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Abstract

A new singer identification system is presented in this thesis. The system is
based on the idea of using only the vocal segments of a song to build the model of
a particular singer. The most important contribution of the technique is the way
these vocal segments are located. The borders between vocal and instrumental
parts are first detected with the Bayesian Information Criterion(BIC), which is
fed with our new panning coefficients. Then, each segment is classified as vocal
or instrumental by a decision tree based on MFCCs. Having vocal segments
located, our method works like most speaker identification systems do, that
is, by training a GMM for each singer through the Expectation-Maximization
algorithm. The performance of the singer identification system has not been
as successful as expected, however many other applications can be thought of
based on the proposed segmentation technique.



Chapter 1

Introduction

In this chapter the main goals of the project are stated. We first explain the
motivation for working on the field, and we describe briefly the different parts
of the project.

The state of the art is also described in this chapter. Since the project
involves two main tasks (speaker identification and singer identification), the
overview of the state of the art is explained according to this classification.

1.1 Goal of the project

1.1.1 Context

With the rapid progress of computer performance and world-wide networking
capacities, and the great popularity of P2P software, digital music is one the
most transferred data types through the Internet. All these facts lead to a sit-
uation where music collections are very large and extremely varied in terms of
music styles, and they keep growing from day to day. However, users demand
easy and efficient ways to access these collections. Here is where Music Infor-
mation Retrieval (MIR) appears.

MIR includes two complementart tasks, on one hand, content-based MIR
tries to extract information from the audio data itself, on the other hand context-
based MIR describes music files in terms of its contextual information, e.g. artist
and song name, genre, lyrics. . . Because we deal with aspects of the audio data,
this project falls into the category of content-based MIR.

From the point of view of content-based MIR, a lot of information can be
extracted directly from the audio data. This information can result into low-
level or high-level descriptors.

Low-level descriptors are closely related to the signal itself. Depending on
the granularity from the signal, we can divide them into three categories [2]:

e Instantaneous descriptors: These can be obtained at any point of the
signal, and describe the amplitude or the energy of the signal.



e Descriptors from small regions: These are normally spectrum-related
descriptors, such as spectral centroid, spectral tilt or harmonicity, and they
are called from small regions because the signal needs to be previously
framed and windowed.

e Descriptors from longer segments: The most common goal of this
segmentation is to obtain notes and silences separately. Then, a low-level
analysis can be performed on the notes segments and features such as fun-
damental frequency, spectral shape or depth of vibrato can be extracted.

With combinations and transformations of low-level descriptors, a new set
of features can be obtained: the high-level descriptors. This set contains infor-
mation extracted from the audio that can be understood by an end-user with no
previous knowledge in signal processing. Some examples are pitch (or melody),
tempo and instrument.

Within MIR, one of the most challenging and user demanded problems is mu-
sic recommendation and playlist generation. It is commonly solved by applying
Machine Learning (ML) techniques provided with low- and high-level descrip-
tors. As a result of these techniques, different kinds of similarity between songs
can be obtained, which will be the basis to generate recommendation playlists.

1.1.2 Motivation

The singing voice is one of the most important elements in music [27], especially
in popular music. Listeners can easily use the lead vocals of a song to identify
the artist or band that plays a particular song. Therefore, an automatically-
extracted model of the singer’s voice can be a very useful musical descriptor in
the field of content-based MIR. Applications are numerous, taking into account
the large music libraries that are currently available through the Internet:

Find songs from the same artist: in popular music, songs from the same
artist are almost always sung by the same singer. Thus, a model of the
singer’s voice could be used to automatically find songs from a particular
artist within a large music collection, avoiding the tedious task of manually
tagging each song.

Find songs by artists with similar voices: By defining a measure of com-
parison of two voice models, a distance between two models can be deter-
mined. Since these models are based on statistical measures, it is usually
an easy task. Therefore, it could be used to find music from artists with
similar voices.

Find cover songs: Together with other descriptors, cover songs can be de-
tected. If two songs share a lot of features (such as tempo, structure,
chords. .. ) but the singer’s models are very different one from each other,
it can be hypothesized that they are cover songs.

Find guest artists’ cameos: Having models for hundreds of singers, small
participations of some artists in other band’s recordings can also be easily
found.



Regarding artist identification, the best systems are still far from perfect
or even excellent results. In Music Information Retrieval Evaluation eXchange
(MIREX) 2005 !, an Audio Artist Identification contest was made and the best
performance had a 72.45% of correct identifications in a large database. These
results show that there is still some work to do in this field, and that’s the main
goal of this project. However, facing this problem is not easy, and several steps
have to be done. They are described in the next section, the description of the
project.

1.1.3 Description of the project

The first draft of the project was to investigate on new features for text-
independent speaker identification. The starting point were some descriptors
developed by the singing voice research team at the Music Technology Group
(MTGQG), so my specific task was to analyse these descriptors and decide whether
they were useful for the particular task of speaker identification, under clean or
noisy conditions.

After some months of analysis, comparisons and tests, the results were quite
discouraging. Neither the whole set of descriptors of any subset of them gave
good identification results. In all the tests done, these new descriptors were
outperformed by the descriptors commonly used in this task, the Mel-scale Fre-
quency Cepstral Coefficients.

Then I came across a segmentation algorithm, the Bayesian Information Cri-
terion (BIC), which applied to TV broadcast audio was used to segmentate the
different speakers. I found it interesting so I tested it with music extracting
the MFCCs, and after tunning some parameters, the results were surprising. It
segmented the structure of songs almost perfectly, and it had good performance
even when applied to different musical genres. Now, this music segmentation
algorithm is part of Essentia, a content-based music analysis software library
developed and mantained at the MTG.

After this, I investigated how BIC could be used to segmentate the audio
into instrumental segments and vocal segments. I first tried to apply the BIC
algorithm using the MFCCs to reach this purpose. I had to tune the parame-
ters so that the algorithm returned smaller segments, but the results were not
convincing. The segments didn’t represent any homogeneity in terms of vo-
cal/instrumental segmentation.

I asked the other researchers at the MTG what features could be used to
reach my goal, and I was told about a new set of panning coefficients that had
been recently developed and that they could help me get good results. So I fed
the BIC algorithm with the panning coefficients and the results were promising.

I had all the pieces to build a singer identification system, so the rest of the
project was just implementation and testing.

IMIREX 2005: http://www.music-ir.org/mirex2005



1.2 State of the art

As explained above, this project deals with two different tasks: text-independent
speaker identification and singer identification. The second could seem to be
a subset of the first one, but since singing voice differs from speech (especially
in terms of spectral analysis) and taking into account the fact that speaker
identification is usually performed over unnoisy data while singer identification
has to deal with background music, they turn out to be two different tasks.

1.2.1 Text-Independent Speaker Identification

Speaker Recognition involves any task that deals with the identity of the speaker.
It is commonly divided into two subtasks: Speaker Verification and Speaker
Identification (SID) [18]. The former consists of determining whether the iden-
tify of the speaker of a given sample actually is the person that claims it is,
whereas the latter consists of associating a given sample’s speaker with one of
a group of known voices.

In this project we only deal with SID, so in this section the state of the art
of this field is reviewed. Current SID systems differ mainly on two points: the
features extracted from the sound and the statistical method used to model the
speaker. The state of the art is reviewed according to this classification.

Feature Extraction

The first automatic Text-Independent Speaker Identification systems were de-
veloped in the 70s. Sambur[22] took advantage of the new hardware available at
that time to compute Linear Predictive Coefficients from large speech databases,
and used them in SID tasks. His results were promising but the efficency of the
LPC extraction needed to be improved.

Cepstrum-based coefficients became popular in the 80s and they were also
investigated for its use in SID systems [11]. Some years later, Reynolds [19]
analyzed several cepstral features implementations filtered with different filter-
banks over clean speech data and after observing that Mel-Frequency Cepstral
Coefficients(MFCCs) and Linear-Frequency Cepstral Coefficients (LFCCs) per-
formed about the same in his experiments, he concluded that the filterbank
spacing didn’t affect the overall system performance.

However, other studies demonstrated that LPCCs could be seriously affected
by noise [25], so currently the most widely used cepstral features are MFCCs,
and they have become the de facto standard in SID systems.

Up to this point, all the features investigated were those that carried vo-
cal tract information (e.g. cepstral features), whereas other speaker-dependent
information regarding the speaker’s source was left away. Plumpe et al.[15] stud-
ied how the variations in the movement of the vocal folds from one individual
to another could help improve the performance of SID systems. Their method
automatically parametrised the glottal flow derivative, that is, the differences



in the time-varying volume velocity air flow through the glottis (the slitlike
opening between the vocal folds), and the performance results showed about a
5% reduction in SID scores when these new features were added to traditional
mel-cepstral measures.

Chandran et al[28] proposed the usage of the high-order spectrum (HOS)
instead of the traditionally used power spectrum in SID tasks. HOS differ from
power spectrum on the fact that it retains both the phase and amplitude in-
formation from the Fourier transform. Their results showed that HOS phase
parameters perform at the same level as MFCCs on the same data, so they ques-
tioned the traditional notion that Fourier phase information is unimportant in
speech processing.

