum, taking into consideration frequencies between 100Hz and

5000Hz. Following the rationale of Goto, we argue that bass line frequencies will

be more predominant in the low frequency range, whilst melody frequencies will

47
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be more predominant in the mid to high frequency rage. Our proposition is thus

to limit the frequency band analysed during the HPCP computation, depending

on whether we are focusing on the melody or bass line. We adopt the ranges

proposed in [Goto 04b] – 32.7Hz (1200 cent) to 261.6Hz (4800 cent) for bass line,

and 261.6Hz (4800 cent) up to 5KHz (9907.6 cent) for melody. In chapter 2 a PCP

was be visualised by means of a histogram. In order to visualise the evolution of

an HPCP over time, we plot it on its side, in what we call a chromagram. The

x-axis represents time, whilst on the y-axis we indicate the salience of the pitch

classes (going full cycle from A through A], B, C. . . back to A) by colour, going

from blue (low) to red (high). In figure 3.1 we show the chromagram for a 5

second segment from the song RM-P047 from the RWC popular music collection,

using a frequency range of 32.7Hz to 5KHz, and an analysis window of 8192

samples with a sampling rate of 44100Hz.

Figure 3.1: Chromagram for 5 second segment from RM-P047.

Now, we perform the same analysis again, only we first limit the frequency

range to 261.6Hz-5000Hz for melody and then to 32.7Hz-261.6Hz for bass. In
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figure 3.2 we provide three chromagrams – the top chromagram is the same as

the one in figure 3.1. The middle one is the chromagram with frequency filtering

for melody, and the bottom one is the chromagram with frequency filtering for

bass. The middle and bottom chromagrams also have the reference melody/bass

line overlayed as white lines (the reference has been mapped from frequency values

to HPCP bins).

Figure 3.2: Original, melody and bass line chromagrams for RM-P047

As can be seen from figure 3.2, limiting the frequency range for the HPCP

computation has a significant effect. We comment that the top pane (containing

the HPCP using the entire frequency range) is closely related to the bass line and

harmony. Once we apply the “filtering” for melody, we observe that pitch classes

previously not at all salient appear, and they are in fact (some but not all) the

ones of the melody. We also note however that limiting the frequency region does

not entirely “solve” the problem, as there are often several salient pitch classes

at each frame, only one of which is the melody pitch class. For bass line the

results are even more encouraging, and we can see that every bass line note in
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this segment seems to be detected with good accuracy1 (experimental results are

provided in chapter 5).

3.2.2 HPCP Resolution

As explained in section 2.4.1.4, one of the important factors in the computation

of the HPCP (or any PCD for that matter) is the resolution, i.e. the number

of pitch class bins into which we divide the diatonic scale. Whilst a 12 or 36

bin resolution may suffice for tasks such as key or chord estimation, if we want

to properly capture subtleties such as vibrato and glissando, as well as the fine

tuning of the singer or instrument, a higher resolution is needed. It is possible

that for certain applications such a high resolution will not be needed, but we

find it better to start off with a high resolution, which can easily be reduced at

a later stage should the need be. In figure 3.3 we show the HPCP for the same

5 second segment of “train05.wav” from the MIREX 2005 collection, taken at a

resolution of 12, 36, and 120 bins. We see that as we increase the resolution,

elements such as glissando (seconds 1-2) and vibrato (seconds 3-4) become better

defined.

1The references for the RWC are discretised to the nearest semitone, such that real charac-
teristics of the audio such as glissando or vibrato may look like errors when compared to the
reference. More on this in the following chapters.
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Figure 3.3: HPCP taken at different resolutions.
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3.2.3 Window Size

Another important parameter is the window size used in the Fourier Analysis

step of the HPCP computation. As mentioned in section 2.3.1.1, there is a trade-

off between the time and frequency resolution of the analysis, depending on the

window size. In our case however, there is another, related trade-off – using a

small window gives us good time resolution, which means we can more accurately

track the subtle changes in the melody or bass line. However, we are also more

likely to have single frames where the melody or bass line is momentarily not

the most (or one of the most) salient lines, resulting in spurious peaks and what

we can generally refer to as noise. Following experiments using different window

sizes we empirically set the window size to 8192 samples (186ms). In figure 3.4 we

present the chromagrams of HPCPs computed for the song train05.wav from the

MIREX05 collection with increasing window size. Evaluation results for different

window sizes using the RWC Music Database are given in chapter 5.
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Figure 3.4: HPCP computed with different window sizes.
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3.2.4 Normalisation

In the chromagrams shown so far, we have been using the normalisation procedure

as explained in [Gómez 06a]. Another option would be to use the non-normalised

HPCP, if it was shown that using the absolute HPCP peak values is beneficial for

the F0 tracking stage of the system. However, preliminary experiments showed

that this was not in fact the case, and so we have not explored this possibility

further and for the rest of the work we use normalised HPCPs.

3.3 Peak Tracking

Given the HPCP for every frame of the analysed piece, the final task is to select

the correct peak out of the potential candidates in each frame (corresponding

the the Post-processing step in the general melody extraction architecture). One

important question when considering this task is – how many peaks must we

consider in the analysis? Once again we are presented with a trade-off – the

more peaks we consider, the greater the likelihood that the true F0 (translated

into an HPCP bin) is amongst one of the peaks. However, the more peaks we

consider, the more complicated our tracking algorithm must be in order to cope

with the increased number of potential candidates. For this reason, we have

adopted the following approach – we start working with two peaks. The first

thing we do is evaluate the “glass ceiling” for two peaks, that is, what is the

best performance possible if we were always to select the correct peak out of the

two, in the case that the correct peak is present (presented in chapter 5. We

then propose a set of tracking algorithms, and evaluate them with relation to

this glass ceiling. Concurrently, we evaluate the glass ceiling for an increasing

number of peaks, in order to examine what overall results are obtainable using

our approach, and whether it has any inherent limitations.

In the following sections we present two main approaches to HPCP peak

tracking. Based on each approach we have written several algorithms with slight

variations, resulting in a total of six algorithms.

3.3.1 Proximity-Salience based Tracking

The first set of tracking algorithms is based on two simple assumptions:

1. The melody (or bass line) is more likely to be found in the most salient

peak of the HPCP.
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2. The melody (or bass line) will tend to have a continuous contour, such that

peaks should be “rewarded” for proximity to the previous selected peak.

Based on these assumptions, we have devised a set of tracking algorithms

which consider the peak salience and peak proximity as parameters in the selec-

tion of the next peak. Before we present the algorithms however, we must first

discuss the concept of proximity in the context of the HPCP. When consider-

ing a standard sequence of candidate F0s, calculating proximity is fairly straight

forward – the distance between two frequencies represented in cents f1 and f2 is

simply |f1−f2|. In the case of the HPCP however, we are dealing with bins (with

values between 1 and 120) rather than frequencies. What is more, given two bins

b1 and b2, we cannot simply compute the value |b1−b2|, since the HPCP is cyclic.

That is, when computing the HPCP we loose the octave information, and thus

we need to think in terms of a pitch chroma circle rather that pitch height, as

visualised in figure 3.5.
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Figure 3.5: Chroma circle.

For this reason, we define the distance between two HPCP bins b1 and b2 as

the shortest distance between the two bins along the chroma circle, as follows:

distHPCP (b1, b2) =

{
min(b1 − b2, b2 + 120− b1) if b1 > b2

min(b2 − b1, b1 + 120− b2) otherwise

�� ��3.1

It is important to note that this is a rather different notion of pitch distance

(it is more a pitch-class distance), which might make the tracking task more

complicated. Another option would be to use a different distance function based

on musicological knowledge (for example considering two notes to be closer if they

are in the same mode with relation to the current chord), however we have not
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Tracking Algorithm 1:

1. for i = 1 to number of frames

2. //Get the bins and saliences of the two highest peaks of the HPCP

3. [bin1 bin2] = peaks(HPCP )

4. [salience1 salience2] = [HPCP (bin1) HPCP (bin2)]

5. if i == 1

6. melody(i) = bin1

7. else

8. //Compute the distances of the candidate peaks from the previous peak

9. dist1 = distHPCP (bin1,melody(i− 1))

10. dist2 = distHPCP (bin2,melody(i− 1))

11. if dist2 < dist1 and salience2\salience1 > threshold

12. melody(i) = bin2

13. else

14. melody(i) = bin1

15. end

16. end

17. end

experimented with this option. We now present the tracking algorithms based

on salience and proximity:

As can be seen, Tracking Algorithm 1 implements a simple heuristic – always

select the highest peak of the HPCP, unless the second highest is closer to the

previously selected peak and has a salience value which is at least threshold of

the salience value of the highest peak. We set threshold empirically to 0.8. By

changing threshold we can get two more simple variations on Tracking Algorithm

1 – if we set threshold to 1, the algorithm will always select the highest peak of

the HPCP. If we set it to 0, it will always take the peak closest to the previous

one.

Tracking Algorithm 2 is identical to Tracking Algorithm 1, with the ex-

ception of line 11. The condition is now changed to:

11. if (dist2 < dist1 and salience2\salience1 > threshold) or (dist2 < distThreshold)

The appended or condition means we give priority to highly close peaks re-

gardless of their salience, and we set distThreshold to 10 (so that the two bins

are withing one semitone of each other). The third algorithm attempts to make

further use of temporal knowledge. That is, rather than just considering the next

peak, it looks further into the future. The function peakSalience(b) evaluates the
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salience of peak b by summing the salience of the next 10 closest peaks (starting

at peak b). The rationale is that if the peak is closely followed by a continuous

sequence of strong peaks, it is a good indication that it is the correct peak to

select at the current frame.

Tracking Algorithm 3:

1. for i = 1 to number of frames

2. //Get the bins and saliences of the two highest peaks of the HPCP

3. [bin1 bin2] = peaks(HPCP )

4. [salience1 salience2] = [peakSalience(bin1) peakSalience(bin2)]

5. if i == 1

6. melody(i) = bin1

7. else

8. if salience1 < salience2

9. melody(i) = bin2

10. else

11. melody(i) = bin1

12. end

13. end

14. end

3.3.2 Note-Segmentation based Tracking

In the previous section we presented three variations on tracking where the two

main parameters are the candidate peak’s salience and its proximity to the pre-

vious peak. The first two make the decision based only on the current frame’s

peaks, and the third variations tries to look a little further into the future, how-

ever the selection is still made on a per-frame basis. In this section we present

algorithms based on an approach which further develops the notion of a peak’s

salience depending on the sequence of peaks it is part of.

