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Reservoir-computing based equalization with optical
pre-processing for short-reach optical transmission

Francesco Da Ros, Member, IEEE, Stenio M. Ranzini, Student member, IEEE, Henning Bülow, and Darko Zibar

Abstract—Chromatic dispersion is one of the key limitations to
increasing the transmission distance-rate product for short-reach
communication systems relying on intensity modulation and
direct detection. The available optical dispersion-compensation
techniques have lost favor due to their high impact on the link loss
budget. Alternative digital techniques are usually power-hungry
and introduce latency. In this work, we compare different digital,
optical and joint hybrid approaches to provide equalization
and dispersion compensation for short-reach optical transmission
links. Reservoir computing is reviewed as a promising technique
to provide equalization with memory in an easily trainable
fashion, and the properties of the reservoir network are directly
linked to system performance. Furthermore, we propose a new
hybrid method relying on reservoir computing combined with
a simple signal pre-conditioning stage directly in the optical
domain. The optical pre-processing uses an arrayed waveguide
grating to split the received signal into narrow sub-bands. The
performance of the proposed scheme is thoroughly characterized
both in terms of reservoir properties and appropriate pre-
processing. The benefits are numerically demonstrated for 32-
GBd on-off keying signal transmission, and show an increase in
reach from 10 km to 40 km, corresponding to 400%, compared
with more complex digital-only techniques.

Index Terms—Short-reach transmission, direct-detection,
reservoir computing, signal equalization, chromatic dispersion
compensation.

I. INTRODUCTION

NEW technologies massively relying on a high-
interconnectivity of relatively simple devices have

shifted the strain caused by an ever-increasing demand for
data rates from long-haul systems to short-reach communica-
tions, i.e., inter- and intra-datacenter. Most of the information
transfer happens on a machine-to-machine basis, with only a
small fraction of the data reaching the human end-user. Unlike
for long-haul systems where the energy and complexity can be
spread over a large number of users, for short-reach commu-
nication, the transmission rate and reach need to be increased
by focusing on low-complexity solutions. Medium and long
haul systems are mainly limited by amplification noise and
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nonlinear effects, as linear impairments can be compensated
at the receiver side thanks to coherent detection providing
access to the full optical field. However, even though coherent
detection is already discussed for short-reach [1], it is not yet
considered commercially viable, and only intensity modulation
with direct detection (IM/DD) is deployed. Losing the infor-
mation carried by the field’s phase makes chromatic dispersion
(CD) the major obstacle to extending the transmission reach.
Several techniques are available for compensating for the inter-
symbol interference (ISI) induced by CD, by acting in the
optical domain [2], [3], in the digital/electric domain [4], [5],
[6], [7], [8], [9], [10], [11], [12] or by considering a joint
optoelectronic approach [13], [14], [15], [16], [17], [18], [20].
Optical dispersion compensation techniques mainly rely on
negative dispersion media, such as dispersion-compensating
fibers (DCFs) or fiber Bragg gratings (FBGs). These media
are able to compensate fully for the accumulated dispersion,
however, at the expense of latency (mainly DCFs) and, more
importantly, of significant power loss. As power loss directly
translates into lower received signal quality, in-line optical
dispersion compensation is typically avoided in short-reach
systems. Moving into the digital domain to perform the com-
pensation requires to consider the CD to be a nonlinear effect
due to its transformation through the square law of a photode-
tector (PD). Additionally, intensity detection introduces non-
linear mixing of signal and noise, requiring a computationally
heavy estimation of a likelihood function and thus making a
maximum a posteriori probability (MAP) detection strategy
less practical. The proposed methods, therefore, rely on rather
complex approaches such as maximum likelihood sequence
estimation (MLSE) [5], Volterra equalization [4], fully-fledged
feed-forward neural networks (FNNs) [9], [12] and recurrent
neural networks (RNNs) [11]. Promising results have been
shown by applying these methods. However, the improvements
in reach are relatively small to justify the overall complexity
of training FNNs and RNNs, as they require backpropagating
through the full network. As a practical channel is not static
and physical drifts (e.g., due to temperature fluctuations)
periodic retraining will be required. It is therefore desirable to
develop schemes where the training phase can be performed
with low complexity. This may be achieved by moving to
hybrid optoelectronic approaches, which leverage on sharing
the complexity between optical and electrical domain, at the
expense of only small added optical power loss, as we have
shown in [20]. Additionally, a few recent investigations have
also looked into applying a new machine learning paradigm
known as reservoir computing (RC), which allows avoiding to
train the hidden part (reservoir) of the neural network [13],
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[14], [15], [17], [18], [19]. By providing an optoelectronic
implementation of the system, significant gains in transmission
reach have been demonstrated. Further analysis is, however,
needed to understand the benefits of applying the RC approach
to short-reach channel equalization, especially when consider-
ing optoelectronic equalization. The works reported so far have
either mainly relied on linear reservoirs [13] or dealt with Kerr
nonlinear effects other than CD [18].

In this work, we extend our hybrid optoelectronic approach
of [20] by investigating the additional benefits of using RC
rather than FNNs for 32-GBd on-off keying (OOK) transmis-
sion. A thorough analysis of the reservoir properties (mem-
ory/size/nonlinear dynamics) is reported and directly related
to achievable system performance gains. The proposed scheme
is benchmarked against digital techniques (MLSE and FNN),
as well as hybrid approaches showing reach extensions over
400%. Overall different receiver structures are considered: (i)
direct photodetection followed by electronic post-processing;
(ii) an optical pre-processing of the signal before square-
law photodetection; (iii) hybrid approaches considering both
optical pre-processing and electronic post-processing.

