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Abstract

We present a dataset of open source software developed mainly by
enterprises rather than volunteers. This can be used to address known
generalizability concerns, and, also, to perform research on open source
business software development. Based on the premise that an enter-
prise’s employees are likely to contribute to a project developed by
their organization using the email account provided by it, we mine
domain names associated with enterprises from open data sources as
well as through white- and blacklisting, and use them through three
heuristics to identify 17 264 enterprise GitHub projects. We provide
these as a dataset detailing their provenance and properties. A man-
ual evaluation of a dataset sample shows an identification accuracy of
89%. Through an exploratory data analysis we found that projects are
staffed by a plurality of enterprise insiders, who appear to be pulling
more than their weight, and that in a small percentage of relatively
large projects development happens exclusively through enterprise in-
siders.

Keywords: Software engineering economics, software ecosystems, open
source software in business, Fortune Global 500, SEC 10-K, SEC 20-F,
EDGAR, dataset

This is a technical note expanding reference [49], which should be cited in preference
to this text.
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1 Introduction

Despite the size and wealth of software product and process data avail-
able on GitHub, their use in software engineering research can be prob-
lematic [31, 10], raising issues regarding the generalizability of the corre-
sponding findings [51]. In particular, the open source nature of accessible
GitHub repositories means that projects developed by volunteers through
open source software development processes [13, 46] are overrepresented,
biasing results, especially those related to software architecture or com-
munication and organization structures, through the application of Con-
way’s Law [9, 26]. In addition, many researchers are investigating dif-
ferences between open source and proprietary software products and pro-
cesses [42, 37, 47, 3].

Here we present a dataset of open source software developed mainly by
enterprises rather than volunteers. This can be used to address the identified
generalizability concerns and, also, to perform research on the differences
between volunteer and business software development. One might think that
open source software development by enterprises is a niche phenomenon. As
others have identified [44] and also as is evident from our dataset, this is
far from true. A series of queries on GitHub PushEvents published during
2017 found that companies such as Microsoft and Google had hundreds of
employees contributing to open source projects [28].

The goal of the dataset’s construction is to create a set of GitHub
projects that are most probably developed by an enterprise. For the pur-
poses of this work, we define as an enterprise project, one that is likely to be
mainly developed by financially compensated employees, working full time
under an organization’s management. This definition excludes volunteer ef-
forts such as Linux, KDE projects, VLC, and GIMP (even though some
companies pay their employees to contribute to them), but includes for-
profit company and funded public-sector organization projects that accept
volunteer contributions, such as Google’s Trillian, Apple’s Swift, CERN’s
ALICE, and Microsoft’s Typescript. Our aim is to minimize the number of
false positives in the dataset, but we are not interested in the number of false
negatives. We do not aspire to create a comprehensive dataset of enterprise
projects, but one that contains a number sufficient to conduct generalizable
empirical studies.

In the following sections we present how we collected the data (Section 2)
and evaluated them (Section 3), the data schema and availability (Section 4),
as well as indicative findings (Section 5), related work (Section 6), and ideas
for research and improvements (Section 7).
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Figure 1: Overview of the dataset creation process
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2 Dataset Construction

An overview of the dataset’s construction process is depicted in Figure 1.
The projects were selected from GitHub by analyzing the GHTorrent [20, 19]
dataset (release 2019-06-01) by means of the simple-rolap relational online
analytical processing and rdbunit relational unit testing frameworks [21].
Following published recommendations [30], the code and primary data as-
sociated with this endeavor are openly available online.1

The basic premise for constructing the dataset is that an enterprise’s
employees are likely to contribute to a project developed by their organi-
zation using the email account provided by it. Furthermore, it is unlikely
that pure volunteer projects will have contributors using emails from a sin-
gle enterprise-related domain address. Based on this premise, we identified
projects where a large number of commits were contributed through ac-
counts linked to the same enterprise email domain address. To increase the
dataset’s quality we then removed project clones [50], and only retained
projects having more than the identified dataset’s average stars (14) and
commits (29). Finally, we created one table with diverse details regarding
each selected project and one with details regarding each associated en-
terprise domain. The following paragraphs detail each step, starting from
the creation of two tables: valid enterprise domains and probable company
domains.2