The significant step we perform here is what we call “note segmentation”. It

is important to make clear that we are not in any way attempting to segment the

peaks into notes with a single pitch value and start and end time as they would

appear in a musical score. Rather, here we define a “note” as a sequence of peaks

where the distance between every peak and the previous peak in the “note” is

smaller than a certain threshold. The rationale here is to group together peaks

which are part of the same note or sequence of notes. In this way, we can compute

the salience on a per-segment basis (by summing the salience of its constituent
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peaks), and make our selection based on this segment salience. Moreover, once

we select a segment, we continue selecting the peaks of the segment until we need

to make another decision. This happens either when our segment is over, or when

a new segment starts whilst the current segment is still ongoing. The point at

which we make this decision may have a significant effect on the results, and thus

we have created two algorithms, each using a different heuristic for deciding when

to switch between segments.

3.3.2.1 Segment Creation

In this section we quickly explain how the segments are created. As we always

consider two simultaneous peaks at every given frame, we use two containers, A

and B to contain all note segments. Thus, every container contains for each frame

one of the two available peaks, and marker to indicate whether it is the start of

a new segment or the continuation of an existing one. Similar to the first three

algorithms, we use peak proximity and individual peak salience as parameters

in the grouping. Given the two containers A and B, and two candidate peaks

p1 and p2, the peaks are allocated based on the following heuristics (note – the

proximity of a peak to a container is determined by the distance between the

peak and the last peak in the container:

• A container is allocated the peak closest to it.

• If one peak is closer to both containers than the other peak is, it is allocated

to the container to which it is closest, and the remaining peak is allocated

to the other container.

• A peak is considered to be part of the existing note segment in the container

to which it is allocated if its distance from the container is less than a set

threshold.

• If a container is allocated a peak whose distance is greater than the set

threshold, the peak is marked as the start of a new segment.

In essence, the choice of heuristic is determined by four boolean conditions.

Given one of the containers, we ask:

• Which peak is closest to this container?

• Is that peak closer to the other container?

• Is the peak we are allocated within the set threshold?



3.3. PEAK TRACKING 59

• Is the peak allocated to the other container within the set threshold?

These conditions lay out 16 possible allocation and segment continuation sce-

narios. Given this segmentation, we now present the algorithms we have created

for peak tracking. As they are more elaborate, they are presented in a slightly

more abstract pseudo-code fashion:

Tracking Algorithm 4:
1. initiate the frame index to 1
2. perform the note segment grouping: [A, B] = grouping(HPCPs for all frames)
3. while index < frames

4. compute the salience of the segments in A and B from the current index to the end
of the segment, salienceA and salienceB

5. compute the distances from the first peak of each segment to the last selected peak
7. //Check if we have a proximity overruling
6. if the distance from the closest segment to the previous peak is below distThreshold

7. select all peaks belonging to that segment
8. advance index to the frame following the last frame of the segment
9. //Otherwise select the next segment based on its salience
10. else
11. if salienceA > salienceB
12. select all peaks belonging to the segment in container A
13. advance index to the frame following the last frame of the segment
14. else
15. select all peaks belonging to the segment in container B
16. advance index to the frame following the last frame of the segment
17. end
17. end
18. end

Simply put, the algorithm determines the most salient segment at the current

position, and selects all of its peaks. It then determines the next most salient

segment (note that unless two segments happen to start at the same time, one of

the segments will have its beginning cut off) at the current position and repeats.

Similarly to Tracking Algorithm 2, it too has a clause such that if a segment is

closer than a certain threshold, it is selected even if it is not the most salient one.

The fact that we follow a segment all the way to its end may be a disadvantage,

in the case where we select a wrong note, and ignore the beginning of a new

segment which is actually correct. For this reason we created a variant, Tracking

Algorithm 5, where if a new segment starts in the middle of the currently selected
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segment and has a greater salience than the current segment, we immediately

switch to the new segment.

Tracking Algorithm 5:
1. initiate the frame index to 1
2. perform the note segment grouping: [A, B] = grouping(HPCPs for all frames)
3. compute the salience of the segments in A and B from the current index to the end

of the segment, salienceA and salienceB
4. while index < frames

5. if salienceA > salienceB
6. while there is no segmentinterrupt
7. select the peak belonging to the segment in container A
8. advance index

9. if A(index) is the start of a new segment, recompute salienceA
10. if B(index) is the start of a new segment, recompute salienceB and if

salienceB > salienceA, produce a segmentinterrupt
11. end
12. else
13. while there is no segmentinterrupt
14. select the peak belonging to the segment in container B
15. advance index

16. if B(index) is the start of a new segment, recompute salienceB
17. if A(index) is the start of a new segment, recompute salienceA and if

salienceA > salienceB, produce a segmentinterrupt
18. end
19. end
20. end

The final variant of this approach, Tracking Algorithm 6, makes an attempt

to discard note segments that are too short, under the assumption that these

segments are too short to be part of the melody or bass line. It is the same as

Tracking Algorithm 5, but we now add a further condition to the if statements

on lines 5 and 12, requiring the segment to be longer than frameThreshold to be

considered. If neither of the segments fulfills this requirement at a given frame,

the F0 for this frame is set to 0 (denoted by bin 0 for our HPCP representation).

frameThreshold was set empirically to 15 frames, i.e. 87ms.

3.3.3 Smoothing

A potential problem with the note segmentation approach we have proposed

is the presence of “noise” – one or several frames which break the continuity
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Tracking Algorithm 6:
1. initiate the frame index to 1
2. perform the note segment grouping: [A, B] = grouping(HPCPs for all frames)
3. compute the salience of the segments in A and B from the current index to the end

of the segment, salienceA and salienceB
4. while index < frames

5. if salienceA > salienceB and framesA > frameThreshold

6. . . .
12. elseif framesB > frameThreshold

13. . . .
18. else
19. melody(index) = 0
20. advance index

21. if A(index) is the start of a new segment, recompute salienceA
22. if B(index) is the start of a new segment, recompute salienceB
23. end
24. end

of an otherwise continuous sequences of HPCP peaks. Clearly, this affects the

segmentation algorithm, and as a result the peak tracking algorithm. The first

thing we have done to minimise this “noise” is the selection of a large window

size for the HPCP computation, as mentioned in section 3.2.3. This window

effectively acts as a low pass filter on the pitch-class evolution. Nonetheless, in

an attempt to reduce any remaining outliers, we propose a smoothing algorithm

which is to be executed before the segmentation process.

Using a further low-pass filter would not serve our purpose in this case, as

it would cause the “smudging” of note transitions, i.e. creating a continuous

transition between different notes of the melody or the bass line where they

should not exist. Rather, we define a selective filter which is only applied under

certain conditions. Given a frame fi with a peak at bin bi, we alter the bin value

if:

• at lookAhead frames into the future, the next size frames (starting at

fi+lookAhead) contain bins with a distance smaller than smoothThreshold

between them.

• at lookAhead frames into the past, the last size frames (ending at

fi−lookAhead) contain bins with a distance smaller than smoothThreshold

between them.
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• The distances between bi−lookAhead and bi+lookAhead is less than

smoothThreshold.

• the distance between bi and bi−lookAhead and the distnace between bi and

bi+lookAhead are both greater than smoothThreshold.

If these conditions are met, bi is changed to the average of bi−lookAhead and

bi+lookAhead. Note that we use a mean which takes the cyclic nature of the HPCP

into account, such that for example the mean of bins 10 and 110 would be 120.

The conditions required for smoothing to occur are visualised in figure 3.6.
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Figure 3.6: The parameters involved in the smoothing process.

As can be inferred from the diagram, the larger the lookAhead, the greater

the sequence of outliers we can smooth (but we should avoid trying to smooth

sequences which are long enough to be actual notes and not outliers). The size

parameter allows us to set how strict the smoothing condition is – the larger size

is, the longer the sequence in which the outlier exists must be for the outlier

to be smoothed. Finally, we note that in order to perform this smoothing, the

HPCP peaks for all frames must be divided into sequences. Clearly if the optimal

division into sequences was known, we could divide them into melody and non-

melody. As this is not the case, we approximate this by dividing the peaks into

two sequences such that the first sequence always contains the highest peak, and

the second sequence the other peak present in that frame.

3.3.4 Voicing

In previous sections we mentioned that we do not perform voicing detection in

our system. Though we have not included it officially as part of our system, we
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have performed some initial experiments with voicing detection. We use a simple

approach based on the energy of the current frame – our assumption is that where

the melody is present the overall energy will be greater:

melody present(i) =

{
true if energy(i) > voicingThreshold

false otherwise

�� ��3.2

Initial experiments showed that as expected, this threshold must be altered

depending on the song. Next, we observed that whilst selecting the threshold

manually for a song can produce good results even with this simple approach,

selecting it automatically is not a straight forward task. The simplest heuristic

one might suggest is the following:

voicingThreshold = energy − σ(energy) ∗ factor
�� ��3.3

As we shall see in chapter 5, it seems that successful voicing detection requires

a somewhat more elaborate approach, and is suggested as one of the topics for

future research in chapter 6.

3.3.5 Conclusion

The results obtained using the various tracking algorithms presented in this sec-

tion are presented in chapter 5. These algorithms represented two fundamental

approaches, each with several slight variations. As mentioned earlier, we use the

output of these algorithms as the final output of our system, without any further

processing.

3.4 Implementation Details

In the final section of this chapter, we provide a quick description of how we

implemented our suggested approach, as well as how we implemented the three

algorithms presented in [Klapuri 06] for the purpose of a comparative evaluation.