The paper is organized as follows. In Section II, the concept
of reservoir computing is reviewed and its application to signal
equalization is discussed, focusing on the short-reach optical
channel introduced in Section III. In Section IV, digital RC is
compared to alternative digital equalization methods (MLSE
and FNN) and the impact of reservoir parameters such as
memory and reservoir size on the system performance are
discussed. In Section V, optical pre-processing schemes are
introduced and the improvement they enable is discussed.
In Section VI, digital RC is combined with optical pre-
processing in a hybrid optoelectronic approach. The optical
pre-processing and RC post-processing stages are appropri-
ately characterized and the full benchmark of the promised
approach (in both a low and high complexity form) is also
provided. The conclusions are summarized in Section VII.

II. RESERVOIR COMPUTING

A recurrent neural network (RNN) is a neural network
architecture with feedback connections, which allows for tem-
poral information to be processed, making it very powerful
to compensate for nonlinear effects with memory such as
CD-induced ISI after direct-detection. The increased compu-
tational power compared to FNNs, however, comes at the
price of a harder training process both in terms of time
required and possible pitfalls. Using the gradient descent
methods commonly used for FNN is more challenging due
to vanishing-gradients problems (especially when considering
first-order optimizations) [21] and discontinuities in the error
surface [22]. More complex methods can then be applied for
training, but in general, training RNNs for problems with long-
range temporal dependencies is a rather challenging task [23],
[24], [25].

The concepts of echo state network (ESN) [26] and liquid
state machine (LSM) [27] were proposed independently as
simpler alternatives to overcome these training challenges. The
former is mostly defined with a discrete-time sigmoid-unit

network, while the latter focuses on a biological approach
for neural modeling. Whereas coming from different paths,
the core ideas are similar. The two methods have, therefore,
being unified within the framework of reservoir computing
(RC) [28]. The theoretical formulation of RC is reviewed in
the following, after which a brief summary of the state-of-the-
art on RC applications to signal equalization tasks is reported.

A. Mathematical formulation

The RC network consists of three standard parts - an input
layer, a hidden network, and an output layer - as shown in
Fig. 1.

Input layer Reservoir Output layer

W
in

W
res

u[n]

y[n]x[n]

(W
out

,W
out)resin

bias

Fig. 1. General architecture of an RC network.

The input signal vector u[n] = [u1[n], . . . , uN [n]]T consists
of a real N -dimensional vector at the discrete-time instant n,
where N represents the number of inputs. u[n] is injected into
the reservoir through a linear transformation given by the M×
(N + 1)-dimensional Win, where N + 1 takes into account a
bias component and M represents the number of nodes within
the reservoir. The weights in Win are randomly generated,
commonly by drawing samples uniformly distributed between
-1 and 1, or from a standard normal distribution [29]. The bias
is added to make the signal operate in different regions of the
nonlinear activation function of the hidden/computational part
of the network [29].

This second part of the architecture, i.e., the hidden net-
work, is structured as for a conventional RNN and it is
initialized with random weights and sparse interconnections
between hidden nodes. Unlike for RNNs, however, such
weights and interconnections, as well as the input weights,
are not trained but kept fixed to their random initial values.
This hidden network is commonly referred to as a reservoir
and it transforms the input signal from one state to another
through nonlinear dynamics. Whereas the lack of training of
the reservoir may seem to cause a strong limitation to the
computing capacity of RC, the use of randomly generated
connections is not uncommon in the machine-learning toolbox.
Random projections are extensively used for hashing and
dimensionality reduction [30], [31], and randomized weights
are used for feed-forward neural networks within the extreme
learning machine approach [32]. By removing the freedom to
train the reservoir interconnection, a larger network compared
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to fully-trained RNNs may be required, however, at the key
advantage of a much simpler training procedure, as will be
discussed in the following. Additionally, multiplications by
constants can be practically implemented by using shifters and
adders, resulting in a lower complexity implementation, e.g. as
shown in [33]. The reservoir is described by the M×M square
matrix Wres. Such a matrix defines the number of neurons and
how they are connected. The weights of the interconnections
between reservoir states, i.e., the elements {wres

i,j } of Wres

are commonly drawn from uniform or normal distributions
[29]. Through Win, Wres and the chosen activation function
fact, the evolution of the reservoir x[n] = [x1[n], . . . , xM [n]]T

at the time instant n can be calculated as a function of the
reservoir at the previous time instant (x[n− 1]) and the input
u[n], as in (1).

x[n] =α · fact(Win · u[n] + Wres · x[n− 1])+

(1− α) · x[n− 1] , (1)

The leaking rate α in (1) is used to emulate an exponential
decay within the reservoir to both better satisfy the echo state
property and mimic realistic physical implementations [26],
[34].