Valid enterprise domains This table (1 922 492 records, Listing 38) was
created by filtering all email domains found in the users’ email table (Table
domains—3 899 753 records, Listing 8). We did this by examining frequently
occurring email domains, and creating rules to retain only those associated
with enterprise development. Specifically, we removed from the set of do-
mains a blacklist (Table domain blacklist—146 records, Listing 7) containing
those associated with:

• email providers (e.g. gmail.com, qq.com, outlook.com, yandex.ru);

• top and second level organization domains (e.g. .org, .org.nz, .or.at),
and thereby the many associated with volunteer open source organi-
zations (e.g. apache.org, openssl.org);

• open source hubs (e.g. sourceforge.net);

1https://doi.org/10.5281/zenodo.3742973
2In the interest of readability, this text replaces the underscores in the table names

with spaces.
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• top and second level educational domains (e.g. .edu, .edu.au, .ac.uk)
and, explicitly, the domains of more than 20 hand-picked universities
(e.g. eurecom.fr, tu-dortmund.de);

• individuals (e.g. schildbach.de).

We did not remove government organizations (e.g. lexingtonky.gov) and
research centers (e.g. cern.ch) as these mainly operate as enterprises with
professional developers. When in doubt, we looked up company emails in
the RocketReach provider of company email format details.

Probable company domains This table (786 099 records, Listing 18)
was created by identifying domains that are likely to belong to compa-
nies from publicly available data and domain heuristics. We obtained the
domains associated with large companies in two ways. First, we screen-
scrapped, downloaded, and filtered the data associated with the Fortune
Global 500 companies: the largest corporations across the globe measured
by revenue (Table fortune global 500 —499 records, Listing 10). Second,
we obtained the US Securities and Exchange Commission (SEC) yearly
company filings that are made in machine readable form (in the XBRL—
eXtensible Business Reporting Language—an application of XML) and ex-
tracted from them the company domains. Specifically, we obtained from
EDGAR—the SEC’s Electronic Data Gathering, Analysis, and Retrieval
system—the XBRL files associated with two forms, namely a) Form 10-K,
that gives a comprehensive summary of a company’s financial performance
(Table sec 10 K domains—5 597 records, Listing 33), and b) Form 20-F,
that provides an annual report filing for foreign private issuers—non-U.S.
and non-Canadian companies that have securities trading in the U.S. (Table
sec 20 F domains—599 records, Listing 34).

We then extracted the internet domain (e.g. intel.com) associated with
each company from the XBRL files. Although the SEC provides guidance
for using a corporate web site to disseminate public information,3 it does
not appear to collect these sites in a structured manner, within e.g. the
XBRL files. We obtained the company domains by looking at the XML
name space used in the files, which in most cases contains the company’s
domain. We combined the three sources into the Table distinct company
domains (6 191 records, Listing 6) and complemented it with the Table
valid enterprise domains (1 922 492 records, Listing 38) filtered to include

3https://www.sec.gov/rules/interp/2008/34-58288.pdf
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only records associated with top and second level commercial domains such
as .com, .co.uk, .com.au.

From enterprise organizations to their projects As a next step we
combined the two tables with another listing domains registered for GitHub
organizations (Table org domains—169 281 records, Listing 16), to get ta-
bles with user domains linked to GitHub organizations—Tables valid enter-
prise users (110 116 records, Listing 40) and probable company users (62 427
records, Listing 20). The intuition here is that many companies developing
software on GitHub will have configured a company organization under their
domain name. Combining the two tables with the GHTorrent Projects ta-
ble yielded the corresponding projects hosted under a GitHub organization:
valid enterprise projects (1 332 891 records, Listing 39) and probable company
projects (756 136 records, Listing 19).

These two tables were then linked with a table of each user’s email
domain (Table user domain—32 411 734 records, Listing 36) and one identi-
fying each commit’s committer (Table project commit committer domain—
523 434 215 records, Listing 24), giving the number of committers in each
project associated with the corresponding organization: valid enterprise
domain committers (32 278 records, Listing 37) and probable company do-
main committers (18 804 records, Listing 17). This stage ended by selecting
projects from organizations having a minimum number of committers ap-
pearing on GitHub with an email associated with the organization’s domain
giving the tables multi committer valid enterprise projects (132 886 records,
Listing 15) and multi committer probable company projects (164 470 records,
Listing 14). The employed floor values (ten and five correspondingly) were
selected to exclude projects associated with individuals operating under a
personal but commercial-looking domain (e.g. johnsmith.com).