As detailed in previous sections, our approach is comprised of three main

phases – the pre-processing, the computation of the HPCP (our salience function),

and the melody or bass line tracking. We can consider the evaluation step as one

more phase in the process.
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3.4.1 Pre-processing and HPCP Computation

The first two phases of our approach are actually combined into one step. For

the computation of the HPCP, we use the implementation available in Essentia

[Essentia ], an in-house library created at the Music Technology Group of the

Pompeu Fabra University, which provides a collection of algorithms and descrip-

tors used to extract features from audio files. It is written in C++, and supports

a scripting language for setting specific descriptor parameters, such as the ones

we have discussed for computing the HPCP. Thus, given an input file, Essen-

tia will perform the pre-processing and the HPCP computation and produce an

output file with the values of the 120 HPCP bins for each frame of the analysed

signal.

This output is then passed into the second module, which we have written in

Matlab. It includes all the tracking algorithms presented in this chapter, as well

as the smoothing, voicing detection, note segment grouping and other auxiliary

functions mentioned so far. This module takes the HPCPs for all frames of the

analysed song as input and produces an output file with two columns – the first

contains the time-stamp of each frame, and the second the selected melody or

bass line F0 for the given frame. The final output is given in frequencies rather

than HPCP bins for the purpose of the evaluation phase as explained in chapter

4. The conversion of HPCP bin b into frequency f is done as follows:

f =

{
27.5 · 2(b/120)·factor if b > 0

0 otherwise

�� ��3.4

where factor = 2, 4, 8, . . . determines the octave into which we transpose the

HPCP.

3.4.2 Evaluation

The final phase is the evaluation module. We base our evaluation on the evalua-

tion metrics used in the MIREX 2004 and 2005 competitions, more on which in

the following chapter. The evaluation metrics are implemented Matlab and freely

available on [ISMIR 04]. We further modified the metrics to match those used

in the MIREX2005 competition and so that they can be used to evaluate per-

formance using the RWC database. For the preparation of the music collections

for evaluation, we have written an auxiliary tool in Java for converting references

provided in MIDI format into the two-columned format presented above.
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3.4.3 Implementation of the Algorithms Presented in

[Klapuri 06]

A considerable amount of effort was involved in the implementation of the three

algorithms presented in [Klapuri 06]. The Direct, Iterative and Joint methods

were all implemented from the bottom up, in Matlab. The algorithms take the

audio file as input, and produce the values of the salience function for each frame

as output, with the exception of the Iterative method which only produces peak

values (as it avoids computing the entire salience function). We based our im-

plementations on the information provided in [Klapuri 06]. It is important to

note that though we have made every attempt to replicate the exact algorithms

as described in the reference paper, some details are not fully specified, and we

have had to make some assumptions in order to complete the implementation.

Nonetheless, such occasions were seldom enough for us to believe that our im-

plementation is reliable for the purpose of a comparative evaluation. In figures

3.7 and 3.8 we present visualisations of the salience function computed by the

Direct method for RM-P047.wav from the RWC Popular Music Database and

train05.wav from the MIREX05 collection respectively.
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Figure 3.7: Salience for RM-P047.wav computed by the Direct method.

Figure 3.8: Salience for train05.wav computed by the Direct method.



4
Evaluation Methodology

In this chapter we discuss the matter of evaluation, which forms an important

part of our work and of the field of melody and bass line extraction in general. We

start by providing some background to the task of evaluating melody and bass

line extraction, and review the efforts made by the research community in this

area so far. Next, we describe the evaluation methodology used in our research.

This includes the selection of music collections for evaluation, the preparation of

the reference annotations (ground truth), and the evaluation metrics used. The

results of the evaluation are presented in chapter 5.

4.1 Introduction

Until recently, a number of obstacles have impeded the objective comparison

of melody extraction systems, such as the lack of a standardised test set or

consensus regarding evaluation metrics. The problem is evident from the variety

of music collections and metrics mentioned in different papers published in the

field, including some of the papers we presented in chapter 2.

In 2004, the Music Technology Group (MTG) at the Pompeu Fabra Uni-

versity proposed and hosted a number of audio description contests in conjunc-

tion with the International Conference on Music Information Retrieval (ISMIR).

These evaluations which included contests for melody extraction, genre classifi-

cation/artist identification, tempo induction, and rhythm classification, evolved

into the Music Information Retrieval Evaluation Exchange (MIREX) [Downie 05]

which took place during the summer of 2005, organised and run by Columbia

University and the University of Illinois at Urbana-Champaign. The MIREX

competitions continue to have an important role in the field, and continue to

take place annually.

67
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4.2 Music Collections

Although a great deal of music is available in digital format, the number of

corresponding transcriptions time-aligned with the audio is rather limited. In

this section we present three important music collections which have already

been used for melody and bass line extraction evaluation, and are used for the

evaluation of our system.

4.2.1 The Real World Computing Music Collection

In an attempt to address the lack of standard evaluation material, Goto et al.

prepared the Real world Computing (RWC) Music Database [Goto 02]. The ini-

tial collection contained 215 songs in four databases: Popular Music (100 pieces),

Royalty-Free Music (15 pieces), Classical Music (50 pieces) and Jazz Music (50

pieces). The current version contains an additional Music Genre Database (100

pieces) and a Musical Instrument Sound Database (50 instruments) [Goto 04a].

All 315 musical pieces in the database have been originally recorded, and the

database is available for researchers around the world at a cost covering dupli-

cation and shipping expenses. For the purpose of our evaluation we have used

the Popular Music Database. The database consists of 100 songs - 20 songs with

English lyrics performed in the style of popular music typical of songs on the

American hit charts in the 1980s, and 80 songs with Japanese lyrics performed

in the style of modern Japanese popular music typical of songs on the Japanese

hit charts in the 1990s. Important to us, it is the only collection out of the ones

mentioned in this chapter which has transcriptions for the bass line as well as

melody.

For every piece in the database the authors have prepared a transcription

in the form of a Standard Midi File (SMF) [Midi ], containing the parts of all

instruments and voices in the piece. Most of the pieces were transcribed by ear

given the audio signal. The files are stored in SMF format 1 (multiple tracks)

and conform to the GS format. As such, a conversion process is needed for

converting the relevant track in the Midi file (originally containing the tracks

of all instruments) into the two-columned time-stamp F0 format mentioned in

section 3.4 and further explained in section 4.3. The conversion process must

ensure that the reference F0 sequence is synchronised with the audio, which is

not trivial. As seen in section 4.5, we were able to synchronise 73 files out of the

existing 100 in the Popular Music database. Of these, 7 files did not have a bass

line, leaving us with 73 files for melody 66 files for bass line evaluation.
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Finally, it is important to note that as the transcriptions are provided in SMF,

the pitch values in the transcription are discretised to the nearest semitone. Any

metric used to evaluate performance on the RWC database must take this into

account, as further explained in section 4.5.

4.2.2 The MIREX 2004 and 2005 Collections

Whilst the RWC database can be used for melody (and bass line) extraction

evaluation, discretising audio to the nearest semitone results in the omission of a

significant amount of expressive detail (such as vibrato and glissando). Thus, the

organisers of the MIREX competitions opted to create novel sets of recording-

transcription pairs. Twenty such pairs were created for the MIREX 2004 compe-

tition. By using songs for which the original tracks were available, they were able

to use existing monophonic pitch tracking tools such as SMSTools [Cano 98] to

estimate the fundamental frequency of the isolated, monophonic melody track.

The transcriptions were created in the aforementioned two-column time-stamp

F0 format, where the time-stamps increase in 5.8ms steps. As a convention,

frames in which the melody is unvoiced are labeled 0Hz. As a final step the

transcriptions were manually verified and corrected. For the 2005 competition,

25 new recording-transcription pairs were prepared, although only 13 of these are

readily available (those which were released for system tuning prior to the evalu-

ation), as the rest are still used for evaluation in competitions. The ground truth

melody transcriptions for the 2005 set were generated at 10ms steps using the

ESPS get f0 method implemented in WaveSurfer [Sjölander 00], and manually

verified and corrected. Tables 4.1 and 4.2 provide a summary of the test data

used in each competition.

Category Style Melody Instrument

Daisy Pop Synthesised voice

Jazz Jazz Saxophone

Midi Folk (2), Pop (2) Midi instruments

Opera Classical Opera Male voice (2), Female voice (2)

Pop Pop Male Voice

Table 4.1: Summary of data used in the 2004 melody extraction evaluation.

We note that the 2005 test set is more biased towards pop-based corpora as

opposed to the 2004 set which is fairly balanced. The shift was motivated by the

relevance of the genre to commercial applications, and the availability of multi-
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Melody Instrument Style

Human voice (8 f, 8 m) R&B (6), Rock (5), Dance/Pop (4), Jazz(1)

Saxophone (3) Jazz

Guitar (3) Rock guitar solo

Synthesised Piano (3) Classical

Table 4.2: Summary of data used in the 2005 melody extraction evaluation.

track recording. The 2005 test set is more representative of real-world recordings,

and as such it is also more complex than the 2004 collection.

4.3 Evaluation Metrics

In this section we review the metrics used to evaluate our work. Two sets of

metrics are presented – the ones used for the MIREX 2004 evaluation, the ones

used for the MIREX 2005 evaluation which we also use for evaluation with the

RWC database. By using a the metric originally used to evaluate each of the

MIREX collections, we are able to compare our results with those obtained in

the two competitions, and guarantee that our results with the RWC database can

be compared with future work.

One issue which is of great importance is that by using the HPCP, our ex-

tracted melodies and bass lines do not contain octave information. In each of

the metric sets presented below, there are two versions, one which considers oc-

tave errors as a mistake, and one which ignores octave errors (which we label

the “chroma” metric). Only results obtained using the chroma metric can be

compared with our work, as the metric taking octave information into account

is not applicable to our mid-level representation. For completeness, we present

both versions in the following sections, however in chapter 5 we will focus on the

octave agnostic version only.

4.3.1 MIREX 2004 Metrics

The 2004 evaluation included two metrics. The first computes the raw transcrip-

tion concordance, whilst the second computes the chroma transcription concor-

dance, that is, both the reference and the output of the algorithm are mapped

onto one octave before the comparison is made. The final result in the 2004

competition was the average of these two metrics. The metrics were computed
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for both voiced and unvoiced frames, such that voicing detection was implicitly

taken into account in the final score.