High-level features have also been studied in terms of their application in
SID systems. This was the purpose of a summer workshop called SuperSID,
that took place at the Center for Language and Speech Processing (CLSP)
of the John’s Hopkins University in Baltimore, MD, with the presence of the
best experts in the field. They put together and compared the new features
that described high-levels of information such as prosody, phonemes and lexi-
con. Within prosodic features, pitch and energy distributions and dynamics and
prosodic statistics (concerning pause durations and the fundamental frequency)
were extracted; phone features concern information at phoneme level and tak-
ing advantage of time series of phonemes; lexical features are extracted in the
form of word unigrams and bigrams which have been observed to be function of
target/model sex and age difference. Using two kinds of classifiers (GMM and
a perceptron), all these new high-level features were analysed and compared
with the traditional MFCCs features. They showed that using all their new
descriptors together with the MFCCs, a new record for accuracy on this task
with astonishingly low errors rates was achieved.

Another interesting reseach topic has been channel compensation which was
also investigated by Reynolds [19]. The idea behind it is that environmental
conditions can affect SID systems performance, so this irrelevant information
should be removed. The information we are dealing with is background noise and
channel mismatch (speech recorded by different microphones in the training and
testing phase). There are several methods for achieving channel compensation:
Cepstral Mean Removal, RASTA processing and Quadratic Trend Removal. In
spite of being the simplest method, Cepstral Mean Removal was proven to out-
perform the other techniques.

Speaker Model

Regarding the statistical technique used to model the speaker, traditional meth-
ods can be divided into two main categories: parametric methods and non-
parametric methods [12]. Parametric methods are those whose structure is
characterized by a collection of parameters that normally represent probability
distributions. They have the advantage that it is easier to understand changes
in the data through changes in the parameters. Non-parametric methods are
those in which minimal assumptions regarding the probability distribution are



made.

Within non-parametric methods, there are two main techniques: k-Nearest
Neighbour (kNN) and Vector Quantization (VQ). k-Nearest Neighbour is one
of the simplest machine learning algorithms. Higgins et al.[1] used a modified
Nearest Neighbour method, in which input data was examined and discarded
if the frame was already represented, in order to reduce memory and computa-
tional requirements. In the classification phase, a new sample is assigned to the
most important class of its k-neighbourhood.

The idea behind VQ is very similar to k-NN: all the input data is reduced
to K non-overlapping clusters, and wach cluster is represented by a code vector
¢;. The resulting set of code vectors forms a codebook ¢ = ¢y, ¢s, -+, ¢k, which
reduces considerably the amount of input data and is thus used as a model
of the speaker. To classify a new speaker, the distance between its codebook
and all the known-speakers codebooks is calculated using any of the available
methods, and the one at less distance is assigned. There are two main points of
investigation in VQ: the size of the codebook and the method used to measure
the distance between two codebooks, in which Soong et al.[10] has been inves-
tigating.

Parametric methods are normally based on Gaussian distribution, since it
can be easily parametrised with powerful results. The first SID systems used
unimodal Gaussian Models [3], but some years later it was observed that more
Guassian distributions should be used to obtain better performance, so Gaussian
Mixture Models (GMM) were applied [18]. In GMM, each speaker is modeled
by a mixture of Gaussian distributions, which can be understood as each one
representing a phoneme. To obtain the parameters for each distribution, the
Expectation-Maximization algorithm is used, which is an iterative method to
obtain the parameters with maximum likelihood. Because its good performance
and its great adaptation capacity, GMM has become the standard technique
used in SID tasks.

It is worth mentioning that some improvements have been made to GMMs.
One of the most significatives was also done by Reynolds [8], when he developed
the Gaussian Mixture Model-Universal Background Model (GMM-UBM). The
idea is not only to build a model for each speaker, but build a background model
as well. This model represents the alternative speakers, that is, the speakers
which don’t appear in the known set.

Another great improvement was done by Chaudhari et al. [16], when they
implemented a multi-grained Gaussian Mixture Model. The levels of granular-
ity represent different levels of information: the coarser levels are used to model
each phone class, while the finest levels model all the samples within a phone
class. This new model has been proven very effective in large speaker popula-
tions, e.g. utterances with 10.000 speakers.

Apart from GMM, several other techniques have been used in SID tasks.
Arificial Neural Networks (ANN), in most methods implemented as Multi-Layer
Perceptron, have been used because of their weak hypothesis about statistical



distributions and their discriminant training power. However, they also have the
disadvantages that the optimal structure has to be tested by a trial-and-error
procedure and that the training dataset has to be split into training data and
cross-validation set. More recently, Support Vector Machines (SVMs) have been
tested to improve GMMs, not only using SVMs alone but also merging them
with GMMs. Several tests have been done, but the improvement in performance
is not very important. Furthermore, it is hard to attribute this improvement
just to the speaker model used because many other factors also should be taken
into account (e.g. the training method, the number of mixtures...) [9].

1.2.2 Singer Identification

In this section we’ll analyse both artist and singer identification. It can be seen
that the latter is a subset of the former, but since artist identification is almost
always based on the singer, we can compare both tasks as solving the same
problem.

One of the first artist identification systems was developed by Whitman
et al.[29], where they used ANN and SVN classifiers applied to spectral fea-
tures from short music clips. It’s important to note that they didn’t make any
difference between vocal and instrumental segments. The performance of the
resulting system was not impressive, since it just achieved a 70% of accuracy in
a 10-artist database, and 50% of accuracy in a 20-artist database.

Working on the same database as the previous paper, Berenzweig et al.[4]
improved the overall performance up to a 65% of accuracy in the 20-artist
database. The reason for this improvement is that during the pre-processing,
a vocal vs. instrumental frame detector was run, and only the vocal segments
were added to the training data. Therefore, it can be concluded that using the
spectrum of vocal segments as training data improves the overall system per-
formance.

Zhang [30] applied the standard text-independent speaker identification tec-
nhiques for a singer identification task. He manually collected vocal segments
from several music recordings, extracted MFCCs and modeled each singer with
a GMM. He got a 82% of accuracy, but considering that the databse was little
and that the vocal detection was manually performed, this performance result
is not very successful.

Li et al. [14] developed some new acoustic features for singer identification,
that extracted information about the singer’s vibrato. Applying several banks
of filters (triangular, parabolic and cascaded), and transforming the resulting
energies into the cepstral domain, they extracted the Octave Frequency Cep-
stral Coefficients (OFCC). Their experiments on a 12-singer database showed
that OFCCs outperformed MFCCs and LPCCs.

All the techniques reviewed up to this point didn’t take into account the fact
that vocal segments used to train GMM (or any other model) have background
music and it has a lot of influence over the voice when a spectral analysis is
done. Tsai et al.[26] tried to remove background music from the audio by



taking advantage of the similarities between instrumental-only regions and the
accompaniment of the singing regions. Then they built a model for each singer
and a model for the background non-vocal regions. Comparing their new tech-
nique with traditional MFCCs + GMMSs showed an important improvement in
performance.



Chapter 2

Tools

In this chapter we will introduce the tools we have used in this project. The
main topics studied in this thesis are audio processing and machine learning, so
here we will explain the libraries we have used to deal with both fields. We first
describe the programming languages in which our programs have been written,
then we will discuss MTG’s audio processing library Essentia, and finally we
will explain the machine learning libraries used.

2.1 Programming Languages

This project has added modules to the libraries Essentia and Gaia. Therefore,
we didn’t choose our implementation’s languanges but we used the ones already
used by these libraries. Both Essentia and Gaia are libraries with a Python in-
terface but their modules are written in C++4-, because of the best performance
that it offers. Although these languages weren’t chosen by us, we found this
selection very appropiate.

C++ is a general-purpose programming language that is used in the imple-
mentations of the modules of Gaia and Essentia. Since it is a compiled language
(the source needs to be compiled), the performance is much higher than for in-
terpreted languages (such as Python); that’s the reason why the modules for
both libraries are written in C++4-. It is an object oriented language, so it allows
virtual functions, operator overloading, multiple inheritance, templates, excep-
tion handling, ...

Python is an interpreted language, so its performance is quite slow. However,
its simplicity makes it an excellent choice for using it to provide an interface to
a library, as it is the case in Essentia and Gaia. One of its main advantages are
the packages, that are collections of utilities unified inside one module that help
a lot the user.

I have also used Python and bash to write some scripts to process data:
tranform Weka files into Torch files, tranform Torch files into human readable
files, run any other script hundreds of times. . . An example of a very useful script
can be found at the Appendix (B.1).



2.2 Audio processing

At MTG, the research group in which this project took place, there are several
tools for audio processing. Our research team, which focuses on content-based
Music Information Retrieval, has been developing for some years a library Es-
sentia, which has been extremely useful in our work.

2.2.1 Essentia

Essentia is an audio processing library developed at MTG. It is organized in
modules, which are written in C++. To interact with the library, however, it is
much better to use its Python interface, so it’s more clearly and easily accessi-
ble, and equally efficient.

It has many useful modules that can solve any problem regarding audio pro-
cessing, from lower levels (e.g. filtering, spectral processing) to higher levels of
information (e.g. key and tempo extraction, dissonance, danceability. .. ).

We have not only used Essentia, but in this project we have added some
modules to it. Specifically, we have implemented the BIC segmentation algo-
rithm and the extractor of panning coefficients.

Essentia is commonly used together with the machine-learning library Gaia,
which is also developed at MTG and has the same modular structure.