Enterprise-dominated projects To cover enterprises that may not have
GitHub organizations registered with emails under their domain, we also
established in each project a rank of committers with valid enterprise email
addresses according to their number of commits (Table project committer
domain rank—20 953 718 records, Listing 28), and obtained those projects
having committers from the same organizations as the topmost three (Table
same domain top committers—99 368 records, Listing 32).

Final filtering and reporting For the three types of possible enter-
prise projects we then formed their union (Table candidate projects—396 724
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records, Listing 2), combined their metrics (Table merged projects—293 172
records, Listing 13), removed duplicate projects (Table deduplicated projects—
168 306 records, Listing 5), combined records referring to the same project
(Table merged domain projects—167 958 records, Listing 12), and joined
them with the number of their commits (Table project commit count—
59 172 876 records, Listing 26) and their stars (Table project stars—10 317 662
records, Listing 31), to select those with above average such metrics (Ta-
ble above average projects—17 673 records, Listing 1). For each one of the
shortlisted projects, we git-cloned from GitHub the project’s repository
and calculated its basic size metrics in terms of files and text lines (Table
size metrics—16 852 records, Listing 35). (Due to churn from the date the
GHTorrent dataset was published, not all repositories could be retrieved for
measuring project size.)

Finally, to provide context for each project, we combined this table
with each project’s earliest and most recent commit (Table commit range—
100 366 312 records, Listing 4), number of commits (Table project commit
committer domain count—17 246 572 records, Listing 25) and committers
(Table project committer domains—17 246 572 records, Listing 29) for each
committer domain, number of commits (Table project commit author domain
count—23 866 053 records, Listing 23) and committers (Table project au-
thor domains—17 246 572 records, Listing 22) for each author domain, total
number of committers (Table project committer count—59 172 876 records,
Listing 27) and authors (Table project author count—59 172 876 records,
Listing 21), size metrics (Table project size metrics—15 613 records, List-
ing 30), project license as provided by the GitHub API (Table licenses—
16 850 records, Listing 11), as well as details about the derivation of the
corresponding domain. This process created the table enterprise project
details (17 264 records, Listing 9) and the corresponding report enterprise
projects.

3 Evaluation

We manually evaluated a random sample of an earlier version of this dataset,4

following the systematic review guidelines by Brereton et al. [7]. The sample
size was calculated at around 378 using Cochran’s sample size and correc-
tion formulas [8] (95% confidence, 5% precision). To keep the raters alert

4https://doi.org/10.5281/zenodo.3653878 and https://doi.org/10.5281/

zenodo.3653888. This was updated following the peer review suggestions, and differs by
64 projects (0.37%—26 removed, 38 added) from the currently supplied one.
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we complemented the sample with 22 GitHub projects randomly selected
from a set of projects with similar quality characteristics that were part of
the dataset (Table cohort projects—311 223 records, Listing 3). The third
and fourth authors were instructed to individually label the 400 projects as
enterprise or not based on the definition in Section 1. To improve the la-
beling’s reliability the two raters did not know the employed heuristics, and
were also asked to complete the main reason the project was open source
and write a few words to support their decision. Their ratings led to 78%
inter-rater agreement and 29% reliability using Cohen’s kappa statistic. The
second author then resolved the conflicts by majority vote; after excluding
the 22 irrelevant projects, 89% of the 378 projects were finally identified as
enterprise. We used the bootstrap method [12] with 1000 iterations to estab-
lish a confidence interval (CI) for the percentage of enterprise projects in our
sample; the 95% CI was calculated at [87–93]%. To generalize, 15 354 (CI:
15 009–16 044) projects of our dataset are expected to be truly enterprise-
developed.

Regarding the dataset’s external validity, note that although our evalua-
tion addresses the dataset’s precision, our method was not targeting a high
recall and this was also not evaluated. Consequently, the dataset can be
used to address empirical research generalizability concerns we identified in
the introduction mainly by providing a set of enterprise-developed projects
to be used in work employing stratified sampling, in cohort studies, or in
case studies. Furthermore, the number of committers floor we employed in
our selection means that the dataset excludes organizations that are small
or have a tiny number of their employees committing on GitHub. Finally,
the selection of above average projects in terms of stars and commits means
that the dataset does not include stillborn or unpopular projects.