The raw transcription concordance is a frame-based comparison of the esti-

mated fundamental frequency to the reference fundamental frequency on a log-

arithmic scale. Both the estimated and reference fundamental frequency are

converted to the cent scale using equation 2.8 shown in section 2.3.1.1. For a

given frame n, the frame concordance error is measured by the absolute differ-

ence between the estimated and reference pitch value:

errn =

{
100 if |f estcent[n]− f refcent[n]| ≥ 100

|f estcent[n]− f refcent[n]| otherwise

�� ��4.1

The overall transcription concordance for a segment of N frames is given by the

average concordance over all frames:

score = 100− 1

N

N∑
n=1

errn
�� ��4.2

Since octave transpositions and other errors in which the frequency of the

estimated pitch is an integer multiple of the reference frequency were frequent,

a second metric, the chroma transcription concordance, ignores octave errors

by folding both estimated and reference transcriptions into a single octave of 12

semitones (maintaining a resolution of one cent) before performing the calculation

as presented in equations 4.1 and 4.2. The mapping onto one octave is performed

as follows:

fchromacent = 100 +mod(fcent, 1200)
�� ��4.3

It is fortunate that it was decided to compute this second metric as well as

the first, as it is the only out of the two which is applicable to our approach, and

allows the comparison of our results with those obtained in the competition. It is

also important to note, that the metrics above penalise for every cent of error, a

condition which was relaxed for the 2005 evaluation and must be relaxed for the

evaluation of the RWC where the reference is discretised to the nearest semitone.

4.3.2 MIREX 2005 Metrics and RWC Metrics

For the 2005 competition, two main changes were made to the evaluation metrics.

Firstly, the tasks of pitch estimation and voicing detection were explicitly calcu-

lated separately, unlike the 2004 results in which voicing detection evaluation is

implicit in the calculation. Nonetheless, the final score is still a combination of
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the voicing detection and pitch estimation performance. In the process of this

evaluation, six metrics were computed:

• Overall Accuracy – the proportion of frames labelled correctly with both

raw pitch accuracy and voicing detection.

• Raw Pitch Accuracy – the proportion of voiced frames in the estimated

transcription which are correctly labelled, out of the total number of voiced

frames in the reference transcription.

• Raw Chroma Accuracy – the same as raw pitch accuracy but mapping

both estimated and reference frequencies onto a single octave.

• Voicing Detection Rate – the proportion of frames labelled as voiced

in the reference transcription that are also labelled as voiced in the esti-

mated algorithm out of the total number of frames labelled as voiced in the

reference transcription.

• Voicing False Alarm Rate – the proportion of frames labelled as unvoiced

in the reference which are labelled as voiced in the estimated transcription,

out of the total number of unvoiced frames in the reference transcription.

• Discriminability – the voicing detection rate can be increased by bias-

ing the algorithm towards labelling every frame as voiced. However, this

in return increases the false alarm rate. The discriminability d′ is a met-

ric which evaluates the ability of the algorithm to obtain a good voicing

detection rate whilst maintaining a low rate of false alarms.

The second major difference is the way in which the pitch and chroma accuracy

are computed. Whilst the 2004 metrics penalised deviations as small as one cent

from the reference frequency, the new metrics consider the estimated frequency

to be correct if it is within ±1
4

tone (±50 cents) of the reference frequency. In

this way the algorithms are not penalised for small variations in the reference

frequency.

This modification becomes absolutely necessary when using the RWC for eval-

uation. This is because, as previously mentioned, the RWC references are in

Midi format and so the pitches are discretised to the nearest semitone. As such,

it makes no sense to penalise for deviations from the reference which are smaller

than 1
4

tone, since even a perfect transcription would have such deviations when-

ever for example the melody is sung with vibrato, or is not perfectly in tune. The

raw pitch accuracy can be computed using a modification of equation 4.1:
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errn =

{
100 if |f estcent[n]− f refcent[n]| > 50

0 otherwise

�� ��4.4

4.4 MIREX 2004 and 2005 Evaluation Results

Following the presentation of the test data and metrics used in the MIREX 2004

and 2005 melody extraction evaluations, in this section we briefly present the

results obtained by the participant algorithms.

We present the results for the 2004 evaluation without providing further back-

ground on the participating algorithms. For the purpose of comparing the re-

sults with those obtained by our system, we show the results obtained for voiced

frames only (as voicing detection is not included in our system). Details about

the participating algorithms and the full set of evaluation results are available in

[Gomez 06c]. The pitch estimation results for both raw pitch and chroma metrics

are shown in table 4.3, and we have highlighted the chroma metric results as they

are of greater interest to us. The participant IDs are taken from the reference

paper.

Tappert and Poliner and

Participant ID Paiva (1) Batke (2) Ellis (3) Bello (4)

Raw Pitch Accuracy

(voiced only) 75.25% 39.73% 50.95% 48.99%

Chroma Accuracy

(voice only) 75.83% 56.11% 52.12% 56.89%

Table 4.3: Results for the 2004 melody extraction evaluation, voiced frames only.

A thorough analysis of the results can be found in [Gomez 06c]. Next, we

present the results obtained for the 2005 evaluation. The participant algorithms

of the 2005 evaluation were reviewed in section 2.2, and further information is

available in the referenced papers. The results for all six metrics detailed in

section 4.3.2 are presented in table 4.4, with the chroma accuracy for voiced

frames only highlighted in bold.

The algorithms marked by an asterisk return a continuous sequence of F0

estimates for every frame, and do not perform voicing detection. The overall

winner of the competition was the algorithm by Dressler [Dressler 05], and as we

can see from the table this is primarily due to its good performance on voicing

detection (it has the highest d′ value). We see that the results for raw chroma
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Overall Raw Raw Voicing Voicing Voicing

Rank Participant Accuracy Pitch Chroma Detection FA d′

1 Dressler 71.4% 68.1% 71.4% 81.8% 17.3% 1.85

2 Ryynänen 64.3% 68.6% 74.1% 90.3% 39.5% 1.56

3 Poliner 61.1% 67.3% 73.4% 91.6% 42.7% 1.56

3 Paiva 2 61.1% 58.5% 62.0% 68.8% 23.2% 1.22

5 Marolt 59.5% 60.1% 67.1% 72.7% 32.4% 1.06

6 Paiva 1 57.8% 62.7% 66.7% 83.4% 55.8% 0.83

7 Goto * 49.9% 65.8% 71.8% 99.9% 99.9% 0.59

8 Vincent 1 * 47.9% 59.8% 67.6% 96.1% 93.7% 0.23

9 Vincent 2 * 46.4% 59.6% 71.1% 99.6% 96.4% 0.86

Table 4.4: Results for the 2005 melody extraction evaluation.

accuracy lie between 60% and 75% roughly, with the majority centered around

70%.

4.5 Data Preparation

In this section we describe how the music collections and corresponding reference

files were prepared for the evaluation process. Little preparation was necessary

for the MIREX 2004 and 2005 data sets and reference files, as the metrics evalu-

ation code we use is based on that originally used in the MIREX04 competition.

As such, we were able to use the reference files directly without any further con-

version. It is important to note once more that only about half of the MIREX

2005 dataset used in the competition is available to researchers, thus our results

are not directly comparable to those given in table 4.4, though we should still be

able to make general observations.

Unlike the MIREX datasets, the RWC database on the other hand required

much preparation and pre-processing before we could use it for evaluation. In

the following sections we describe the steps we performed in the preparation of

the RWC Popular Music Database for evaluation.

4.5.1 Alignment Verification and Offsetting

Unlike the MIREX reference files which were produced by analysing the audio

directly using pitch tracking tools, the majority of the RWC files were manually
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transcribed by ear into SMF (Midi). This process presents several potential

problems:

1. Initial offset – there may be an initial offset between the start time of the

audio and that of the reference, caused by different lengths of silence at the

beginning of the recording and the Midi file.

2. Tempo alignment – the majority of reference Midi files in the database use

a fixed tempo value1. If the transcription tempo is slightly different from

the audio tempo, or if the tempo of the audio varies in a way which can

not be expressed in the Midi transcription, there will be a misalignment

between the audio and reference which can not be compensated for by

simple shifting.

3. Note modelling – the task of segmenting a sung word into discrete notes

does not necessarily have one solution, and may introduce artificial breaks

between notes in the transcription.

4. Octave errors – when transcribing sung voice into Midi, a certain Midi

instrument must be selected to represent the voice. The difference in timbre,

combined with the fact that octave perception is subjective, may result in

octave errors in the transcription.

We assume that problems (3) and (4) have been addressed as best as possible

through the careful preparation of the database by its authors. In our case the

matter of octave errors would not pose a problem even if it were present, as we

use the chroma metric which is octave agnostic. We do however have to deal with

problems (1) and (2).

In order to be able to easily compare the audio and references, we have syn-

thesised the SMF reference files into audio signals sampled at 44.1KHz, using the

freely available iTunes software by Apple. The problem of initial offset is solved

by shifting all the notes of the reference transcription so that the starting time of

the first note matches that of the first “note” in the audio. This times offset was

found by searching for the first audio sample whose amplitude is greater than

a threshold (set to 0.01) in both the recording and the synthesised Midi, and

measuring the difference.

Ensuring there is no tempo variation between the recording and reference files

requires more thought. The most convenient way of doing this which does not

involve manually checking every single note of every song is to use an alignment

1Effort was made by the authors to include tempo changes in the Midi files where necessary,
for example at the end of a song if it slows down for the finale.
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algorithm to compare the recording and reference file. As before, we start by

synthesising the Midi file into audio. Next, we compute the HPCP descriptor for

both recording and synthesised audio, using a resolution of 12 bins, a frequency

range of 40Hz to 5000Hz, a window size of 4096 samples and a hop size of 256

samples. This provides us with a description of the tonality of both audio files

reliable enough for alignment. We use a local alignment algorithm for HPCPs

courtesy of Joan Serrà, as explained in [Serrà 07b]. A good overview of local

alignment as well as other string based alignment algorithms can be found in

[Navarro 02]. In order to perform the local alignment computation in reasonable

time (and due to memory limitations), we average the HPCPs of every 16 frames.