2.3 Machine Learning

In this project we used two tools for what is called machine learning: Torch
and Weka. However, we used them for different tasks. Torch was used to build
the models of each singer and Weka was used to find a decision tree to do the
classification between vocal and instrumental segments.

2.3.1 Torch

Torch! is an open-source machine learning library developed at IDIAP Research
Institute, at Switzerland. It is written in C4++ and has many efficient imple-
mentations of machine learning tools that help us extract knowledge from large
amount of data, so it is an excellent library to use when implementing machine-
learning-related programs.

The most important tools implemented in Torch are:

e Gradient machines: Multi-layer perceptrons, Radial basis functions, mix-
ture of experts, time-delay neural networks. . .

e Support Vector Machines, both for classification and regression

e Non-parametric models

ITorch website: http://www.torch.ch

10



e Parametric models such as KMeans, Gaussian mixture models, Hidden
Markov models, Bayes classifier. . .

We have used Torch’s GMM implementation, more specifically, we have used
the class called Diagonal GMM. Its name comes from the fact that the covariance
matrix used is a diagonal one. And as will be explained later on, GMM needs
to be initialized and trained. So we have used two other Torch classes: KMeans
and EMTrainer. KMeans is used to initialize the data, that is, apply a clus-
tering algorithm so that each datapoint is matched with one distribution (the
initial guess). EMTrainer is used to estimate the parameters of the Gaussian
distributions that maximize the likelihood, given the data.

2.3.2 Weka

Weka? is a set of machine learning tools for data mining tasks. It is well known
and used all around the world because it is very easy and intuitive interface
and because it is open source software. It contains many implementations of
techniques for data pre-processing, classification, regression, clustering and vi-
sualization.

It is written in Java, so it is not very efficient. Thus, it is more common
to use it just as an analysis tool than to use it as a programming library to
implement machin-learning-related software.

Weka provides a beautiful interface that allows the user to introduce the
data, to select an appropiate method and to apply it. Results appear in a text
window with plenty of relevant details, including information about the dataset
and the parameters of the method applied. Furthermore, Weka runs by default
a 10-cross validation algorithm that provides a thorough analysis of the perfor-
mance of the method used.

In our project, we have used Weka to build the decision tree that classifies
each music segment as vocal or instrumental. Specifically, we have used Weka’s
J48 algorithm implementation.

2Weka website: http://www.cs.waikato.ac.nz/ml/weka
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Chapter 3

Concepts

The goal of this chapter is to provide the reader with the underlying theori-
cal concepts applied in this project. These concepts are divided into two main
groups: digital audio processing and statistics.

The concepts within digital audio processing are necessary to understand
what kind of information is extracted from the audio signal and how this in-
formation can be helpful for each specific task in which it is applied. The
concepts explained are spectral processing topics, from the essential knowledge
to MFCCs, and the extraction of panning coefficients.

Within statistics, the concepts explained are Gaussian Mixture Models,
which are used to generate a model for each speaker and determine the most
similar model for an unknown voice, and Bayesian Information Criterion, which
is used in the audio segmentation.

3.1 Digital Audio Processing

Digital Audio Processing is an essential task for the extraction of features from
audio files. In this section we will briefly describe basic concepts on digital audio
processing, paying full attention to the process of extraction of the features
used in this project: MFCCs and panning coefficients. However, since both
descriptors are based on spectral analysis of the signal, we will begin this section
by giving an overview of this field, and then go deeply into the descriptors.

3.1.1 Spectral processing

Digital audio spectral processing takes advantage of the Fourier Transform to
change the domain of the signal, from temporal to frequency domain. The
reason for this change is that in this domain much more information can be
extracted from the signal and this information is much more useful, specially in
the field of content-based Music Information Retrieval.

The basic Fourier Transform can only be applied to continuous-time signals.
However, we know that the signals we are going to deal with are not continuous

12



but sampled (in a process that’s beyond the scope of this project, so it is skipped
in this report), therefore we need to use the Discrete Fourier Transform (DFT),
which is defined as:

N-1 ‘
X(w) = Z z(n)e J¥k"
n=0

where £ =0,1,---, N —1 is the number of bins, n is the number of samples,
N is the total number of samples, w is the discrete radian frequency and x(n)
is the amplitude of the signal at the n-th sample.

If we apply the DFT to all the signal at once, we will obtain all the frequen-
cies of the signal but with no temporal information. This information is crucial
to get a good analysis, because we will be able to know the frequencies of the
signal for each short lapse of time. Therefore, we need to use an adapted version
of the DFT, the Short-Time Fourier Transform (STFT).

The STFT segmentates the signal into small overlapped chunks and applies
a window on every chunk. By applying a window we obtain a removal of (almost
all) the artificial frequencies that appear into the signal when it is segmented,
basically at the edges of each chunk. There are several types of windows that can
be useful depending on the application of the analysis. Then, each windowed
chunk is individually analysed by applying the STFT, defined as:

N-1
Xi(k) = win)a(n + LH)e "
n=0

where [ = 0,1,---, L is the number of frame, L is the total number of frames,
w is the window and H is the time advanced at each chunk (also known as hop-
size).

Commonly, zero-padding is applied to the windowed signal in order to get
more frequency resolution. In consists on adding a sequence of zeros at the end
of the chunk, and it is very usefule while it has no drawbacks.

There are some parameters that have to be set depending on the application
of the analysis. These parameters are the length of the window, the number of
samples advanced at every new chunk (hop-size), the amount of zero-padding
applied and the type of window. In our case we have used window of size 2048
samples, a hop-size of 1024 samples, no zero-padding and a window of type
Blackman-Harris 62dB.

3.1.2 Mel-Frequency Cepstral Coefficients

MFCCs are one of the most useful descriptors in the field of speech processing.
They were developed primarily for its usage in speech recognition tasks, because
they extract a lot of speaker-independent information. However, MFCCs have
been shown to also extract a lot of speaker-dependent information, and there-
fore they are the state-of-the-art descriptors for text-independent SID tasks. We

13



used them when modeling each singer’s voice.

MFCCs are obtained as follows: the signal is segmented and each chunk is
windowed and analysed with the STFT. Then, each spectrum is multiplied with
a bank of filters, because we are more interested in the envelope of the shape
of the spectrum that in the details of the little fluctuations in spectrum. This
bank of filters is a set of band-pass filters that are multiplied by the spectrum
to obtain an average value of each subband. There are a lot of different filters
(triangular, linear or logarithmic). For our purpose, we will use a Mel filter bank.

The Mel filter bank is based on the Mel scale, which is an auditory scale that
simulates the frequency scale of the humar ear. In this filterbank, the bands are

linearly spaced from 0 to 1000 Hz and then they are logarithmically scaled, as
can be observed at figure 3.1.

Mel-Spaced Filtarbank
! ™ T —— T
|

Fragquency [Hz]

Figure 3.1: Representation of a Mel filter bank.

Once this filterbank is applied, the resulting coefficients are transformed by
applying a Discrete Cosinus Transformation (DCT), and the new coefficients
represent the cepstrum of the signal. This DCT is defined as:

3 sucos[e- ]
Cn = Sk cos n(k — =)
£ OF 2’ K

where k is the number of spectral coefficient, K is the total number of spec-

tral coefficients, n is the number of cepstral coefficient and L is the total number
of cepstral coefficients to calculate, being necessarily L < K.

There are some parameters to be defined in order to obtain useful MFCCs.
These parameters are the number of bands of the Mel filterbank, the number
of cepstral coefficients to be extracted and the frequency range of the Mel fil-
terbank. In our case, we have used a bank of 20 filters, taking just 13 of the
resulting cepstral coefficients and the range of frequencies of the Mel filterbank
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was between 0 and 8000 Hz.

3.1.3 Panning coefficients

Panning coefficients are a set of descriptors that model the distribution of spa-
tial information in a stereo mixed audio signal, distributed along the left-right
axis[13]. They can have a lot of applications in the field of content-based Music
Information Retrieval; we use them to detect changes in the instrumentation of
a song.

The first step to obtain the panning coefficients is to calculate a ratio between
the energy of the left and right channels. The result is a value within [—45, +-45]
that represents the spatial localization of each frequency bin. It is defined as:

|

Then a transformation is applied to make it more similar to human percep-
tion. According to Mills[17], humans have higher perception on the center of the
azimuth, and a non-linear transformation is applied to simulate this behaviour.
A graphical representation of this transformation can be observed at figure 3.2,
and it is mathematically defined as:

R(k) = %arctan U gz[[g

where k is each frequency bin.

Ruv K] = —0.5 + 2.52 — 22 z>0.5
W= 1 - (-05+25(1—2)—(1—2)> <05
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Figure 3.2: Transformation in the angle according to human perception.

Once this transformation is applied, an histogram of the spatial distribution
of the signal is calculated, that is, the amount of energy at each spatial bin is
calculated. More formally, it is defined as:
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ix = floor(M Rw[k])Hy (i) = Z’SL [k] + Srk]

Then, this histogram is normalized:
H(n)

H'(n) = ———+—
") Yooy H(n)

Once we have obtained the normalized histogram, it is transformed into the
final panning coefficients which are shown to be a compact representation of
the histogram. This last transformation is a cepstral analysis: the logarithm
of the panning histogram is computed and then an IFFT (inverse Fast Fourier
Transform) is applied to the result. Is has been empirically shown that a good
tradeoff between resolution and size is brought by using 20 panning coefficients.