At the reservoir’s output, a linear transformation is applied
to the states of the reservoir x[n] and input signal u[n] yielding
the network’s readout y[n]. The output weights are the only
components of the overall RC architecture which are trained
and fulfill the task of transforming the reservoir states and
input signal into the desired output. The RC output y[n] =
[y1[n], . . . , yK [n]]T is calculated through the K ×M -matrix
Wout

res and the K × (N + 1) matrix Wout
in . Wout

res defines the
weights and interconnection between the M reservoir states
and the K network outputs, while Wout

in describes a direct
connection between input and output layers. The evolution of
the output layer then follows (2).

y[n] = Wout
res · x[n] + Wout

in · u[n] , (2)

In general, additional feedback from the output layer into
the reservoir (Wres

out of size K × M ) can also be consid-
ered [26]. This feedback is here neglected as it is rather
uncommon and strictly not necessary as a network including
it can be usually re-mapped into one where such feedback is
not explicitly defined [26].

The key advantage of the RC approach relies on the
fact that, once a suitable Wres is constructed, the evolu-
tion of the reservoir states depends only on the inputs (see
(1)), and training is only applied to optimize the output
weights (Wout

res , Wout
in ). Such an optimization does not require

the complex and computationally expensive back-propagation
through the whole network, as is the case for RNNs (back-
propagation-through-time algorithm) or even simpler FNNs
(back-propagation algorithm). The training can be performed
with a single linear regression operation, possibly with ridge
regularization included, aiming at minimizing the squared
error of the loss function. Given a target set matrix Ytarget =

Yn̄
1 := [y[1], · · · ,y[n̄]] defined for times n = [1, . . . n̄], the

output weights can be calculated through:

[Wout
res ,W

out
in ] = (AT ·A + λI)−1 ·AT ·Ytarget , (3)

with A = [Xn̄
1 ;Un̄

1 ;B], where the last element B represents
the bias term; λ the ridge regularization factor; and I an
identity matrix of size M+N+1. The state and input matrices
follow the same definition as for Yn̄

1 : Xn̄
1 := [x[1], · · · ,x[n̄]]

and Un̄
1 := [u[1], · · · ,u[n̄]], respectively.

For the RC approach to provide effective computing power,
a set of macroscopic reservoir hyper-parameters needs to be
appropriately chosen, in particular, the activation function fact,
and the characteristics of the matrix Wres, especially its
sparsity and the resulting stability of the RC system. The latter
is commonly defined in terms of the reservoir spectral radius
(ρ) defined as the maximum eigenvalue of Wres [26].

Concerning fact, the properties of ESN, including its uni-
versal approximation property, are strictly defined for sigmoid
functions [26], [34], [35], [36]. However, in a number of
demonstrations [13], [33], using alternative functions, even
linear functions, to replace a sigmoid has been shown to
be computationally effective. Linear activation functions have
also been shown to provide a better memory capacity, then
nonlinear functions [28], [37]. However, the performance of
the network depends on the input and task at the end, and
for general applications, a linear operator may not always be
optimal [28], [37].

Regardless of the choice of the activation function, a fully
randomly generated reservoir may not always provide an
effective high-dimensional transformation allowing to compute
the task at hand. The matrix Wres needs to be properly
constructed following a number of guidelines [34]. First of
all, unlike what may be common for RNN, the reservoir
interconnections are usually chosen with a high degree of
sparsity. Whereas RNNs need full interconnectivity to ensure
the universal approximation property [21], in RC on average
10 or fewer interconnections per node are recommended [26].

More importantly, it has been shown that the echo state
property, i.e., a fading memory property for which the effect
of input at time t1 vanishes for times t � t1, is necessary
to ensure computational capacity [26]. This property can be
directly related to the spectral radius ρ of the matrix Wres.
Considering an activation function with a unitary slope around
the origin - such as the tanh(·) considered in this work - a
good rule of thumb is to scale Wres such that the ρ ≤ 1.
This condition is only necessary and not sufficient to ensure
the echo state property of a reservoir. Generally, the spectral
radius requires tuning to the memory and nonlinear dynamics
required by the specific task at hand. The spectral radius thus
provides some insight on the expected behavior of the reservoir
and it is one of the key parameters that will be investigated
within this work, together with other macroscopic properties
of a reservoir such as its size and memory. A general criterion
to construct an effective reservoir to solve given tasks is rather
challenging to define and a discussion in this direction focused
on the relation between ρ and stability conditions and can be
found in [34]. In this work, we focus on the specific task
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signal equalization for short-reach IM/DD transmission and
relate the properties of the reservoir used for nonlinear signal
equalization to the received signal quality.

B. RC for signal equalization: state-of-the-art
RC for channel equalization has been considered in a

number of recent works, especially for a nonlinear wireless
transmission [33], [38]. Its use for an optical fiber channel
has instead been considered only more recently. In one of the
first works targeting this task [18], a time-delayed reservoir
implementation relying on a single nonlinear node and delayed
feedback has been experimentally analyzed. A semiconductor
laser provides the nonlinear node and the reservoir is able to
effectively improve the quality of a 4-pulse amplitude modu-
lated (PAM) signal affected by simulated optical impairments,
focusing on the impact of Kerr nonlinearity. The performance
of a time-delayed RC similar to [18] is then compared with
linear digital signal processing techniques in [15] by applying
it to experimentally measured 4-PAM waveforms after fiber
transmission. Alternatively to time-delayed schemes, in [13],
[14], a linear passive reservoir with a second-order nonlinearity
only at the output layer is used to equalize an OOK signal after
fiber propagation by focusing on the impact of memory effect
due to CD. Preliminary work on a nonlinear all-fiber optics
implementation has also been proposed in [16]. The simulation
results showed very promising performance improvements
for equalization of quadrature amplitude modulated (QAM)
signals affected by Kerr nonlinearity by using an RC scheme
allowing processing both electrical field quadratures. The
results of [16] assume a static coherent transmission channel.
As coherent transmission is inherently characterized by a fast
time-varying channel, adaptive equalization is required to track
effects such as polarization rotations. This work, therefore,
focuses on the static IM/DD channel, where less frequent
training may be sufficient to compensate for drifts in practical
systems.