If we denote the HPCP for a single frame i as a 12 dimensional vector ~vi, then

the average of ~v1, . . . , ~v16 is given by:

~vavg =

∑16
i=1 ~vi

max
(∑16

i=1 ~vi
) �� ��4.5

which ensures the resulting averaged HPCP is still normalised to values between 0

and 1. Once we have the HPCP sequence for both files, we perform the alignment,

as seen in figure 4.1.
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Figure 4.1: Alignment of RWC recording RM-P003 to the synthesised reference.
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The plot represents the scores of the alignment matrix, going top-down left

to right. We place the original recording on the Y-axis and the synthesised Midi

on the X-axis, and use colour to indicate the best alignment score for the given

position, going from blue (for a score of 0) to red (the maximum score in the

matrix). The best alignment path is indicated by the white line. For a perfect

alignment, we would expect the the white line to have the following properties:

• It starts at the top left corner and ends at the bottom right, indicating that

both tracks have equal initial and final silence length (ideally zero).

• It has a slope of -45 degrees, indicating that both files are at the exact same

tempo.

• The line is perfectly straight, indicating every part of the reference can be

matched against a corresponding part in the original recording, without

any skipping or time bending.

In figure 4.1 we provide a clear example of an alignment which is overall suc-

cessful, however an initial segment of the synthesised Midi is skipped, indicating

that the reference will have to be shifted in order to match the timing of original

recording. In figure 4.2 we provide an example in which the timing of the notes

does not match perfectly between the original and the reference, resulting in a

“wiggly” curve.

The following procedure was followed for each of the 100 songs in the RWC

Popular Music Database:

• The files were aligned using the procedure described above.

• The slope of the alignment curve was calculated.

• The curve was examined for irregularities.

• The initial shift required for the timing of both files to match was calculated.

For suspicious alignment curves, the following further procedure was carried

out:

• The original recording was run through a monophonic pitch detection algo-

rithm provided by Essentia. The output was plotted against the reference

Midi file, which was converted into the two-column time-stamp F0 format

using the tool described in the section 4.5.2. Though the output of the

pitch estimator is very noisy (as it is not intended for polyphonic signals),

it normally contains several places throughout the song where melody note
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Figure 4.2: Alignment of RWC recording RM-P074 with the synthesised refer-

ence.

boundaries can be clearly identified. These places were used as reference

points to match against the Midi transcription.

• In some cases the alignment was confirmed to be successful, with the ir-

regularities in the alignment curve resulting from a-tonal segments in the

song.

• In other cases, the initial shift had to be manually adjusted, but there were

otherwise no problems.

• In the final case, a slight tempo difference between the reference and the

recording was identified, such that there was no initial shift value for which

all notes were well aligned. These files had to be discarded.

In addition, we report one case in which we had problems synthesising the

Midi file, and one case in which the melody was divided between two tracks in

the reference and discarded for this reason. All in all we were able to synchronise

73 files, which are listed in appendix A. Out of these 73 files, 7 songs did not

have a proper bass line, leaving us with 66 files used for the evaluation of bass

line extraction, also listed in appendix A.
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4.5.2 Format Conversion

In this section we briefly describe the conversion of the SMF reference files avail-

able with the RWC Music Collection into the two-column time-stamp F0 format.

As previously mentioned, for every audio piece in the database there is a ref-

erence transcription provided in SMF. This Midi file contains the parts of all

instruments (including voices and sound effects) in the piece, each in an indi-

vidual track. From this Midi file, we need to extract either the melody or bass

line track, and convert it to the format we use for our evaluation. This process

involves the following steps:

• Melody/bass line track identification

• Tempo calculation

• Reference generation

The first step was performed manually as described below. The second and

third are both computed by an auxiliary tool we have written in Java. Given a

Midi file and the desired track number, the program reads the Midi byte code

and outputs the reference file in the desired format, as detailed in sections that

follow.

4.5.2.1 Track Identification

Due to the variety of styles and arrangements in the RWC Popular Music

Database, many of the reference files use a different set of instruments. This

means we must examine every file to ensure that it indeed has a track labelled

as the melody, and a bass line track. Unfortunately, it is also the case that the

RWC database does not use a consistent track number for placing the melody

and bass line, which means we must also check for each song in which tracks

are the melody and bass line placed. This was performed manually by opening

all the reference SMF files in Cubase and observing the relevant track numbers.

Tracks which did not have a bass line were discarded.

4.5.2.2 Introduction to Midi and the SMF

The Musical Instrument Digital Interface (Midi) specification defines a message

format (the “Midi Protocol”) for transferring musical data between electronic

devices. For example, to sound a note on a midi device you send a “Note On”

message, which specifies a key (pitch) value and a velocity (intensity) value. The

protocol includes messages for turning a note on or off, changing instrument
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etc. The midi specification also defines a set of messages not directly related

to the production of sound, such as Meta Messages for transmitting text strings

(e.g. lyrics, copyright notice, tempo changes) and System Exclusive messages for

transmitting manufacturer specific instructions.

The Standard Midi File Format is a storage format in which every message

is combined with a time-stamp to form a “midi event”, so that messages can be

recalled and replayed in the correct order at a later date. A midi time-stamp is

specified in “ticks” can be converted into an actual time value. Further details

about the Midi protocol and the SMF are available at [Midi ].

4.5.2.3 Tempo Calculation

The SMF supports several ways of defining the tempo of a song. In the case of the

RWC, all files use the same method – they define a number of ticks per beat (where

a beat normally corresponds to one quarter note), and the duration of a single

beat is specified in microseconds in track 0 of the SMF. The initial tempo, and

any tempo changes throughout the song are performed through a MetaMessage

on track 0 which specifies a new beat duration. In order to properly transcribe

the Midi file, we must track all tempo changes. The first step of the process is

thus scanning through all messages of track 0, making a list of all tempo changes

and their tick time-stamp.

4.5.2.4 Reference Generation

The reference is generated a by process which simulates the “analysis” of the

Midi track as if it were an audio file sampled at 44.1KHz with a 256 sample hope

size. The current frequency is set to 0Hz and frame counter to 1. The process

reads all the messages on the track sequentially, and performs the following steps

for each new event:

• Compute the time-stamp of the current event by summing the durations

of all ticks up to the current event’s tick, making sure to factor in tempo

changes up to the current tick.

• Next, if the event is a Note On event, we must “fill” the frames up to

the event’s time-stamp – the time-stamp for the current frame is given by

time = frame∗hop/fs. We store this time stamp together with the current

frequency and increase the frame counter, and repeat this as long as the
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computed time-stamp is smaller than the event’s time-stamp. Finally, we

update the current frequency to that specified by the Note On event2.

• If the event is a Note Off event, we first check whether the event’s frequency

matches the last frequency specified by a Note On event. If the frequencies

match, we fill the frames up to the current event’s time-stamp with the

current frequency as explained above, and finally set the current frequency

to 0. If however the frequencies do no match, it means that we have detected

a note overlap in the reference transcription. That is, a new note has started

before the previous has ended. In this case, our policy is to cut the current

note short and start the new one, meaning the Note Off event is no longer

relevant (as it refers to a note we have already cut), and is discarded.

At the end of this process we have a two columned list, the left column

specifying the frame time-stamps, and the right column the frequency value for

the given frame. This list is saved to a text file which is then used for the

evaluation.

4.6 Conclusion

In this chapter we reviewed the various aspects relevant to the evaluation of

our work. We presented the music collections used in our evaluation, together

with the metrics used in conjunction with each collection. We then presented

the relevant results obtained by the competing systems in the MIREX 2004 and

2005 competitions. Finally, we detailed the steps involved in the preparation of

the RWC reference files for evaluation. In the following chapter we present the

evaluation results for our approach, using the various algorithms presented in

chapter 3, evaluated on the three aforementioned music collections. In parallel,

we compute the results for our implementation of the algorithms presented in

[Klapuri 06] and compare them to those obtained by our system.

2The message will specify a Midi note number, which we convert to a frequency value using
f = 440 ∗ 2(note−69)/12





5
Results

5.1 Introduction

In this chapter we present the evaluation results for our melody and bass line

extraction approach using chroma features, as presented in chapter 3. In par-

allel, we give the results for our implementation of the algorithms presented in

[Klapuri 06]. The results presented in this chapter are those obtained for voiced

frames only, as voicing detection is not part of our system and we wish to evalu-

ate how well our algorithm succeeds in detecting the correct melody or bass line

pitch class when the melody or bass line is present. The chapter is divided into

three main sections, reflecting three different parts of the evaluation.

In section 5.2, we evaluate our method as a raw salience function. That is,

we examine the performance of the HPCP for melody and bass line extraction

when we do not attempt to make any intelligent peak selection, and always select

the highest peak at every frame. We perform the same evaluation for the Direct,

Iterative and Joint methods suggested by Klapuri, and comment on the results1.

In section 5.3, we evaluate our method now with the various tracking algorithms

presented in chapter 3. Finally, in section 5.4 we provide the results for some

initial experiments we performed on similarity computation using the extracted

mid-level representations provided by our system.

5.2 Salience Functions Performance

In the first part of our evaluation we evaluate the performance of our HPCP based

approach as a raw salience function, always selecting the peak of the HPCP as

the melody (or bass line) peak. The results are then compared to those obtained

1The Direct, Iterative and Joint methods are only evaluated for melody extraction since
they would require further adaption in order to perform well as a bass line salience function.

83
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by our implementation of the three algorithms proposed by Klapuri. For these

(the Direct, Iterative and Joint methods) we used a window size of 2048 samples2

and a frequency range between 110Hz and 1000Hz. This initial evaluation gives

us an idea of what we can expect to achieve overall.

5.2.1 Results for Melody Extraction

In table 5.1 we present the results obtained using the HPCP, Direct, Iterative and

Joint methods. It is important to note once again that for each music collection

the relevant metric was used, and that only half of the files used in the MIREX05

competition were available for our evaluation.

Music Collection Metric HPCP Direct Iterative Joint

MIREX04 Chroma (cent) 62.66% 69.41% 70.26% 69.27%

MIREX05 Chroma (semitone) 61.12% 66.64% 66.76% 66.59%

RWC Pop Chroma (semitone) 56.47% 52.66% 52.65% –

Table 5.1: Salience function performance.