3.2 Statistics

In this section, the statistical techiques used in speaker modeling and audio
segmentation will be briefly reviewed.

3.2.1 Gaussian Mixture Models

Before going deeply into the description of Gaussian Mixture Models, we’ll re-
view some os the underlying concepts so that GMM explanation can be perfectly
understood.

One-dimensional Gaussian distribution

Gaussian Mixture Models(GMM) base their power on Gaussian (or Normal)
distribution. This distribution is widely used in machine learning because of its
great power and its ease of use: it can be parametrised with only two elements,
the mean (representing the average) and the standard deviation (representing
the variability).

The probability density function (PDF) of the one-dimensional Gaussian
distribution is defined by:

1 N2
exp - & 5)
oV 2T 20

where p refers to the mean and o to the standard deviation.

flz) =

Figure 3.3 (extracted from the Wikipedia!) shows the graph of the PDF for
Gaussian distributions with different parameter values.

INormal distribution: http://en.wikipedia.org/wiki/Normal_distribution
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Figure 3.3: Graph of the probability density function Gaussian distributions
with different parameter values.

Multivariate Gaussian distribution

When GMM are used in real-world applications, the data used to train the
system is almost always multi-dimensional. Therefore, the distribution used by
GMM is not the one-dimensioanl Gaussian but the multivariate Gaussian.

The PDF of the multivariate Gaussian distribution is very similar to the one-
dimensional one. The main difference is that the mean value is now a vector
and that the standard deviation is now the covariance matrix. Here we can see
the PDF for an N-dimensional multivariate Gaussian distribution:

1 1 _
fx(xl,"wJCN) = WGXP—§($— M)TE 1(1‘ —M)

where p is the vector of means and X is the covariance matrix.

Now we have the key concepts needed to easily understand how GMM op-
erates.
Gaussian Mixture Models

GMM is an unsupervised clustering method, and has the goal of recognising
multiple categories in a collection of objects[21]. It is an unsipervised method
because category labels are not given.

When clustering, GMM assumes that the data are generated from a mixture
distribution P. P is formed by k components, having each an independent
distribution. The overall distribution of P is given by:

K
p(7) = ZP(C = )p(F|C = 1)
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where p(C = i) is the weight of the i-th component and p(Z|C = i) is
distribution of each component. In GMM, this distribution is a multivariate
Gaussian one. Therefore, GMM is a weighted sum of k£ component densities
with parameters O:

k
) 1 1. o1z o
PIO) = 3 iy i P 5 (AT — )

i=1

where w; is the weight of the i-th component, ;; is the vector of means of
the i-th component and ¥; is the covariance matrix of the i-th component.

Now we can see one of the powers of GMM: the simplicity. The complete
GMM can be parametrised only by:
@:wi,ﬂ;—,Ei,i: 1,"',]{)

Figure 3.4 (extracted from Russel and Norvig’s book [21]) shows an example
of a 2-dimensional GMM. In (a) we can see the raw datapoints, in (b) we can
see the Gaussian components that generated the points and in (c) we can see
the model reconstructed from the datapoints using a GMM.
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+

0.4 Pl 0.4 1

0.2 02 1 02 1

0 —— 0 0

0 02 04 065 08 | 0 02 04 06 08 | 0 02 04 06 08 |
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Figure 3.4: An example of a 2-dimensional GMM.

The task of training the GMM consists of estimating the parameters of the
mixture density © that maximize the likelihood of the parameters given the
data X =21, -+, zN:

0* = mng(9|X)

To do the estimation of these parameters, GMM almost always take advan-
tage of the Expectation-Maximization algorithm.

The Expectation-Maximization algorithm

The EM algorithm is an iterative optimization method that is used by GMM
to estimate the unknown parameters © of a mixture distribution that maximize
the likelihood given certain data X'. The most interesting characteristic of EM is
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that it uses some hidden variables which are not observable in the available data.

It can seem surprising that the usage of these hidden variables can lead EM
algorithm to a good result. However, if we observe figure 3.5, we can under-
stand why it happens. It shows two networks used to model a simple diagnostic,
one using hidden variables and the other without hidden variables. The former
requires 78 parameters to define the network whereas the latter requires 708!
Therefore, the usage of hidden variables can lead to a simplified problem.

Figure 3.5: Comparison of two simple diagnostic networks. In (a), a hidden
variable is used, whereas in (b) no hidden variables are used.

When applying the EM algorithm to the problem of estimating the param-
eters of a mixture of Gaussian distributions, the hidden variables are the com-
ponent that generated each data point. Then, what EM will maximize is the
log-likelihood of the parameters © given the observable data X and the hidden
variables V:

o0* = mng(G)P(,y)

As explained above, the EM algorithm is an iterative method. At each step,
two tasks are done: expectation and maximization.

At the expectation step, the probability that datapoint x; was generated
by component ¢ is computed:

pij = P(C =i[x;)
If we apply Bayes’ rule, we have the following transformation:

where the term P(x;|C = i) is the probability at the point x; of the i-th
Gaussian distribution and the term P(C = 4) is the weight of the i-th Gaussian
distribution.
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We can observe that defining the probability p;; (the expectation step) can
be seen as computing the expected values of the hidden variables Y;;, where Y;;
is 1 if the datapoint x; was generated by the i-th Gaussian component and 0
otherwise.

We can also define the overall probability of each Gaussian p;, which will be
required at the next step:

pi = Zpij
J

At the maximization step, the new mean, covariance matrices and weights
for each component are computed. For the sake of simplicity, the mathematical
transformation details will be skipped in this report. Anyway, they are available
at the excellent EM tutorial written by Bilmes[5]. These new values are updated
as follows:

s
w o S

- Di
J
o~ — gy o \T
Pij (X5 — i) (X5 — i)

Pi

Ez’ —

w; — P

The values that are computed at this step are the estimations of the param-
eters that maximise the log-likelihood of the data given the expected values of
the hidden variables.

Because EM algorithm is an iterative method, its good performance and
convergence depend on the initialization. In our case, the initialization refers
to the values of the hidden values, that is, assign the Gaussian component that
generated each datapoint. Therefore, we use a simple yet powerful method to
do this task: the k-nearest neighbour method.

k-nearest neighbour is also an iterative method. At the first step, each
datapoint is assigned randomly to one of the categories. Then, the iterative
process goes on as follows:

1. For each category, calculate the mean.

2. For each datapoint, calculate the nearest category mean, and reassign its
class to this category.

3. Stop when no difference is made between two steps.

Using this simple method we can have a quite accurate initialization that
allows EM algorithm reach a good clustering.
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Testing the models

Up to this point we have explained how a model of a speaker is build. Now we
will explain how each model is tested given new unseen data.

This new data is a set of points in a multi-dimensional space. Each GMM
determines a probability for each data point to be generated by the current
model, by adding the probabilities of each data point for all Gaussians. Taking
the averaged sum of the probabilities of all the points of the new unseen data,
we know the probability that this model generated the data. The model that
returns a highest probability is taken as the generator of the analysed dataset.

3.2.2 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a model identification method and
was developed by Schwarz[23] (that’s why it’s also referred to as Schwarz in-
formation criterion). Model identification is a task that consists of selecting a
statistical model from a set of potential models, given some data.

More formally, given the dataset X = z; € R%, i = 1,
wish to model and the model candidates M = M;, i = 1,2,
defined by:

2,+++, N which we
-+, K, the BIC is

BIC(M) = logL(X, M) — )\%ﬁ(M) log(N)

where logL(X, M) is the maximum log-likelihood of the model M given the
data X, §(M) is the dimension of the model M and ) is the penalization weight.

Then we assume that the data set X’ is generated by an independent multi-
variate Gaussian process|7]:

x; ~ N(pi, X;)

where p; is the mean vector and X; is the covariance matrix of the distribu-
tion.

In our audio segmentation case, we apply BIC to a simplified problem: we
take a (small) window of data and assume that there’s at most one change
point. Therefore, we two hypothesis, either all the windowed data is generated
by the same Gaussian distribution (Hy) or the windowed data is generated by
two different Gaussian distributions, having a change at time i:

Hy : x1,x9, - ,2ny ~N(u,X)
Hy @z, @~ N(p1,21); Tigr, - on ~ N(pe, X2);

To compare these two hypothesis, we use the maximum likelihood ratio test
R(3):

R(i) = Nlog|X| — Ny log|X:| — Nalog|Xs|
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where ¥, ¥; and Y5 are the covariance matrices from all the data, from
x1,- -+, x; and from x;41, - -, x N, respectively and N, N7 and Ny are the lengths
of the full data, and the first and second subwindows, respectively.

The difference between the values of BIC for these two models is defined by:

BIC(i) = R(i) — AP
where P is the penalty, defined by:
1 1
P= §(d+ §d(d+ 1))log N

being A the penalty weight and d the number of dimensions of the data.

According to the BIC rule, if the value BIC(i) > 0 then it means that the
window is better modeled two different Gaussian distributions and therefore the
window should be segmented at time i. On the other hand, if BIC(i) <= 0
then the window should not be segmentated. The optimal segmentation point

can be found by:

i = argmax BIC(i)
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Chapter 4

System analysis

In this chapter we will describe all the investigations we have made during the
last year. We will begin giving an overview of the whole system, and then each
block will be described individually.