All the approaches mentioned have focused on the photonic
implementation of RC. As the signals to equalize are already in
the optical domain, optical or optoelectronic implementations
of RC are of particular interest. However, the strong potential
for integration and thus the implementation of a large reservoir,
has driven a strong focus on photonics RC also for solving
alternative tasks, e.g., spoken digit classification [39], [40],
image classification [41], and nonlinear system prediction [42],
[43], with impressive and promising demonstrations being
reported. One of the very first approaches to optoelectronic
RC was proposed in [39]. The authors showed simulation
results for a semiconductor optical amplifier (SOA)-based neu-
ron. Later, in [44], experimental implementation with passive
nodes is provided and compared with numerical results with
SOA-based neuron and sigmoid functions, showing similar
performance for spoken digit classification. A significant effort
has also been dedicated to mimic typical sigmoid nonlinear
functions using photonics circuits, e.g., using SOAs [45] and
quantum-dot lasers [46]. A comprehensive overview of the
most significant contributions can be found in [19], [47], [48].

Regardless of the fast progress experienced by this new
field, a systematic analysis of the impact of the reservoir prop-

erties on the performance for a specific task, e.g., equalization
efficacy, is still missing. Additionally, fully optoelectronic
implementations are still strongly affected by the system
loss (e.g., approx. 5 dB in [14], the equivalent of 10 km
of additional transmission), which significantly degrade the
enhancement in the signal quality by decreasing the link
power budget. Electronic implementations of RC for satellite
communications have already been shown to provide com-
plexity advantages over standard equalization techniques, e.g.,
Volterra equalization, with negligible loss of performance [33].
Along this direction, the following sections will compare
digital implementations of RC with more standard digital
equalization methods such as MLSE and FNN, as well as
proposing to use low-complexity optical pre-processing to
input a better-conditioned signal into the digital reservoir.

III. SHORT-REACH TRANSMISSION SYSTEM

As already introduced, the scenario targeted by this investi-
gation is an IM/DD transmission system, numerically modeled
by the setup shown in Fig. 2. At the transmitter, a random
stream of 218 bits is generated and pulse shaped with root-
raised cosine (RRC, 0.1 roll-off) at 8 samples/symbol, yielding
a 32-GBd OOK signal. The electrical signal is converted to the
optical domain by an ideal Mach–Zehnder modulator (MZM)
that encodes the signal onto the optical field of an ideal
laser source. The nonlinearity of the MZM transformation is
neglected as in [20] in order to focus only on the impact
of the dispersive fiber channel. The optical signal is then
injected into the transmission channel consisting of standard
single-mode fiber (SSMF). As the focus is on compensating
for CD-induced ISI after detection, the SSMF transmission
is modeled only as a linear lossless dispersive element with
a dispersion parameter D = 16.4 ps/nm/km. An additive
white Gaussian noise (AWGN) source is used to degrade the
signal, e.g., simulating an optical pre-amplifier at the receiver.
The signal-to-noise ratio (SNR) in the optical domain and
the transmission fiber length (accumulated CD) are varied
throughout the analysis to test and compare the performance
of different receiver schemes. The bit error ratio (BER) is then
computed as a function of SNR and transmission distance. The
different schemes either involve (i) photodetection and digital
post-processing (Section IV) or (ii) optical pre-processing
and photodetection (Section V), or (iii) hybrid approaches
considering optical pre-processing, photodetection and digital
post-processing (Section VI). Digital and optical processing
operate at 8 samples/symbol, with the only exception of
the maximum likelihood sequence estimation (MLSE)-based
detection operating at 1 sample/symbol. For all other receivers,
the sampling instant is then optimized directly at the BER
stage.

The performance metric considered to compare the receiver
configurations under test is the received SNR required for
a BER at the KP4 forward error correction (FEC) threshold
(BER = 2.24 · 10−4 [49]). The receivers will then be bench-
marked considering the SNR penalty, i.e., the difference in
required receiver SNR, with respect to a simple reference
receiver. One of the simplest possible receivers for IM/DD
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Transmitter

Chromatic dispersion

Channel

Receiver

Optical 
pre-processing

Digital 
post-processing

BER

AWGN noise (SNR)
32 GBd

Fig. 2. Short-reach transmission setup under investigation, including optical pre-processing and digital post-processing.

systems consists of a 40-GHz optical band-pass filter, a
photodetector (PD), an RRC filter, and a threshold detector,
i.e., with no equalization performed on the electrical signal.
This receiver scheme will be considered as a reference receiver
throughout our analysis. Finally, all PDs are modeled as
noiseless square-law elements followed by a low-pass Bessel
filter and, for each BER analysis, 5 × 218-symbol sequences
are transmitted and the BER values are averaged to increase
the statistical relevance of the results.

IV. DIGITAL POST-PROCESSING

In this Section, RC will be benchmarked against more
common nonlinear digital equalization/detection techniques
and the impact of macroscopic reservoir properties on the
system performance will be discussed. The three different
digital processing schemes considered are sketched in Fig. 3
and consist of an MLSE detector, a fully-connected FNN
equalizer, and an RC equalizer. Details on the specific im-
plementations considered in this work are provided in the
following subsections for each method.