The first thing we observe is that for all approaches, the results are lower for

the MIREX05 music collection compared to those for the MIREX04 collection,

and lower still with the RWC. We can interpret this as confirmation that the

latter collections, being more representative of real world music recordings, are

more complex and make it harder to extract the melody from the analysed sound

mixture.

For the MIREX04 collection, we note that our HPCP based approach (even

without any tracking) performs well in comparison to the results listed in table

4.3, though it does not outperform the winning algorithm. Furthermore, we note

that the algorithms proposed in [Klapuri 06] all perform considerably better. It is

also interesting to note that we hardly observe any difference between the Direct,

Iterative and Joint approaches, indicating that when used solely for extracting

the maximum of the salience function at each frame (and not for multiple-F0

estimation), the three approaches are more or less equivalent. For the MIREX05

collection, we note the slight drop in performance due to increased complexity of

the data. Once again the algorithms proposed by Klapuri outperform the HPCP

when used as a raw salience function.

2Experiments with a window size of 4096 and the MIREX04 and MIREX05 collections
resulted in reduced performance and hence are not included in the results.
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When examining the results for the RWC database, we note that our HPCP

based approach actually outperforms the other algorithms3. In [Ryynänen 08],

the authors present a system for melody and bass line extraction which makes

use of the salience function at the core of the Direct, Iterative and Joint meth-

ods which is then passed through elaborate post-processing using acoustic and

musicological modelling. The system was also tested with a subset of the RWC

Music Collection, however the results are not directly comparable, as the system

attempts to perform full transcription (into musical notes) and is evaluated us-

ing a different set of metrics. Still, the authors achieve promising results (see

[Ryynänen 08] for evaluation results), indicating that if our approach is compa-

rable in its performance as a salience function to the ones presented by Ryynänen

and Klapuri, its potential as the basis for a melody extraction system with more

elaborate post-processing is worth further investigation. In figure 5.2 we show ex-

amples of successfully extracted melodies (plotted in red x’s) against the reference

melodies (in blue circles) for songs from each of the aforementioned collections.

5.2.1.1 Effect of Window Size

Finally for this section, we present the performance results for our proposed

approach, using different analysis window sizes. As explained in section 3.2.3,

there is a trade-off between using a bigger window for smoothing out “noisy”

frames and using a smaller window for a more accurate description of the temporal

evolution of the extracted melody or bass line. We evaluated our approach on

the RWC collection, using different windows sizes. The results are presented in

figure 5.1.

As expected, we see an increase in performance as we increase the window

size (up to a certain limit), with the highest score achieved with a window size

of 16384 samples (371ms). As previously mentioned, increasing the window size

also reduces the ability to model more subtle elements of the melody. As we

have argued, we opt for a window size of 8192 samples (186ms), which performs

almost as well as the next window size up, at the benefit of gaining a more refined

description of the melody.

5.2.2 Results for Bass Line Extraction

Here we present the result for bass line extraction, again without any tracking.

Only the RWC database was used for the evaluation, as it is the only one which

3Due to time constraints we only computed the Direct and Iterative salience functions,
though we can assume that the Joint method would have similar results.
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Figure 5.1: Results for our HPCP based approach with the RWC database using

different window sizes.

provides references for the bass line as well as the melody. Similarly, we can

only evaluate our approach, as the Direct, Iterative and Joint methods are not

adapted in our implementation for bass line extraction. The result is given in

table 5.2:

Music Collection Metric HPCP

RWC Pop Chroma (semitone) 73.00%

Table 5.2: Salience function performance for bass line.

We see that the result for bass line extraction is considerably higher than its

equivalent for melody extraction. We can explain this as being the result of two

main factors: Firstly, the bass line, almost always, is simpler than the melody,

and usually has fewer but longer notes. This means there is less chance of the

analysis missing short notes or making mistakes at note transitions. Second and

more important, we can argue that the bass line will almost certainly be the

most dominant instrument in the low frequency range of the spectrum. Unlike

the melody, it does not have to compete with other instruments for salience.

Furthermore, the bass line is closely tied to the harmony of the piece, and so the

bass frequency will often be supported not only by the harmonics of the bass note,

but by the frequencies of other harmonic instruments in the mixture. In figure

5.2 we present (alongside extracted melodies) an example in which the bass line is

successfully extracted. The performance for the melodies and bass line presented

in figure 5.2 are 73%, 80%, 78% and 95% for daisy1.wav (MIREX04), train05.wav

(MIREX05), RM-P014 (RWC, melody) and RM-P069 (RWC, bass) respectively.
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Figure 5.2: Extracted melodies and bass line against references for all collections.
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5.2.3 Voicing Experiment

As previously mentioned, voicing detection does not form part of our final algo-

rithm and we have not devoted much time in investigating this matter. Nonethe-

less, we have performed very initial experiments with voicing detection as men-

tioned in section 3.3.4, the results of which are presented here for completeness.

In figure 5.3 we present the results for the MIREX04 collection, using in-

creasing values of the factor parameter (from 0.5 to 1.5) in equation 3.3. Three

curves are presented – the blue curve shows the raw pitch detection performance,

the red curve the unvoiced frame detection rate, and the green curve the overall

performance taking into consideration both voicing and pitch detection.
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Figure 5.3: Pitch detection, voicing and overall performance for MIREX2004.

The results are fairly straight forward – the greater the factor, the higher the

threshold, resulting in less frames labelled as unvoiced. As a result, the unvoiced

frame detection rate drops whilst the raw pitch detection rate goes up. The

overall performance is a combined score for all frames in the song. Recall that we

are using the MIREX04 Chroma (cent) metric, meaning every deviation (down

to one cent) from the reference is penalised. The optimal value for the factor

in equation 3.3 is selected as the location of the maximum of the green curve, in

this case 0.9. For this value, the unvoiced frame detection rate is 55.02%, the raw

pitch detection is 57.74% and the overall performance 55.92%. In figure 5.4 we

present the same analysis for the MIREX05 collection, where the optimal value
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for factor is 0.6. In this case the unvoiced frame detection rate is 73.11%, the

raw pitch detection is 55.37% and the overall performance is 55.12%. Finally, in

figure 5.5 we show the extracted melody for daisy1.wav (MIREX04), first without

voicing detection and then with, for factor = 0.9.
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Figure 5.4: Pitch detection, voicing and overall performance for MIREX2005.
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Figure 5.5: Extracted melody for daisy1.wav, with and without voicing detection.
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5.3 Tracking Performance

Following the presentation of the raw salience function performance of our HPCP

based approach in the previous section, in this section we present the results

obtained using the various tracking algorithms proposed in chapter 3. So far, we

have always chosen the highest peak of the HPCP as the output frequency (pitch

class) for the given frame. The idea behind all tracking algorithms is that using

a simple set of heuristics, it is perhaps possible to make a more calculated peak

selection at each frame, given that highest peak is not always the correct one.

5.3.1 Glass Ceiling

Before presenting the results, we must first examine what might be called the

“glass ceiling” of our approach. That is, given the number of extracted peaks at

every frame, what is the highest possible score we could achieve, if our tracking

algorithm always selected the right peak out of the available candidates. We

recall that the proposed tracking algorithms in chapter 3 consider two candidate

peaks at every frame (the highest two). Table 5.3 presented the glass ceiling for

our HPCP based approach using two peaks at each frame, for the MIREX04,

MIREX05 and RWC Popular Music (melody and bass) collections.

Music Collection Metric Raw Salience Glass Ceiling

MIREX04 Chroma (cent) 62.66% 72.92%

MIREX05 Chroma (semitone) 61.12% 70.81%

RWC Pop (melody) Chroma (semitone) 56.47% 69.91%

RWC Pop (bass) Chroma (semitone) 73.00% 79.49%

Table 5.3: Glass ceiling for RWC using 2 peaks.

There are several things to note from this table. Firstly, that the glass ceiling

is relatively low (the maximum possible being 100%). This indicates that there

are relatively many cases in which the correct melody (or bass line) frequency

is not present in neither of the top two peaks in the HPCP. The second thing

to note is that the raw results obtained by always selecting the highest peak are

fairly close to the glass ceiling, indicating that it might be hard to improve on

current results without taking more peaks into consideration. This is most clear

for the bass line results, where we are only 6.5% below the maximum achievable

using 2 peaks. Following these observations, we calculated the glass ceiling for

our approach using an increasing number of peaks. The results are presented in
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table 5.4. For completeness, we have also included the evaluation results for the

MIREX04 collection with the evaluation metric used for the MIREX05 and RWC

collections (labelled “Chroma (semitone)”).



92 CHAPTER 5. RESULTS

M
u
si

c
M

e
tr

ic
R

a
w

2
3

4
5

6
7

8
9

C
o
ll
e
ct

io
n

S
a
li
e
n

ce
P

e
a
k
s

P
e
a
k
s

P
e
a
k
s

P
e
a
k
s

P
e
a
k
s

P
e
a
k
s

P
e
a
k
s

P
e
a
k
s

M
IR

E
X

0
4

C
h
ro

m
a

62
.6

6%
72

.9
2%

76
.1

3%
77

.7
5%

78
.6

1%
79

.1
4%

79
.3

4%
79

.3
8%

79
.3

8%

(c
en

t)

M
IR

E
X

0
4

C
h
ro

m
a

71
.2

3%
82

.8
05

%
86

.3
6%

88
.1

5%
89

.0
9%

89
.6

6%
89

.8
8%

89
.9

3%
89

.9
3%

(s
em

it
on

e)

M
IR

E
X

0
5

C
h
ro

m
a

61
.1

2%
70

.8
1%

74
.9

4%
77

.3
5%

78
.8

8%
80

.0
5%

81
.0

9%
81

.4
0%

81
.4

0%

(s
em

it
on

e)

R
W

C
P

o
p

C
h
ro

m
a

56
.4

7%
69

.9
1%

76
.5

1%
80

.6
1%

83
.4

9%
85

.4
1%

86
.3

0%
86

.5
4%

86
.5

5%

(m
e
lo

d
y
)

(s
em

it
on

e)

R
W

C
P

o
p

C
h
ro

m
a

73
.0

0%
79

.4
9%

83
.2

2%
85

.6
6%

87
.4

4%
88

.7
6%

89
.4

6%
89

.6
6%

89
.6

8%

(b
a
ss

)
(s

em
it

on
e)

Table 5.4: Glass ceiling for increasing peak number.
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The first thing we note, for all collections, is that the glass ceiling does not

reach 100%, as we might have hoped for. The highest glass ceiling is as expected

that of the simplest collection, the MIREX04 collection, when evaluated with the

Chroma (semitone) metric. The glass ceiling for the Chroma (cent) metric is of

course lower, and we can expect it to never reach 100%, as any deviation (as small

as once cent) from the reference is penalised, even if the compared frequencies

would be considered within the same semitone pitch class.