4.1 Global vision of the system

The goal of ths project is to build a system that identifies the performer of a
song, focusing the analysis on the identity of the singer. A more detailed ex-
planation of the goal can be found at chapter 1.1, and there’s a review of the
existing literature in the field at chapterl.2.2.

Our project is based on the investigations made by Berenzweig[4], who
showed that using only vocal segments of a song to build the model of a singer,
the performance of the identification task improves, rather than using the whole
song. So we thought a new way to segmentate an audio file into vocal or in-
strumental segments, and we investigated how this segmentation improved the
performance.

The system can be divided into 2 main tasks: detecting voiced segments
within a song and modeling the voice of the speaker from the segments detected
as having voice. Each task is described with full detail in the following sections.
A block diagram of the whole process of training the system can be observed at
figure 4.1.

However, this was not the goal of the project at the beginning of the project.
Our first idea was to develop new descriptors to improve the task of text-
independent speaker identification (SID). In the following sections, a crono-
logically ordered description of the investigations carried out during the project
is made. Section 4.2 explains the tests done trying to discover new descriptors
for text-independent SID; section 4.3 describes the method used to segmentate
the audio signals into voiced and instrumental segments and section 4.4 shows
how the model of a singer is performed and how the artist of an unkown song
is identified.
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Figure 4.1: Block diagram of the overall training system.
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4.2 Speaker identification

The first goal of this project was to improve the performance of text-independent
SID systems. We started by reading the existing literature in the field and doing
a review of the most important papers that are mentioned in section 1.2.1.

As explained in chapter 2, the performance of SID depends on two main
tasks: the features extracted from the speech signal and the statistical technique
used to build the model of each speaker. Given that this project took place at
the Music Technology Group of the Universitat Pompeu Fabra, we focused our
investigations on the digital signal part of the field.

Description of the speech database

The first step for a correct investigation of new descriptors for SID tasks was to
get a reliable starting point. From the literature reviewed we already knew that
the state-of-the-art speaker identification method was to extract Mel-Frequency
Cepstral Coefficients (MFCCs) and use them to build a Gaussian Mixture Model
(GMM) for each spaker, so we just implemented a system with this structure
to have a suitable measure of comparison for the new descriptors to be investi-
gated. We built this system using the GPL-lincensed Torch library (see 2.3.1),
which allows the user to easily implement machine learning techniques, among
them GMMs.

To train and test the system we used the TIMIT Database!. This database
was developed by Texas Instruments together with the Massachusets of Tech-
nology to provide speech data for the acquisition of acoustic-phonetic knowl-
edge and for the development and evaluation of automatic speech recognition
systems. It contais speech from 630 speakers that represent 8 mkajor dialect
divisions of American English, and for each speaker, there are 10 phonetically-

LTIMIT Database: http://www.mpi.nl/world/tg/corpora/timit/timit.html
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rich sentences recorded.

All speakers in the database are adults, native speakers of American English
and were judged by a professional speech pathologist to have no clinical speech
pathologies. All recordings are made under clean conditions. The database is
formed by 438 male speakers and 192 female speakers.

The fact that it is a database addressed to automatic speech recognition
systems is not a handicap for its application in text-independent speaker identi-
fication systems, because a database containing small amounts of speech from a
relatively diverse speaker population is very useful for our task. Having speaker
from a range of dialects can even make our system more robust.

Furthermore, it is very important that there’s something in this database
that helps the performance of SID tasks: the lack of intersession interval. It
means that, for each speaker, their sentences were all recorded during the same
day. Therefore, there are no differences due to speaker’s healthy conditions (e.g.
having a cold), slight pitch changes. .. These phenomena are the cause of the bad
performance of some SID systems.

For each one of the 630 speakers there are 10 files, where each file is the
audio of a recorded sentence read by the speaker. There 2 two sentences that
were read by all 630 speakers (sa sentences), while the other 8 sentences were
different for every speaker. These 8 sentences are grouped into phonetically-
compact (sz sentences) and phonetically-diverse (si sentences).

Since it is an automatic speech recognition database, the training data are
the utterances from 420 speakers, while the remaining 210 speaker are used as
testing data. However, because the nature of our project, these two subgroups
changed in our case. We trained the system the same way as Reynolds[20] did
using also the TIMIT database. For each speaker, the training data was formed
by the two common sentences (sa sentences), three si sentences and three sz
sentences. The remaining two sr sentences were used as testing data. In sum-
mary, we used 24 seconds of speech for the training, and 3 seconds of speech for
each test, having a total amount of 1260 tests (one for each sz sentence).

As we said before, we wanted to have a good starting point so as to have a
good way to measure the performance of the new descriptors to be investigated.
Using the state-of-the-art tested over the clean-data TIMIT database, we got
a 97.86% of correct identification (using 32 Gaussian for each model), which is
pretty close to the 99.5% claimed by Reynolds[20]. It is obvious that there’s no
need to improve a performance of a 99.5%, but we have to take into account
the fact that this excellent performance was achieved testing over clean data.
So we added noise to the TIMIT databse to test the performance of our new
descriptors under more realistic conditions.

We wrote a little Python script (that can be found at the Appendix B.1)
that added some noise to the data, using the open-source software SoX2. The
noise was generated with a SNR (signal-to-noise ratio) of 12 dB. Using this noisy

280X: http://sox.sourceforge.net/
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database and MFCCs to build the models, we got a maximum performance of
93.58%, which is a pretty good performance statistic but still gives chance to
improvements. Let’s see if our new descriptors will.

The new descriptors

One of the most successful research groups within MTG is the one working on
singing voice analysis and syntesis. During the last 10 years of investigations,
they have developed a large number of tools and applications related to singing
voice, and thus, their experience could be very helpful for our project. After
some conversations, we concluded that it would be interesting for both groups
to investigate the performance in SID tasks of some descriptors developed by
them that modeled the timbre of the singing voice.

We were given a C++-written library for the Windows platform, and the
first step was to adapt it to be available to run it on a Linux platform. After
some days of work, the first task was successfully achieved.

The library contains several descriptors, some of them commonly extracted
but most of them totally new, specially when applied to SID tasks. The com-
mon descriptors are energy, pitch, MFCCs and their deltas. The uncommon
descriptors were related to some higher-levels of information, such as the exis-
tence of vibrato and other characteristics of the singing voice. Here we have a
detailed explanation of the most important ones:

MFCCs: Already explained at section 3.1.1.

Energy: In a continuous signal, the energy is defined as:

E, = /Oo |lz(t)|?dt

— 00

In our case, since our speech signals are sampled, the signal is discrete and
the energy is defined as:

where N is the total number of samples of the signal or the part of the
signal we are analyzing (e.g. a windowed frame).

Related to the energy of the signal, the most used feature is the averaged
energy, whis is defined as:

N—-1

1 2

n=0
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Pitch: The fundamental frequency of the signal is returned in Hz or in cents.
The algorithm for this calculation was developed at MTG and is based on
the Two-Wai Mismatch procedure. It is described in an article by Canol6].

Vibrato Probability: It returs a value between 0 and 1 corresponding to the
probability of that singing voice frame to contain a vibrato. It is based
on computing the zero-crossing points of the delta pitch and compare the
envelope of this feature with the envelope of the delta pitch of a chirp
signal, which is constant. Subtracting the first envelope to the second, if
the resulting value is high it means it has vibrato, while if the value is low
it means that the signal has no vibrato.

Energy without Vibrato: It returns the same value of energy as explained
before, but if the system detects vibrato in the signal, the amplitude mod-
ification caused by it will be removed from the measure.

Pitch without Vibrato: It returns the same value of pitch as explained be-
fore, but if the system detects vibrato in the signal, the frequency modi-
fication caused by it will be removed from the measure.

First to Second Harmonic Amplitude: It returns the ratio between the
spectral energy of the second and the first formant. As pointed out by
Sundberg[24], the strength of the fundamental frequency is related to the
kind of phonation (leaky, flowy or neutral phonation when this ratio is
low, and pressed phonation when this ratio is high).

Spectral Tilt: Difference in dBs between the first harmonic peak amplitude
and the maximum harmonic peak amplitude in a frequency range from
3kHz and 8kHz.

Analysis of the performance

The first step for the analysis of the performance of these new parameters was
to see their performance as they were, so we plugged all of them into our system
and, as expected, the results were terribly bad. This was not very surprising
because there were a lot of descriptors and it is obvious that some of them would
not be useful for our task.

Then we began the deep analysis to the descriptors with the assistance of
the machine-learning software WEKA (see 2.3.2). We first stated that some
of the descriptors were very correlated to some others. Some correlations were
obvious, for example Pitch and Pitch without Vibrato, their deltas, etc. Some
others were not so obvious at first sight: Pitch and Spectral Tilt and Harmonic
Phase Stability and Excitation Slope.

This correlations can be discovered by means of WEKA using two of its
numerous features: visualizing the data or doing a Principal Component Analy-
sis. With the former, WEKA shows a graph correlating data from two different
descriptors, and is the result is almost a line, then they are highly correlated.
If the result is something more unpredictable, or a regular cloud of points, then
these two descriptors are uncorrelated. We can see an example of each kind at
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figure 4.2.

a) b)

Figure 4.2: Graph of the representation of (@) two very correlated descriptors
and (b) two very incorrelated descriptors.