Symbol 1

Symbol 0

Received symbols: 1 0 1 0 0 0 1 0

N past symbolsMLSE

FNN

Input layer

Hidden layer

Output layer

RC

Fig. 3. Digital post-processing techniques benchmarked within this work: the
dark red lines show the connections requiring training.

A. Maximum likelihood sequence estimation

An MLSE receiver is based on constructing a trellis of
all the possible received sequences up to a target memory
(in our case 7 symbols) and on estimating the sequence.
This process yields the maximum likelihood of the transition
probabilities of the channel, which depends on the probability
density functions of the sequence. This approach is particularly
effective in providing equalization for channels with memory.
However, its complexity scales exponentially with the memory

of the channel and the size of the symbols’ alphabet, making
it quickly unpractical to implement [6].

B. Feed-forward neural networks

FNNs have stated to be considered recently for the equaliza-
tion of IM/DD systems [9], [12]. Whereas inherently without
memory, time-dependent processing can be partially mimicked
by inputting multiple symbols into the FNN in a sliding
window approach. The FFN proposed in [20] receives a 5-
symbol (40-sample) sliding window at the input layer and
consists of a single hidden layer network with 16 hidden
nodes and 8 output nodes (8 samples corresponding to 1
symbol). The FNN is trained using back-propagation, making
the process relatively time-consuming even for such a simple
network. In order to provide a fair comparison, the number
of hidden layers and nodes of the FNN has been optimized
based on cross-entropy training, as discussed in [20].

10 12 14 16 18 20
10-6

10-5

10-4

10-3

10-2
10-6

10-5

10-4

10-3

10-2

a)

b)

L =   0 km

L = 10 km

Fig. 4. Performance comparison between digital post-equalization techniques.

C. Reservoir computing

The implemented RC architecture follows the general con-
siderations discussed in Section II. The specific implemen-
tation is described in detail in Algorithm 1. For all the
reservoirs considered, input weights are drawn for a uniform
distribution U(−1, 1), reservoir interconnections are drawn
from a binary distribution with the probability of no inter-
connection (p(wres

ij = 0)) corresponding to the desired degree
of sparsity of the reservoir matrix, and the reservoir weights
from a standard normal distribution N (0, 1). The input signal
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Fig. 5. Impact of reservoir memory on system performance: (a) memory as a function of the reservoir spectral radius (ρ), (b) BER vs. SNR curves at
10-km transmission for 300-node reservoirs of different memory values, (c) SNR penalty as a function of the transmission distance for 300-node reservoirs
of different memory values.

variance determines the operation regime of the reservoir [29].
Throughout this work, the variance has been scaled to 0.02,
following the optimization discussed in Section VI-D. The
reservoir size M and the spectral radius ρ have been varied
throughout the following analysis. The sparsity has then been
calculated for each reservoir size M , such that the number of
average interconnected nodes within the reservoir has been
kept fixed to 5 nodes. A brief analysis of the impact of
such hyper-parameter has shown a minimal impact on system
performance. As long as the matrix was sufficiently sparse
(p(wres

ij = 0) ≥ 0.8), no significant performance degradation
could be seen, in line with [26], [29]. A hyperbolic tangent
has been used as activation function fact(·) = tanh(·) for all
reservoirs considered, and the output layer is trained through
linear regression, as discussed in Section II, using 5% of
the symbol sequence for training and 95% for testing. A
regularization parameter λ = 10−8 has been used to avoid
numerical instabilities when calculating the matrix pseudo-
inversion, as in (3).

Algorithm 1 Reservoir computing
Given N inputs, M nodes, and K outputs:

Phase 1 – Initialization
Generate Win drawing weights from a uniform distribution
U(−1,+1)
Generate elements of Wres drawing them from a binary
distribution with p(0) = sparsity
Replace nonzero elements of Wres drawing them from a
normal distribution N (0, 1)
Re-scale Wres : ρ(Wres) = ρ̄

Phase 2 – Training
Use (1) to calculate Xn̄

1 from Un̄
1

Use (3) to train [Wout
res ,W

out
in ] from Xn̄

1 , Un̄
1 , and Ytarget

Phase 3 – Testing
Use (1) and (2) to calculate y[n] given u[n]

Additionally, in order to increase the statistical relevance of
the results, 3 different realizations of input and state matrices
have been considered. The performance has therefore been
averaged over 3 reservoir realizations, each simulated for
5×218 transmitted sequences, i.e. 5 noise realizations. The

error bars in the following figures show the variance over these
15 simulation runs.

D. Performance comparison for IM/DD equalization

Fig. 4 shows the received BER as a function of the channel
SNR for the three receivers under test and two different
transmission distances: back-to-back in Fig. 4(a) and 10-km
transmission in Fig. 4(b). As can be seen, already for back-
to-back transmission, an increase in signal quality can be
achieved for all the equalization schemes, when compared
to the reference receiver. The improvement is expected since
the reference receiver includes a low-pass filter but not a
matched filter, which is not known for an IM/DD channel.
Whereas MLSE and FNN achieve very similar performance,
RC is slightly worse. This can be expected considering the
significantly simpler, and thus less complete training scheme
for RC, which leads to a minor penalty. The roles are, however,
reversed considering a signal impaired by the ISI induced
by a 10-km propagation. In this case, RC outperforms FNN
and MLSE thanks to its inherent recurrence. Given the lower
training complexity and improved performance, the potential
for an RC-based receiver shown in Fig. 4(b) merits further
investigation. Whereas these results show a first simple attempt
at an RC-based equalizer, using a 300-node reservoir with
ρ = 0.9, in the following, the impact of the spectral radius (i.e.,
memory) and reservoir size M are directly linked to system
performance.