These results reveal what is perhaps an inherent limitation of our approach

in its current form, that is – there are some frames in which the melody (or bass

line) is not present in any of the peaks of the HPCP, regardless of their height

ranking. The glass ceiling could potentially be “pushed up” by using further

preprocessing in the HPCP computation, though we have not explored this in

our work. Nonetheless, the results are by no means discouraging – averaging at

86.9% (for the chroma (semitone) metric) including 86.5% for melody and 89.7%

for bass line with the RWC database (which is the collection closest to the real-

world recordings that would be used in actual application contexts), getting close

to this ceiling would already result in very high performance when compared to

current state of the art systems.

5.3.2 Tracking Results

In table 5.5 we present the results obtained using tracking algorithms 1 through

6, proposed in chapter 3. We ran experiments on all three aforementioned music

collections, with and without smoothing as a preprocessing step. For reference,

we also include the glass ceiling (indicating the maximum result possible) for 2

peaks.
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Table 5.5: Results for tracking algorithms.
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There are several observations we can make from the results presented in

table 5.5. We start by noting that of all algorithms, Tracking Algorithm

3 performs best on average, with Tracking Algorithm 1 closely after it. In

general, the Proximity-Salience based algorithms dramatically outperform the

Note-Segmentation based ones. This indicates that whilst some improvement can

be achieved using simple heuristics and a per-frame selection process, performing

successful selection based on a larger temporal scope is a much more challenging

task. When examining the results for the best note-segmentation based algorithm

of the three proposed, Tracking Algorithm 5, we were able to observe several

potential causes for the low performance:

• Segmentation process – the first potential problem is with the actual note

segmentation process. As the HPCP peak data is fairly noisey (even with a

large window and smoothing), it is often the case that a continuous note is

broken into several notes. As a result, the note salience is divided between

these notes, making it harder to recognise salient melody notes.

• Selection process – once the segmentation is done, the next challenge is

in selecting the right note. This introduces a new problem – if the wrong

note is selected, we continue following this wrong note either until it ends

or until it is interrupted by a newer more salient note. Thus, whilst for

the raw salience we simply select the maximum at each frame and are not

penalised in future frames if we made the wrong selection, here making the

wrong selection results in a greater penalty. Clearly, the opposite occurs

when we select the correct note – we are rewarded in future frames for our

current selection. However, we can tell from the results that on average we

get penalised more than rewarded, resulting in a decrease in the results. A

possible reason for this could be that melody notes tend to be shorter than

notes by other instruments, and thus committing to the correct melody note

results in a reward smaller than the penalty for committing to a wrong note.

Next, we observe that the smoothing process is beneficial for the tracking

process when evaluated with the RWC melody and bass line collections, whilst

detrimental for the MIREX04 and MIREX05. One could argue that as the RWC

collection is more complex, the smoothing by-and-large helps the tracking process

more than it changes correct notes into incorrect notes, whilst for the MIREX

collections, which are simpler, the opposite occurs.

Finally, we note that though we were able to achieve some improvement over

the raw salience performance for each of the collections, the improvement was

not significant (roughly 2% for the RWC collections). We believe there are two

main reasons for this:
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• Glass ceiling – the average difference between the raw salience performance

and the glass ceiling is roughly 10% on average. This means, that given

the peak data we obtain from the HPCP, we are already doing almost as

best as possible in selecting the correct peak in every frame. That is, out

of the frames for which one of the two HPCP peaks is the true melody

peak, we select the correct peak over 85% of the time. This has two further

implications – firstly, that it could be very complex to come up with a

heuristic which covers these extra 15% of the peaks without reducing the

performance overall. Second and more important, is that since our glass

ceiling for two peaks is lower than 100%, it means that there are frames

in which neither of the two peaks is the true melody peak. Thus, these

peaks throw the tracking algorithm “off track”, leading it to make tracking

decisions based on frames in which both peaks are erroneous.

• Octave information – the other possible problem is the fact that when we use

the HPCP we fold all notes onto one octave, effectively forfeiting all octave

information. Whilst not a problem in itself (as we are not aiming at full

transcription), this could potentially make the tracking process harder. For

example, consider two consecutive notes at an interval of a major seventh

apart. With octave information, these notes would be considered fairly

distant. Due to the cyclic nature of distance when using HPCP, these notes

are considered equally close to each other as two notes which are only a

semitone apart in reality. As such, using proximity as one of the major

factors in the peak selection (alongside salience) becomes a more complex

task. A potential improvement would be to consider distance in a way which

is not solely based on the peak’s location on the chroma circle, but which

also takes musicological knowledge into account (e.g. likely and unlikely

intervals, whether the note is within the mode of the current chord, etc.).

Following this analysis, our main conclusion is that for effective tracking we

would have to consider more than two peaks. From table 5.3 we we can assert

that no more than 8 peaks per frame need be considered to assure that we can

potentially reach the highest possible results given our current approach, and in

fact using as few as 5 peaks would still allow us to obtain highly satisfactory

results. Still, as we increase the number of candidate peaks, so we increase the

complexity of the tracking procedure. in chapter 6 we propose the adaptation of

the tracking algorithms presented in chapter 3 for use with more than two peaks

as a possible direction for future work.
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5.4 Similarity Performance

As previously mentioned, our goal is to extract a mid-level representation of

the melody and bass line which can be used for similarity computation based

applications (such as QBH and cover song identification). Thus, in addition to

the extraction preformance evaluation detailed in the sections above, we have

also performed some initial similarity based experiments.

In these experiments, we used our extracted melodies and bass lines from the

RWC databas. We compared every extracted melody to every melody reference

and every extrated bass line to every bass line reference, using the distance metric

mentioned in section 5.4.1. For the comparison, the references were converted

from frequency values to HPCP bin values. The results are presented in the form

of a confusion matrixm indicating the degree to which every extracted melody

matches every melody reference, and every extracted bass line matches every bass

line reference. The goal of this initial experiment is to show that the extracted

mid-level representation adequatly represents the original melodies and bass lines

(indicated by the references) such that when compared against the entire database

it will match the correct song. As noted, it is only an initial experiment, and

further work would be required to fully asses the usefulness of the extracted

mid-level representations, proposed as future work.

5.4.1 Distance Metric

As previously mentioned, it is importnat to select the appropriate distance met-

ric for the given task. In the case of this experiment, we wish to compare the

entire extracted melody or bass line to the entire reference. We can then ask

– what is the smallest number of operations needed to transform the extracted

representation into the reference? The answer to this is given by the Leven-

shtein Distance [Levenshtein 66]. Below we present a commonly-used bottom-up

dynamic programming algorithm for computing the Levenshtein distance. For

further details and a detailed overview of string matching techniques the reader

is referred to [Navarro 02]. For the purpose of matching our HPCP-based mid

level representation, we define the cost function as:

cost(b1, b2) =

{
0 if distHPCP (b1, b2) <= 5

1 otherwise

�� ��5.1

The final output of the algorithm thus is the cost of converting one sequence

into the other, or distance. In figure 5.6 we show the distance matrix d for match-



98 CHAPTER 5. RESULTS

Global alignment: Levenshtein Distance:

1. Given two sequences s and t of lengths M and N respectively:

2. for i = 0 to M

3. d(i, 0) = i

4. for j = 0 to N

5. d(0, j) = j

6. for i = 1 to M

7. for j = 1 to N

8. d(i, j) = min


d(i− 1, j) + 1 //deletion

d(i, j − 1) + 1 //insertion

d(i− 1, j − 1) + cost(s(i), t(j)) //substitution

15. end

16. end

17. return d(M,N)

ing the extracted melody representation of RM-P003.wav against its reference

from the RWC database.

Figure 5.6: Distance Matrix for RM-P003.wav (melody).
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As can be inferred from the algorithm, the maximum possible distance value

depends on the length of the sequences compared, more specifically on the length

of the longer sequence of the two. Thus, in order to be able to compare between

distances measured for songs of different lengths, we normalise the final output

of the algorithm by the length sequence of the longer sequence.

5.4.2 Results

We present the results in the form of a confusion matrix. In figure 5.7 we show

the confusion matrix for the extracted melodies of the RWC database. In figure

5.8 we show the same for the extracted bass lines.

We see that in both cases, the diagonal along the matrix clearly stands out.

This indicates that for the large majority of songs in the database, the extracted

representation is always closest to its corresponding reference. We note that the

diagonal for the bass lines is even clearer than the one for melodies, which is

explained by the higher overall extraction rate achieved for bass lines. Though

further experiments would be required in order to assert the usefulness of our

extracted mid-level representation, the results presented here are clearly encour-

aging, suggesting the extracted representations could be useful in the context of

similarity based applications.
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Figure 5.7: Confusion matrix for extracted melodies.

Figure 5.8: Confusion matrix for extracted bass lines.
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5.5 Conclusion

In this chapter we presented the results for the evaluation of our proposed melody

and bass line extraction system. We started be evlauating the performance of our

approach as a salience function. For melody extraction, we saw that the results for

the MIREX datasets were within the same performance region as the other state

of the art algorithms (62.66% for MIREX04) though for the MIREX05 dataset

our results (61.12%) were significantly lower than those of the other systems.

However, we then noted that for the RWC database our results (56.47%) were

comparable and even better than the compared approaches.