The other way to detect correlated descriptors, running a Principal Com-
ponent Analysis, returns a big correlation matrix. Each element (,7) of this
symmetric matrix shows the correlation between the descriptor ¢ and the de-
scriptor j. The range for this similarity is [—1, 1], where values close to 1 mean
that the two descriptors are very correlated, values close to 0 mean that the
two descriptors are very incorrelated and values close to -1 mean that the two
descriptors are inversely correlated.

Once the correlated descriptors were removed, we could investigate the per-
formance of the remaining ones. To do so, we plugged them into an ARFF file
(the text file type used by WEKA) and analysed them. We first tried to append
each frame analysis to the file, but there were two problems:

1. The file was immense: Having 630 speakers, 30 seconds of speech for
each speaker, and an analyzing hop-size of 10ms, leads to 1,890.000 anal-
ysed frames (each frame is represented in a line in the ARFF file), about
400 bytes per line, so the file size would be 756MB. .. That is too much
for Weka.

2. It is hard to identify at frame level: if Weka is given each frame
separately, it tries to classify the identity of the speaker of that single
frame. Therefore, the advantage of knowing that all frames within a file
belong to the same speaker is missed.

So we had to find a solution, and it turned out to be a very simple one:
instead of appending each frame to the training data, just appending the mean
values of each descriptor for each entire file would work much better. And it
worked. The amount of data was drastically reduced and Weka could process
it with no problem.
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Then we could try to find the most important descriptors of our set. With
Weka, we had two main possibilities: Principal Component Analysis and Deci-
sion Trees.

PCA is very commonly used in machine learning to reduce the number of
dimensions of a dataset. It is based on the eigenvalues and the eigenvectors of
the covariance matrix of the normalized dataset. Therefore, it makes a change
of the coordinate system so the first coordinate is the one with greatest variance,
and so on folloing the order of the eigenvalues. It is a very powerful tool because
of its simplicity, but unfortunately it had drawback in our case: the result of this
transformation is a matrix with lower dimensions but this information cannot
be used to discover which are the less important descriptors, that is, those that
should to be excluded.

This information is given by Decision Trees. This technique make a statisti-
cal analysis of the dataset and returns a tree that at each leave has a classification
element. The descriptors found at the highest levels of the tree are the most
selective ones, so these are the most important ones for our case. An example
of a decision tree returned by the J48 algorithm of Weka can be found at the
appendix, section A.1.

After a large number of tests, the features that were most successful were:
e MFCCs (1-12)

¢ Fundamental Frequency

e First to Second Harmonic Amplitude

e Delta Energy without Vibrato

e Energy without Vibrato

The first thing to point out is that the descriptors at the top of the tree are
all the MFCCs. So, they are the most important descriptors in our set. It is a
first proof that these descriptors work worse than MFCCs. But there was still
a test left: try to see if these descriptors added to MFCCs could improve the
performance or not.

So we tested all the descriptors together both under clean and noisy condi-
tions and, as can be observed at figures 4.3 (clean conditions) and 4.4 (noisy
conditions), the performance of the whole set of descriptors was worse than the
performance of using just MFCCs.

Under clean conditions, the best performance is achieved using just MFCCs
as descriptors and with models of 32 Gaussian distributions, with a 97.86%
of correct identifications. Adding the our descriptors to MFCCs the best per-
formance decreases to a 90.08% of correct identifications, using 64 Gaussian
distributions.

Under noisy conditions, the tests show a similar behaviour as in clean data,
so in both cases using only MFCCs seems to perform much better that adding
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new descriptors to MFCCs. Again, the best performance is achieved using just
MFCCs, but now with 64 Gaussian distributions (although the difference of
performance between using 32 and 64 Gaussians is very small). And adding the
new descriptors to MFCCs, the best performance decreases a lot, it goes down
to 75.65% using 128 Gaussian distributions to model each speaker.
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Figure 4.3: Comparison of the performance of both descriptor sets under clean
conditions.

The peformance of these new descriptors is not only worse than using just
MFCCs but it also needs more complex models to represent each speaker. There-
fore, the computational cost of the overall process will be higher.

So, as a conclusion of the first part of the investigation, the best descriptors
for the task of text-independent SID are MFCCs using 32 Gaussian distributions
to build each model. That’s the method we will use to build each model of
speaker.

4.3 Segmentation block

4.3.1 BIC implementation

In this block, the input signal is segmented into some homogeneous segments, in
terms of the input coefficients given to the algorithm. The method that allows
us to do this segmentation is called Bayesian Information Criterion (BIC), and
is already explained at section 3.2.2.

This algorithm is used to select a statistical model from a set of potential
models, given some data. We use a simplified form of the problem by assuming
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Figure 4.4: Comparison of the performance of both descriptor sets under noisy
conditions.

that for each set of data there were only two possible models: either the dataset
was generated by two different probability distributions (so we have to find the
point of the change of distribution) or all the dataset was generated by the same
distribution.

The execution of the BIC algorithm given a data chunk is:

1. Set n =inc_size

2. Divide data chunk into two parts: from 1 to n and from n+1 to window_size
3. Calculate the BIC value

4. If BIC returns true, return n

5. If BIC returns false, set n4+ = inc_size and return to point 2

We first tested the performance of this segmentation by feeding the algorithm
with MFCCs. For each frame we extracted 13 MFCCs and we put them together

having as a result a matrix of size 13 x ”}%’L”e(sec) This is the data BIC
p_size(sec)

uses to return a segmentation, by applying the following 3-pass algorithm:

First Pass

The first pass is thought to find coarse segmentation points. It is achieved by
using relatively large windows and increment sizes.

1. Setn=1

2. Take a chunk of size window_size; from n
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Apply BIC algorithm to the chunk with inc_size;

If BIC returns true, set a segmentation at the returning point, set n+ =
inc_size; and return to point 2

. If BIC returns false, set n+ = window_size; and return to point 2

Second pass

In this, the segmentation points found at the first pass are finely tuned:

1.

2.

For each segmentation point sp found at the first pass do

Take a data chunk of size window_sizeqs around sp: (sp—window_size2/2, sp+
window_size2/2)

Apply BIC algorithm to the chunk with inc_sizes
If BIC returns true, replace sp with the returning point, and exit

If BIC returns false, remove sp

Third pass

The third pass checks that the segmentation point for each pair of adjacent
segments is correct, that is, that there is no pair of adjacent segments sharing
the same probability distribution.

1.
2.

3.
4

5.

For each pair of adjacent segments, determined by spl, sp2 and sp3 do
Take a data chunk from spl to sp3

Calculate the BIC value for this chunk

. If BIC returns false, remove sp2

If BIC returns true, exit

In this third pass the minimum length for each segment is also checked.

The parameters that must be set before running our BIC algorithm are:

window size 1 (first pass)
increment size 1 (first pass)
window size 2 (second pass)
increment size 2 (second pass)
minimum segment size

penalty weight (if this value is low then more segments are generated, and
vice versa)
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4.3.2 BIC tests

BIC algorithm is a popular technique for audio segmentation, commonly used
to detect changes of speaker, channel or environment [7]. However, it was never
applied to popuplar music segmentation, and we tested it.

We fed BIC algorithm with MFCCs, and using appropiate values for the
parameters we got excellent and quite surprising results: BIC segmentation de-
tected almost perfectly the structure of any song from several different music
genres (e.g. pop-rock, jazz, r'n’b, reggae. .. ). It was particularly surprising that
such performance could be reached by a technique that required no training!

The parameter values that gave us the best results were:

windowsizel = 1000
incrementsizel = 300
windowsize2 = 600
incrementsize2 = 50
mintmumsegmentsize = 10seconds
penaltyweight = 5

Figure 4.5 shows an example of a successful BIC segmentation, applied to
Coldplay’s song Yellow.

This segmentation algorithm is now part of the Essentia audio-processing
library (see section 2.2.1) and is one of the most useful segmentation algorithms
within the library. Fed with these parameter values, this algorithm has many
applications. For example, it can be used to find specific parts of a song (e.g. a
solo) so each part can be analyzed according to its category, and it can also be
used in a music-video player, as an intelligent skip button. ..

However, all these applications have nothing to do with the goal of this
project. But we thought how we could take advantage of the BIC segmentation
algorithm in the field of singer identification, and an idea came out: BIC algo-
rithm could be applied over a song to find the vocal segments, that is, to find
all the intersections between vocal and instrumental parts in a song.

We first tested the performance of BIC algorithm fed with MFCCs and tun-
ing the parameters of the algorithm so that it returned more and shorter seg-
ments (by rising the penalty weight and reducing window and increment sizes).
The results, however, didn’t fulfill our expectations: segmentation points seemed
were almost randomly set, regardless of vocal or instrumental sections. So we
had to find a new set of music descriptors that could carry more information to
differentiate vocal and instrumental parts.

And that’s when we came across panning coefficients. These coefficients
represent the distribution of spatial energy in a stereo mixed audio signal, and
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Coldplay - Yellow

Figure 4.5: Plot of the signal of Coldplay’s song Yellow, with the segments found
using BIC algorithm represented and the song structure annotated.

were developed also at MTG.

In almost all recorded songs, instruments are not all placed at the center
of the signal. Usually instruments tend to be more placed more at one side of
the signal. However, lead voice is commonly placed in the center, so there is
difference between vocal and instrumental parts. That’s the basic idea behind
the usage of BIC segmentation algorithm fed with panning coefficients.