E. Impact of reservoir memory on RC-based equalizers

As the ability to equalize dispersed signals within a reser-
voir depends directly on its memory, in this subsection, the
reservoir’s memory is linked to the system performance by
tuning its spectral radius (ρ). In particular, Fig. 5(a) shows
how the memory evolves with the spectral radius of Wres

for different reservoir sizes. The memory is defined here in
terms of the settling time of the reservoir according to the
control system theory [50]. A steady-state reservoir is triggered
with a step-function at its input. The memory is calculated
as the number of samples after which all the reservoir states
have converged within less than 2% of their steady-state value
(settling time). Up to 1000 different reservoirs have been
randomly generated with the same macroscopic parameters,
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and the memory values have been averaged over the reservoir
realization to clarify the trends. As can be seen in Fig. 5(a),
there is a direct relation between the memory of the reservoir
and ρ, as expected from [26]. The memory grows as the
spectral radius approaches unity and the growth rate increases
as the radius increases beyond one. Additionally, the memory
increases with the reservoir size but tends to saturate for large
reservoirs beyond 300 nodes.
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Fig. 6. Impact of reservoir size on system performance: (a) BER vs. SNR
curves at 10-km transmission for reservoir of different size but with spectral
radius ρ = 0.9, and (b) SNR penalty as a function of the transmission distance
for the same parameters.

Considering a 300-nodes reservoir, the BER vs. SNR curves
in Fig. 5(b) shows the performance enabled by an RC-based
equalizer for a 10-km transmission and different values of
reservoir memory (tuned by controlling ρ). The performance
improves with increasing the reservoir memory, as the reser-
voir increases its ability to invert the memory effect in the
transmission channel. Such a trend can be generalized for
different transmission distances, as shown in Fig. 5(c). The
SNR penalty decreases with increasing memory and the gap
between curves increases for longer distances.

An alternative metric to evaluate the memory of a reservoir
is the linear memory capacity [51]. The relation between the
two metrics is currently under investigation.

F. Impact of reservoir size on RC-based equalizers

Alternatively to changing the memory of the system by
varying the spectral radius, the memory and nonlinear dy-
namics within the reservoir can be tuned by changing the
reservoir size (see Fig. 5(a)). The impact of M on equalization

is shown in Fig. 6 for reservoirs with ρ = 0.9. By increasing
the reservoir size, the signal will go through more neurons
and experience increased nonlinear dynamics. In Fig. 6(a), the
BER as a function of the SNR is shown for different reservoir
sizes at a 10-km transmission. Larger reservoirs improve the
overall performance with a saturation effect taking place as the
size grows beyond 100 nodes. As for the memory analysis,
the same trends can be extended for different transmission
distances, as shown in Fig. 6(b).

V. OPTICAL PRE-PROCESSING

As discussed in Section II, several attempts at photonic
RC have already shown its strong potential for ISI equaliza-
tion [13], [14], [15], [18]. However, as the loss of current
implementations exceeds the loss of in-line optical compen-
sation modules, the decrease in power budget (and thus in
signal SNR) may dominate the improvement provided by the
photonic RC equalizer.
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Fig. 7. Optical pre-processing techniques for spectral slicing: (a) MZDI-
based spectral decomposition and spectral composition (SD/SC) with slice-
wise phase (∆Φ) and delay (∆τ ) shifting element for each slice, placed in
between SD and SC; and (b) AWG-based spectral decomposition followed by
a bank of PDs.

Alternatively, simpler and lower loss optical pre-processing
schemes have already shown to provide performance gain in
the numerical analysis of [20]. The proposed schemes have
mainly relied on spectrally slicing of the received optical
signal. The slicing can be performed either with a series of
cascaded Mach-Zehnder delay interferometers (MZDIs) with
decreasing free spectral range (FSR) [20] or with an arbitrary
waveguide grating (AWG). Concerning the former, MZDIs
have the advantage that their transfer function can be easily
inverted and the spectrally decomposed slices can be perfectly
recomposed into the original signal with a further series of
cascaded MZDIs. In [20], the MZDIs are assumed ideal, i.e.,
with infinite extinction ratio, and we showed how spectral
decomposition and composition (“SD/SC”) with MZDIs can
be effectively used to compensate for signal dispersion as long
as a phase shifter (∆Φ) and a delaying element (∆τ ) are added
in between the two spectral operations, as shown in Fig. 7.
A phase rotation and delay is applied to each spectral slice
independently, in an approach with corresponds to a slice-
wise compensation of the phase shift and delay caused by the
dispersion accumulated during propagation. The improvement
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provided by this technique is shown in Fig. 8 and the higher
tolerance to CD is clearly shown, especially for an increasing
number of spectral slices. All phase shifters and delays have
been jointly trained similarly to the FNN of Section IV, using
cross-entropy.
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Fig. 8. Performance of spectral decomposition and composition for different
number of slices, adapted from [20].