We then examined the effect of the window size on the analysis, showing that

the two highest results are for windows of 8192 and 16384 samples, and we opted

for the former for the reasons detailed in section 3.2.3. Next we presetned the

performance results of our approach a salience function for bassline extraction,

achieving 73.00% on average. Initial voicing experiments showed that the task of

selecting a threshold for voiced frames is not a straight forward one, and that a

more complex heuristic might be necessary.

Next, we presented the results for our approach now using tracking. We

started by computing the glass ceiling for our approach given the number of

peaks under consideration at every frame. We noted that for two peaks the

glass ceiling is relatively low (72.92%, 70.81%, 69.91% and 79.49% for MIREX04,

MIREX05, RWC (melody) and RWC (bass) respectively), and that our results

are only about 10% below this glass ceiling. We noted that this means it might

be hard to improve on the results obtained so far without taking more peaks

into consideration. We then computed the glass ceiling for an increasing number

of peaks, we observed that the glas ceilings also have a glass ceiling (79.38%,

89.93%, 81.40%, 86.55% and 89.68% for MIREX04 (cent), MIREX04 (chroma),

MIREX05, RWC (melody) and RWC (bass) respectively).

We then presented the results obtained with the various tracking algorithms.

We saw that smoothing was beneficial for the RWC collection but for the MIREX

datasets, and that Tracking Algorithm 3 performed best overall. However, we

noted that the improvement obtained by tracking was by-and-large insignificant

(about 2%), indicating that we do in fact need to consider more peaks in every

frame in order to achieve a significant improvement over the salience function

results.

Finally we presented the results for some initial experiments carried out in

similarity computation. We saw that for the large majority of extracted melodies

and bass lines, the extracted mid-level representation was closest to its corre-

ponding reference. We noted that though we can not make any assertions based
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on these initial experiments, the results are encouraging and suggest that the

extracted representations could be useful in the context of similarity based ap-

plications.



6
Conclusion

In the last chapter of this dissertation, we provide a final overview of the work

carried out. We present the goals achieved and contributions made, as well as

discuss issues which remain unresolved or that require further investigation. We

then make suggestions for future work, and briefly present a proposal for research

which is to be carried out as part of a PhD. The chapter ends with some final

conclusions.

6.1 Contributions

We start by refering back to the goals we set out for the work during the intro-

duction (section 1.5). We note that all the goals mentioned have been met:

• Scientific background and a summary of the literature in the field of melody

bass line extraction was provided.

• A new method for melody and bass line extraction based on chroma features

was developed and presented in chapter 3.

• Our proposed method was evaluated and compared to exisiting state of the

art systems, including ones we implemented and evaluated personally.

• The evaluation results were presented and discussed.

Focusing on the evaluation results, we can make some final conclusions. We

note that as a salience function, our approach performs comparably to other state

of the art systems. The relatively compact data representation of the HPCP and

its efficient computation thus make it a good candidate for real world applica-

tions. Improving the results using tracking was shown to be difficult when only

considering two peaks, and the tracking algorithms proposed must be extended to

cope with a larger number of peaks if we wish to significantly improve the results.

103
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It is importnat to note that as our proposed approach is based on chroma features

(which do not contain octave information), it can not be used for the purpose of

full transcription. Nonethless, we were able to show some initial results which

suggest that our approach could be useful for a range of applications based on

melody or bass line similarity.

6.2 Future Work

6.2.1 Improving Current Results

Throughout this dissertation we have metioned several issues which remain un-

resolved, and require further work. For some, a potential solution was already

proposed when the issue was discussed. In this section we list those issues which

have remained problematic, as well as those we find interesting and would like to

pursue further.

• Voicing detection – as previously mentioned, we have only performed some

very prelimiary work on voicing detection, which is not included as part

of our final system in its current state. Though we were able to show

some promising results for similarity computation without any voicing de-

tection, it is clear that these results could be improved if combined with a

succesful voicing detection algorithm. The algorithm by [Dressler 05] won

the MIREX05 competition largely due to its high performance in voicing

detection.

• Tracking – already discussed several times before, there is much room for

improvement on the peak tracking phase of our system. This primarily

requires the consideration of more than 2 peaks per frame, and the extension

of the tracking algorithms to cope with the increased number of peaks (and

hence noise).

• More experiments on similairity – the initial results given in chapter 5 seem

promising, and without doubt merit further investigation. It is only in the

context of a real world application such as a QBH search engine that we

can fully evaluate the usefulness of our extracted mid-level representations.

We also note that improving on the two aforementioned issues would auto-

matically improve any results we obtain for similarity based applications.
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6.2.2 Proposal for PhD Work

Following the work carried out for this Master’s thesis, in this section we provide

an introduction to our proposed PhD research. Generally speaking, our work

was focused on the extraction of the melody and bass line. In the following two

sections we explain how this work can be placed in a much broader context,

extending the range of potential applications.

6.2.2.1 Musical Stream Estimation From Polyphonic Audio Based on

Perceptual Characteristics

As listeners, we identify different types of “lines” when listening to polyphonic

music. Often these lines are defined by their source such as instrument type, or

predominance, such as the melody or bass line as we have done in this work.

However, this is only a subset of perceptual characteristics we may use to define

what we call musical streams, what we view as an extension of the concept of

“auditory streams” first introduced by Bregman in 1990 [Bregman 90]. Other

characteristics might be the timbre, pitch evolution, monotonousness, harmonic-

ity, rhythmic feel, mood, etc. Moreover, though these streams are likely to follow

a single sound source, they should not be constrained to one – we can imagine a

musical segment strongly characterised by a certain rhythmical sequence, which

is played by different instruments during different parts of the segment. In this

sense, our perception of music goes far beyond that which is currently modeled

by existing systems. This brings us back to the problem of the semantic gap, as

discussed in our introduction to this dissertation.

In secion 1.1 we noted how the prevalence of digital media has resulted in an

exponential growth in the distribution and consumption of digital audio. With

this growth, our needs have evolved, as consumers, artists and researchers. We

presented application areas that would greatly benefit from melody and bass

line extraction, such as Query by Humming systems, which in order to be truly

functional on a large scale basis, necessitate an automatic method of melody

extraction.

But we can think about this problem beyond the goal of finding a known song

– to the task of an exploratory search. Producers might be interested in musical

lines with a certain sound or feel, regardless of the specific source. Artists might

wish to incorporate a sample from another piece, or create a new piece altogether

by the mixing of musical streams with certain perceptual characteristics (mu-

sical stream mosaicing). Music researchers can benefit from the comparison of

certain perceptual themes (as an extension of the analysis of melodic themes for

example). Utilising musical streams can enhance users’ interaction with music
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through novel ways of exploring and browsing large collections, in which the user

takes an active part in searching and finding new music. The enhancement of

the listening experience through interaction, Active Music Listening [Goto 07],

was discussed in our introduction to this dissertation. In addition, we believe

the research on developing this technology will help us in better understanding

the human perception of music and will help towards bridging the semantic gap.

The primary goal of the research will be to develop the technology for musical

stream estimation. This means developing a system that given a set of perceptual

characteristics (with potential parameterisation), can access a large database of

polyphonic music and return meaningful musical streams. The development en-

tails both theoretical work on models for musical stream estimation and relations

between human perception and audio features, and applied work on the devel-

opment and implementation of algorithms and their incorporation in functional

systems. Once developed, this technology will be incorporated in systems which

demonstrate the potential aplication of musical stream estimation.

6.3 Final Words

I found the he work on this project was both interesting and challenging. Through

it I have aquired a wide background in the area of melody and bass line extraction

as well as related disciplines in the field of Music Information Retrieval. I have

had the opportunity to learn from many people, and look forward to future

collaborations. I believe the results of the work are interesting and intend to

continue investigating them as part of my intended PhD work. Finally, I would

like to thank once more all the people who helped me (in any way) write this

dissertation. Thanks.

Justin J. Salamon.
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A
RWC Music Database File List

The following list contains the song IDs of the songs in the RWC Popular Music

Database used in our evaluation of the melody extraction task:

RM-P001, RM-P002, RM-P003, RM-P004, RM-P005, RM-P006, RM-P007,

RM-P008, RM-P011, RM-P012, RM-P014, RM-P016, RM-P017, RM-P018,

RM-P019, RM-P020, RM-P021, RM-P022, RM-P023, RM-P024, RM-P025,

RM-P026, RM-P027, RM-P028, RM-P032, RM-P034, RM-P035, RM-P036,

RM-P037, RM-P039, RM-P040, RM-P041, RM-P042, RM-P043, RM-P044,

RM-P046, RM-P047, RM-P048, RM-P049, RM-P050, RM-P051, RM-P052,

RM-P054, RM-P055, RM-P058, RM-P059, RM-P061, RM-P063, RM-P064,

RM-P065, RM-P067, RM-P068, RM-P069, RM-P070, RM-P075, RM-P077,

RM-P079, RM-P080, RM-P081, RM-P083, RM-P084, RM-P085, RM-P086,

RM-P087, RM-P088, RM-P089, RM-P091, RM-P092, RM-P093, RM-P094,

RM-P096, RM-P097, RM-P100.

The following list contains the song IDs of the songs in the RWC Popular

Music Database used in our evaluation of the bass line extraction task:

RM-P001, RM-P002, RM-P004, RM-P006, RM-P007, RM-P008, RM-P011,

RM-P012, RM-P014, RM-P016, RM-P017, RM-P018, RM-P019, RM-P020,

RM-P021, RM-P022, RM-P023, RM-P024, RM-P025, RM-P026, RM-P027,

RM-P028, RM-P032, RM-P034, RM-P035, RM-P036, RM-P037, RM-P039,

RM-P040, RM-P041, RM-P042, RM-P044, RM-P046, RM-P047, RM-P048,

RM-P049, RM-P050, RM-P051, RM-P052, RM-P054, RM-P055, RM-P058,

RM-P059, RM-P061, RM-P063, RM-P064, RM-P065, RM-P067, RM-P068,

RM-P069, RM-P070, RM-P081, RM-P083, RM-P084, RM-P085, RM-P086,

RM-P087, RM-P088, RM-P089, RM-P091, RM-P092, RM-P093, RM-P094,

RM-P096, RM-P097, RM-P100.
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