The tests we did with panning coefficients were very successful: the algo-
rithm detected very well almost all boundaries. However, there’s something
very important to point out: this analysis is not based on musical aspects of
the signal but it is based on aspects of the way songs are mixed. Therefore,
although results are many times successful, there will be some cases in which
results will be terrible.

Up to this point, we had a segmentation algorithm that detected the in-
tersections between vocal and instrumental parts. However, we still needed to
establish a criterion to classify segments into vocal or instrumental. As ex-
plained above, panning coeflicients don’t represent aspects of the song itself but
aspects of how it was mixed. Thus, the classification decision (vocal vs. instru-
mental) should not be based on this descriptors. And we thought that MFCCs
are good sound descriptors, so we built a decision tree based on MFCCs that
would classify each segment into vocal or instrumental.

We built a database to generate this decision tree. We restricted our domain
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ARTIST SONG ALBUM
Coldplay Don’t Panic Parachutes
Coldplay Sparks Parachutes

Lenny Kravitz

Are You Gonna Go My Way

Greatest Hits

Lenny Kravitz

Let Love Rule

Greatest Hits

Manu Chao Desaparaecido Clandestino
Manu Chao El Viento Clandestino
U2 Pride (In the Name of Love) The Best Of
U2 With or Without You The Best Of
Elton John Your Song The Very Best Of
Elton John Crocodile Rock The Very Best Of
Ricky Martin She Bangs Sound Loaded

Ricky Martin

Nobody Wants to Be Lonely

Sound Loaded

Christina Aguilera

So Emotional

Christina Aguilera

Christina Aguilera

Come On Over (All T Want Is You)

Christina Aguilera

Sheryl Crow

Run, Baby, Run

Tuesday Night Music Club

Sheryl Crow

All T Wanna Do

Tuesday Night Music Club

Melissa Etheridge

Chrome Plated Heart

Melissa Etheridge

Melissa Etheridge

Watching You

Melissa Etheridge

Vanessa Amorosi

Absolutely Everybody

The Power

Vanessa Amorosi

The Power

The Power

Texas I Don’t Want a Lover The Greatest Hits

Texas So in Love With You The Greatest Hits
Mariah Carey Can’t Let Go Emotions
Mariah Carey Till the End of Time Emotions

Table 4.1: Relation of songs used to train the vocal vs. instrumental classifica-
tion tree

to pop-rock music. This database contained information about 24 songs from 12
different artists (2 songs per artist). These songs are thought to equally repre-
sent a wide range of singer voices and instrumentations within pop-rock. Hence,
we have songs performed by 6 male and 6 female singers, and for each group 6
songs are more intense (the song has a high rhythm and drums are played loud)
while the remaining 6 are smoother (soft or no drums, less instrumentation. . . ).
Table 4.1 shows the songs used.

For all these songs, we ran the BIC segmentation algorithm fed with panning
coeflicients to detect homogeneous segments in terms of instrumentation. Then,
each segment was manually tagged (vocal or instrumental). For each segment,
we extracted 13 MFCCs and we trained the system using the following statistical
measures for each coefficient:

e MFCC mean
e MFCC variance
e MFCC delta mean
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e MFCC delta variance
e MFCC delta-delta mean
e MFCC delta-delta variance

Thus, each segment was represented by 78 elements. We plugged all these
data into WEKA and built with it a decision tree with the algorithm J48. We
tuned the parameters of the algorithm so that a lot of prunning was applied to
the tree and therefore we could obtain a rather small tree and have no overfitting
problems. We got this tree:

var_mfcc6 <= 88.917252

var_mfccl3 <= 20.224783: instrumental (283.0/31.0)
var_mfccl3 > 20.224783

| mfccl <= -437.93869

| | var_mfcc8 <= 47.16811: instrumental (99.0/8.0)

| | var_mfcc8 > 47.16811

| | | dvar2_mfccll <= 59.083096: voice (68.0/31.0)
| | | dvar2_mfccll > 59.083096: instrumental (40.0/7.0)
| mfccl > -437.93869

| | var_mfccll <= 22.944561: instrumental (35.0/6.0)
| | var_mfccll > 22.944561

| | | mfcch5 <= 3.581012: voice (113.0/23.0)

| | | mfccs > 3.581012: instrumental (50.0/21.0)
var_mfcc6 > 88.917252

| mfccl <= -482.016876: instrumental (53.0/21.0)

| mfccl > -482.016876: voice (400.0/64.0)

Weka runs some performance tests using a 10-fold cross-validation algorithm.
The percentage of correctly classified for this tree was 77.5%, which is more than
a correct performance taking into account the small size of the tree.

Figures 4.6 and 4.7 compare the vocal/instrumental tagging returned by
our method and a manual tagging. In both examples we can see that both
tags match in most cases, so our method works pretty well. The first song is
Shiver, performed by Coldplay, and the second song is Been Here Once Before,
performed by Eagle Eye Cherry. It is important to note that to train the vocal
vs. instrumental decision tree, other songs performed by Coldplay were used,
but none of Eagle Eye Cherry, so our method can generalize well even for new
artists.

4.4 Singer modeling block

To model each singer, we use the MFCCs of only the segments tagged as vo-
cal to train a 32-Gaussian GMM. This model is trained as explained in section
3.2.1, and the method is exactly the same as used in Speaker Identification tasks.

We have used a database randomly chosen from a large music library. To
model each artist, we use MFCCs of the vocal segments of two of his or her
songs to train a GMM. Then, we use the rest of songs of each artist as testing
data.

36



signal

0.5

0.0

-0.5

0 50 100 150 200 250 300

a) automatically tagged

100 150 200

b) manually tagged

Figure 4.6: Comparison of manual and automatic vocal/instrumental tagging
for the song Shiver, by Coldplay.
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Chapter 5

Results

The results of the singer identification tests will be described in this section, as
well as some comments about them.

5.1 Music database

We tested our singer identification system with a music database that contained
the songs from 10 albums by 10 different artists. For each artist, 2 randomly
chosen songs were used as training data, and the remaining songs of the album
were used as testing data.

The artists in this database were almost randomly chosen: it contains music
from 5 male artists and 5 female artists. However, the selection of a particular
artist was made completely randon from a much larger database.

Table 5.1 details the artists and albums that contained the database.

In order to test the performance of our vocal vs. instrumental segmentation
method, for each artist we trained two different models:

ARTIST ALBUM
3 Doors Down The Better Life
The Bloodhound Gang Hoorary For Boobies
Britney Spears Ooops! ...I1Did It Again
Celine Dion Let’s Talk About Love
Cher The Greatest Hits
Enrique Iglesias Enrique
Eric Clapton Chronicles
Jessica Folker Jessica
Phil Collins Dance Into The Light
Shania Twain Come On Over

Table 5.1: Relation of algums used to test the performance of our singer ID
system.
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ARTIST # correct | # songs | percentage
3 Doors Down 5 8 63%
Bloodhound Gang 6 15 40%
Britney Spears 6 11 55%
Celine Dion 13 14 93%
Cher 2 10 20%
Enrique Iglesias 9 14 64%
Eric Clapton 3 13 23%
Jessica Folker 8 9 89%
Phil Collins 7 10 70%
Shania Twain 10 13 7%

TOTAL 69 117 58.97%

Table 5.2: Performance summary of the singer ID system using only vocal-
detected frames.

ARTIST # correct | # songs | percentage
3 Doors Down 8 8 100%
Bloodhound Gang 8 15 53%
Britney Spears 7 11 64%
Celine Dion 13 14 93%
Cher 3 10 30%
Enrique Iglesias 8 14 57%
Eric Clapton 3 13 23%
Jessica Folker 9 9 100%
Phil Collins 7 10 70%
Shania Twain 11 13 85%

TOTAL 77 117 65.81%

Table 5.3: Performance summary of the singer ID system using all frames.

e Using only vocal segments
e Using the whole song

Comparing the performance of the system with this two different data sources,
we will be able to determine the importance of vocal segments over instrumental
segments in the field of singer ID.

5.2 Experiments

Tables 5.2 and 5.3 show the results of the performance of our singer ID system
using only the vocal-detected frames or using all the frames, respectively.

We can observe that the performance of the system when using only the
segments detected as vocal is worse than using the whole song. It is qute
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surprising, especially taking into account the fact that Berenzweig proved that
the usage of only vocal segments improved performance. However, we have some
reasons to explain this fact:

Some of the artists of the database are hard to model: For example, Eric
Clapton is mainly a guitar player, and in his songs guitar solos are often
more important that the voice itself. Our vocal vs. instrumental detec-
tor is still not trained to distinguish between very harmonic sounds (such
as voice and guitar), and therefore it is possible that the model of what
should be the voice of Eric Clapton, is corrupted with guitar information.

Background vocals: In some of the songs of the database, there are a lot of
background vocals, sung by a different singer than the leader of the band.
Therefore, this other voices also corrupt the model. Furthermore, often
the passages of the song with background vocals are longer than rest of
the song.
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Chapter 6

Conclusions

6.1 Conclusions

The main contribution of this project is the development of a new technique for
locating vocal segments within a polyphonic song. This technique is based on
two steps:

1. detect the boundaries between vocal and instrumental segments

2. classify each segment as vocal or instrumental

The segmentation is made with the BIC algorithm, using panning coeffi-
cients. The classification is performed by a decision tree that takes MFCCs as
its parameters.