As narrower spectral slices are considered, the slice-wise
compensation better approaches the inverse of the CD transfer
function, yielding perfect compensation in the limit of an
infinite number of slices. As shown in Fig. 8, however, a
relatively low number of slices (16), already provides almost
ideal compensation for distances approaching 20 km and less
than 1 dB penalty for up to 35 km.

Nevertheless, whereas the optical pre-processing is particu-
larly effective in bringing back the performance to the back-
to-back level, no signal quality gain (negative SNR penalty)
can be achieved as only zero-forcing equalization is performed
by the optical circuit, not addressing the presence of noise.
Additionally, MZDI may lead to higher insertion loss than
AWGs and suffer from stronger polarization dependence,
therefore a spectral slicing approach based on an AWG is also
considered (Fig. 7(bottom)). An AWG can be modeled as a
set of second-order Gaussian filters with a 3-dB bandwidth of
each filter/output equal to the frequency separation between
two neighboring output filters. Remark that in this case the
spectral composition cannot be simply achieved by cascading
an AWG-based demultiplexer with an AWG-based multiplexer.
Therefore the spectral slices, in this case, are directly detected
by a bank of parallel photodetectors and further digital pro-
cessing is required.

VI. HYBRID EQUALIZATION SCHEMES

In order to benefit from the higher-dispersion tolerance
given by the optical pre-processing as well as the equalization
provided by the digital post-processing, in [20] we proposed
a hybrid scheme combining both approaches. An optical
circuit performing the full spectral decomposition, phase/delay
shifting, and spectral composition, however, leads inherently
to non-negligible loss. Additionally, the use of spectral de-
composition, phase/delay shifting, spectral composition and
FNN (labeled “SD/SC+FNN”) requires to jointly train the full
weights of the FNN together with the phases and delays in the

optical domain, thus back-propagating through the full digital
and optical structure. A sketch of the setup, highlighting the
trained quantities (phases, delays and FNN weights) is shown
in Fig. 9(a).
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Fig. 9. Hybrid processing techniques: (a) SD/SC pre-processing followed
by a photodetector and an FNN-based equalizer and (b) AWG-based spectral
decomposition followed by a bank of PDs and an RC-based equalizer. The
trainable quantities are marked in dark red, with arrows symbolizing the
weights of the connections.

In order to decrease both the optical loss and the training
complexity, here we propose to detect directly the spectral
slices at the AWG outputs with a bank of PD and inject
them into an RC-based equalizer with an increasing number
of inputs (Fig. 9(b)). Even though this method requires a
number of PDs that scales linearly with the number of spectral
slices, the required bandwidth of each PD decreases to match
the decrease in the spectral slice bandwidth, allowing to use
simpler detectors. Additionally, note that the number of inputs,
one per PD, is still much lower (at most 7 for all the slice
bandwidth considered) compared to the 40 inputs required to
introduce memory for the FNN case.

A. Optimum number of spectral slices

In order to understand whether this approach yields any
improvement compared to digital RC with one 40-GHz sig-
nal slice injected into the reservoir, the SNR penalty as a
function of the AWG bandwidth is shown in Fig. 10(a). The
AWG bandwidth is defined as the half-width half-maximum
(HWHM) bandwidth of the AWG transfer function, and as
such, the HWHM of each signal spectral slice in input to
the reservoir. As the AWG bandwidth is decreased, i.e.,
the number of spectrally-sliced inputs to the reservoir is
increased, the received signal quality is improved, especially
for long transmission distances. Decreasing the bandwidth of
each reservoir’s input is equivalent to relaxing the memory
requirement to invert the effects of CD. The improvement for
decreasing AWG bandwidths, however, reaches a minimum
at approx. 8 GHz to 10 GHz, after which the signal quality
gets significantly degraded. Other than being consistent over
different transmission distances, this trend does not depend
on the training size, on the input signal normalization, nor on
the regularization (within ridge regression) used for calculating
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Fig. 10. Impact of AWG bandwidth on system performance for AWG+RC
equalization: (a) SNR penalty as a function of the AWG bandwidth (and
number of slices) for different transmission distances, and (b) SNR penalty
as a function of the transmission distance for different AWG bandwidth. The
reservoirs are constructed with 300 nodes and ρ = 0.9.

the matrix inverse during training. We believe the performance
loss may be related to introducing narrow slices with low SNR,
i.e., the high-frequency slices carrying less information into the
reservoir. Additionally, the narrower low-pass filtering of the
AWG may also result in information loss which impairs the
ability of RC to provide equalization.

The SNR penalty over a broader range of transmission
distances is shown in Fig. 10(b) for a selected choice of
AWG bandwidths. As can be seen, the impact of the slice
bandwidth increases with the transmission distance becoming
more relevant as the channel memory increases.

B. Impact of reservoir memory on AWG+RC-based equaliza-
tion

From the previous characterization, optimal performance is
achieved for a bandwidth of approx. 8 GHz. The optical pre-
processing is then kept fixed to a 5-slice AWGN with 8-GHz
of bandwidth/slice throughout the following analysis of the
reservoir properties. This analysis follows the same line as
in Sec. IV, looking at the impact of reservoir memory and
size on the system performance. Fig. 11(a) focuses on the
reservoir memory and shows an even stronger impact on the
system performance compared to the case of a reservoir with
a single 40-GHz input of Fig. 5. The trend, however, follows
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Fig. 11. Impact of reservoir properties on system performance: SNR penalty
as a function of the transmission distance for (a) different reservoir memories,
and (b) different reservoir sizes. The AWG bandwidth is kept fixed to 8 GHz.

the same direction, a significant improvement is achievable
by increasing the reservoir memory but with lower signs of
saturation for large memory values.

C. Impact of reservoir size on AWG+RC-based equalization

As for the reservoir’s memory, the size of the reservoir
for multiple spectral slices at the RC input has a stronger
impact on the performance compared to the case of a single
40-GHz wide reservoir input. This is shown in Fig. 11(b). If
the reservoir size is not sufficiently large, the signal quality is
actually worsened by the RC equalization. As the input size
grows, a larger reservoir is needed to provide a sufficiently
nonlinear transformation. Saturation of the improvement can,
however, be seen once a reservoir of more than 200 nodes is
considered.

D. Impact of input scaling on AWG+RC-based equalization

The input scaling is another important hyper-parameter to
consider, as it affects the operation of the reservoir [21],
[29]. A small input scaling leads to a weaker nonlinear
operation of the reservoir compared to a larger one. In this
work, the variance of the input u[n] has been varied and
the SNR penalties after 10-km transmission are shown in
Fig. 12 for different AWG bandwidths. Note that scaling u[n]
is equivalent to re-scaling the input-to-reservoir matrix Win,
and we choose to scale the former for convenience in our
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Fig. 12. Impact of input scaling on system performance: SNR penalty as a
function of the AWG bandwidth for 10-km transmission.

implementation. No bounding of the input signal, as suggested
in [29], was implemented.

The results of Fig. 12 show that the input scaling becomes
relevant only as the number of slices increases (i.e. the slice
bandwidth decreases). For bandwidths below 16 GHz, an
optimum can be seen for a signal variance between 0.02
(values used throughout this work) and 0.05, showing that
a weak nonlinear behaviour of the reservoir is sufficient to
counteract the weak nonlinearity introduced by dispersion and
square-law detection. It is however interesting to see that
if the signal variance is significantly increased, i.e. beyond
0.5, the best (yet sub-optimal) performance is achieved for a
lower number of wider spectral slices. The analysis reported
in Fig. 12 focused on a 300-node reservoir with ρ = 0.9.
However, we confirmed identical trends for spectral radius
varying between 0.7 and 0.95 and distances up to 60 km.

E. System performance comparison

The overall performance comparison between the proposed
hybrid technique with digital-only or alternative hybrid ap-
proaches is shown in Fig. 13. Considering a transmission reach
definition at the 0-dB SNR penalty threshold compared to the
reference receiver, MLSE and FNN achieve a reach of approx.
10 km. This number is slightly increased to 12 km by moving
to a 500-nodes RC equalizer but with the key advantage of
a much simpler and faster training procedure. A digital-only
equalizer is, however, clearly outmatched by comparing it with
the hybrid SD/SC+FNN approach of [20]. The joint training
of pre- and post-equalization enables extending the reach to
approx. 25 km for a 4-slices SD/SC pre-processing stage, i.e., a
more than 100% increase over digital equalization. The price
for the reach extension is, however, an even more complex
training than for MLSE and FNN, as now also the optical
layer (phase shifts and delays) needs to be jointly trained.

By moving to the newly proposed hybrid approach
(AWG+RC), a reach of 40 km is achieved for a small 300-
node reservoir and up to almost 45 km if a larger 500-
node reservoir is considered. Other than the reach extension,
the AWG+RC approach yields a significantly faster training
step. Whereas a thorough complexity analysis is beyond the
scope of this work, the training of the SD/SC+FNN requires

approx. 2 hours of processing on a standard GPU, whereas
the proposed AWG+RC method can be trained in a matter of
minutes on a laptop CPU.

The importance of the optical pre-processing can be clarified
by analyzing the performance in the case of injecting 5
identical copies of the received signal, i.e., without spectral
slicing, into the reservoir (“5-copies+RC”). In such a case,
the reach is comparable to having a simple RC-based equalizer
with one input but with a worsening of the SNR penalty for
short distances. This result can be explained by considering
that having 5 identical copies of the input does not enrich the
dynamics of the reservoir but rather reduces them. This com-
parison clearly shows the potential of RC for equalization in
short-reach transmission systems, especially when considering
joint processing in both the optical and digital domains. The
significant gain reported have been achieved with rather simple
processing in the optical domain, more complex techniques
may lead to even greater improvements, opening up a new
exciting research direction.

VII. CONCLUSION

In this work, we reviewed the concept of reservoir com-
puting and discussed its application in the context of signal
equalization for short-reach IM/DD transmission systems. RC-
based equalization directly in the digital domain has been
compared with alternative digital techniques, showing sim-
ilar performance at potentially lower complexity and faster
training. An overview of the impact of the main macroscopic
properties of a reservoir on the system performance has been
provided, focusing on memory and reservoir size. Finally,
a new hybrid method combining optical pre-processing, by
means of spectral slicing, and digital RC has been proposed.
This new approach significantly outperforms digital-only tech-
niques as well as previously proposed and more complex hy-
brid methods. A reach extension of 400% can be achieved for
the proposed hybrid receiver compared to conventional digital-
only techniques. These results clearly emphasize the strong
potential of RC for equalization in short-reach communication
systems and provide a better understanding of the link between
RC network properties and system performance, especially in
the context of signal pre-condition at the reservoir input.
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