The results we got when testing the singer ID system were not the expected
ones, but it is important to note that the most important block of this project
is the segmentation more than the singer identification itself. We tested the
segmentation in this application because it was an affordable one, but as will
be explained in the next section, our new segmentation system can have many
other interesting applications.

We can also say that the particular system we have built is thought to per-
form quite well only with pop-rock music. To apply it with other music genres,
the segmentation part should not be modified, but the decision tree to clas-
sify each segment as vocal or instrumental should be rebuilt. Moreover, for
certain music styles (such as jazz) it would be interesting to build a model for
each soloist instrument. Therefore, jazz segmentation could be very easily made.

In conclusion, although the final results have not been completely successful,
we can extract a lot of good feelings from the project. First of all, the expe-
rience of working in a research-group, how everyone helped each other in any
field, and how reseach was getting new directions everyday has been an excellent
experience for me.
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6.2 Future work

As we have just said, the most important part of this project is the segmentation
block. It can be applied in multiple tasks, and fed with different descriptors it
can easily segmentate following any criteria. Therefore, many applications can
arise.

A very interesting application would be to transform the system into a global-
song vocal vs. instrumental descriptor. As the system is right now, it classifies
too many non-vocal segments as vocal, and that’s because only two models
(vocal and instrumental) are trained. If there would be a model for many in-
struments that can be predominant in a song, this new descriptors could be
easy to implement and very useful.

Furthermore, the application of panning coefficients can also lead to new
applications. Knowing where the spatial energy lies, it would not be very hard
to isolate the most prominent part of the spectrum, and build the models only
with this subset of information. Then, models would really represent the voice
of a singer and background music would be no problem at all.

Finally, another practical improvement would be to establish a similarity
measure between models, that is, voices. Therefore, it could be possible to find,
for example, songs performed by a singer with a similar voice to my preferred
one.
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Appendix A

Weka files

In this section of the appendix we will reproduce the output returned by Weka

when several algorithms were run.

Al

Decision tree returned by Weka’s J48 algo-
rithm

J48 pruned tree

timbreMell2 <= 13.959

timbreMell2 <= -5.5315

timbreMell0 <= 1.2556: 18 (584.0/124.0)
timbreMell0 > 1.2556: 4 (788.0/335.0)

timbreMell2 > -5.5315

timbreMelll <= -43.53

timbreMel7 <= -76.028

timbreMell0 <= 7.0693: 29 (201.0/85.0)
timbreMell0 > 7.0693: 20 (268.0/149.0)
timbreMel7 > -76.028

timbreMel2 <= 67.098

timbreDeltaEnergyDBWithoutVibrato <= 0.020307
|  timbreMel6 <= -0.17689

timbreMel6 > -0.17689
| timbreMelb <= -68.058

| timbreMell0 <= 10.412: 31 (259.0/128.0)
| timbreMell0 > 10.412: 16 (248.0/170.0)

timbreMell0 <= 7.1573: 22 (249.0/29.0)
timbreMell0 > 7.1573: 20 (209.0/131.0)

timbreMelb > -68.058

timbreNasality <= 0.4682: 25 (350.0/192.0)
timbreNasality > 0.4682: 7 (200.0/124.0)

imbreDeltaEnergyDBWithoutVibrato > 0.020307

I
|
|
|
I
I
I
|
|
t
| timbreMeld <= -12.795: 34 (502.0/145.0)
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I I | |  timbreMel4 > -12.795: 12 (218.0/178.0)

| | timbreMel2 > 67.098

| | |  timbreEnergyDBWithoutVibrato <= 9.2383: 33 (201.0/69.0)
| | |  timbreEnergyDBWithoutVibrato > 9.2383

I I | |  timbreMel6 <= -11.128: 31 (336.0/195.0)

I I | |  timbreMel6 > -11.128

I | | | |  timbreMel8 <= 12.915

I I I | | |  timbreMeld <= -7.9039: 21 (340.0/274.0)
| | | | | |  timbreMel4 > -7.9039: 15 (280.0/107.0)
I I I I |  timbreMel8 > 12.915: 21 (342.0/86.0)
timbreMelll > -43.53

| timbreMel6 <= -3.8787

I |  timbreMel7 <= -65.272: 29 (322.0/85.0)

I |  timbreMel7 > -65.272: 12 (300.0/217.0)

| timbreMel6 > -3.8787

| | timbreMel7 <= -53.37

I I |  timbreMel4 <= -1.1836

I I | |  timbreMelll <= -37.928: 7 (336.0/184.0)

| I | |  timbreMelll > -37.928: 23 (264.0/49.0)

| | | timbreMeld > -1.1836: 15 (202.0/147.0)

| | timbreMel7 > -53.37

| | |  timbreFormantToHarmArea <= 2.0616: 30 (200.0/114.0)
| | | timbreFormantToHarmArea > 2.0616

I I | |  timbreMellO <= 12.676: 24 (336.0/38.0)

| |  timbreMellO > 12.676: 23 (206.0/59.0)

| I I
imbreMell12 > 13.959
timbreMeld <= 14.705
| timbreMel9 <= -42.149
| timbreMel7 <= -66.717
|  timbreMel8 <= 31.32: 33 (359.0/275.0)
|  timbreMel8 > 31.32: 9 (447.0/27.0)
timbreMel7? > -66.717
| timbrePitchHz <= 85.361
| timbreMell0 <= 26
| timbreMel8 <= 19.62
| |  timbreMel5 <= -55.116: 33 (207.0/137.0)
I |  timbreMel5 > -55.116: 6 (478.0/118.0)
| timbreMel8 > 19.62
| | timbreMel6 <= -1.1824: 28 (308.0/114.0)
| | timbreMel6 > -1.1824: 14 (208.0/124.0)
timbreMell0 > 26
|  timbreMell2 <= 24.408: 14 (310.0/148.0)
|  timbreMell2 > 24.408
| |  timbreMel9 <= -49.218
| | | timbreMelll <= -54.327: 32 (247.0/86.0)
I | | timbreMelll > -54.327: 5 (297.0/63.0)
| | |  timbreMel9 > -49.218: 3 (283.0/144.0)
| timbrePitchHz > 85.361: 16 (224.0/119.0)
imbreMel9 > -42.149
timbreMel8 <= 7.6001

—_— — — Y — — — e — "t ——_ — — e e e e e e e =

I
I
I
|
|
|
I
I
|
|
|
I
I
|
|
|
I
I
I
t
|
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Number of Leaves

Size of the tree :

I
|
t
I
I
I
|
I

timbreMel6 <= -8.7593: 13 (302.0/107.0)
timbreMel6 > -8.7593: 19 (421.0/188.0)

imbreMel8 > 7.6001

timbreMelb <= -48.744

I timbreMell2 <= 23.879: 17 (610.0/307.0)

I timbreMell2 > 23.879: 3 (358.0/178.0)

timbreMelb > -48.744

|  timbreFirstToSecondHarmAmp <= 256980: 30 (509.0/315.0)
|  timbreFirstToSecondHarmAmp > 256980: 10 (404.0/58.0)

imbreMeld > 14.705
timbreMel8 <= 8.6537

timbreMel7 <= -46.289: 13 (204.0/122.0)
timbreMel7 > -46.289: 19 (229.0/33.0)

timbreMel8 > 8.6537

timbreMel9 <= -33.882

I
|
I
I
I
I
|
I
I
I
I
t
|
I

timbreFirstToSecondHarmAmp <= 150690

| timbreMell0 <= 21.318: 8 (340.0/72.0)

| timbreMel10 > 21.318

| | timbreMel7 <= -63.327: 26 (200.0/34.0)

| | timbreMel7 > -63.327: 32 (244.0/145.0)
timbreFirstToSecondHarmAmp > 150690

I timbreMel6 <= -3.4503: 12 (251.0/137.0)

I timbreMel6 > -3.4503

| | timbreMel7 <= -59.582: 2 (213.0/151.0)

| | timbreMel7 > -59.582

I I |  timbreMelb <= -59.061: 2 (437.0/103.0)
I I | timbreMel5 > -59.061: 1 (484.0/108.0)

imbreMel9 > -33.882

timbreFirstToSecondHarmAmp <= 257140: 26 (200.0/124.0)
timbreFirstToSecondHarmAmp > 257140: 27 (485.0/62.0)

53

105
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Appendix B

Scripts

B.1 addNoise.sh

#!/usr/bin/python
# Script per extraure els descriptors dels fitxers wav del directori amb essentia

import os

import sys

import commands

from string import split
from string import rfind

if len(sys.argv)!=2:
print "Usage: ./addNoise.sh SNR"
sys.exit(0)

fileString = commands.getoutput(’find . -iname "*_44100.wav"’)
files = split(fileString,’\n’)

denom = pow(10,float(float(sys.argv[1])/20))

for file in files:

print file

stat = split(split(commands.getoutput("sox "+file+" -e stat"),’\n’)[8])

ampSignal = float(stat[len(stat)-1])

snr = ampSignal / denom

noisedFile = "noise_"+sys.argv[1]+"_"+file[rfind(file,’/’)+1:]

os.system("sox "+file+" /tmp/"+noisedFile+" synth whitenoise create vol "+str(snr))
os.system("soxmix "+file+" /tmp/"+noisedFile+" "+file[:rfind(file,’/’)+1]+noisedFile)
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