4 Dataset Overview

The dataset5 is provided as a 17 264 record tab-separated file with the fol-
lowing 29 fields:

url the project’s GitHub URL;

project id the project’s GHTorrent identifier;

sdtc true if selected using the same domain top committers heuristic (9 016
records);

5https://doi.org/10.5281/zenodo.3742962
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mcpc true if selected using the multiple committers from a valid enterprise
heuristic (8 314 records);

mcve true if selected using the multiple committers from a probable com-
pany heuristic (8 015 records);

star number number of GitHub watchers;

commit count number of commits;

files number of files in current main branch;

lines corresponding number of lines in text files;

pull requests number of pull requests;

github repo creation time stamp of the GitHub repository creation;

earliest commit time stamp of the earliest commit;

most recent commit time stamp of the most recent commit;

committer count number of different committers;

author count number of different authors;

dominant domain the project’s dominant email domain;

dominant domain committer commits number of commits made by
committers whose email matches the project’s dominant domain;

dominant domain author commits corresponding number for commit
authors;

dominant domain committers number of committers whose email matches
the project’s dominant domain;

dominant domain authors corresponding number for commit authors;

cik SEC’s EDGAR “central index key”;

fg500 true if this is a Fortune Global 500 company (2 233 records);

sec10k true if the company files SEC 10-K forms (4 180 records);

sec20f true if the company files SEC 20-F forms (429 records);
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project name GitHub project name;

owner login GitHub project’s owner login;

company name company name as derived from the SEC and Fortune 500
data;

owner company GitHub project’s owner company name;

license SPDX license identifier.

An additional file provides the full set of 311 223 cohort projects (not part of
the enterprise dataset), selected as described in Section 3, with the following
four fields:

url the project’s GitHub URL;

project id the project’s GHTorrent identifier;

stars number of GitHub watchers;

commit count number of commits.

5 Typology of Enterprise OSS

We performed a preliminary analysis of the details we collected to obtain
a picture of how enterprise software is developed. Overall, we see that
projects are staffed by a plurality of enterprise insiders, who appear to be
pulling more than their weight. Regarding the distribution of contributors,
across all identified projects in the dataset we found that 33% of the authors
and 24% of the committers are associated with the project’s dominant do-
main. Similarly, regarding the distribution of work, 45% of the commits are
made by the enterprise’s authors, and 41% of the commits are made by the
corresponding committers.

The ten most popular out of the 110 top level domains associated with
projects are: com (13 494 projects), io (763), de (383), gov (339), net (256),
ru (142), fr (134), cn (120), br (118), and uk (111). Similarly, out of 5 097
owners, those associated with the highest number of GitHub projects are:
Microsoft (855 projects), Azure (328), google (123), twitter (93), 18F (90),
udacity (82), SAP (79), Netflix (79), hashicorp (77), and GoogleCloudPlat-
form (77).

In very few projects does development appear to be exclusively controlled
by the enterprise: we found 90 projects (0.5%) where all commits came
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Table 1: Enterprise (E) and Reaper (R) Dataset Metrics
Min Max (k) Avg Stddev

Metric E R E R E R E R

Stars 15 0 80 51 355 11 1661 221
Commits 30 0 304 383 1159 70 5323 1196
PRs 0 0 25 42 161 3 672 94
Authors 1 0 26 5 27 2 213 10
Committers 1 0 26 5 22 2 208 7

from an enterprise committer and 220 projects (1.3%) where all commits
came from an enterprise author. We were expecting these projects to be
small, but in fact they sport an average line count of 453k for projects
with exclusively enterprise authors and 976k for projects with exclusively
enterprise committers. Considerable development seems to happen through
pull requests, with 95% of the projects having pull requests associated with
them, with an average of 161 pull requests per project.

In total, according to their SPDX [17, 32] identifiers, the projects are
licensed using 29 different open source licenses. The two most common li-
censes used are the MIT (4 340 projects) and Apache 2.0 (3 761 projects),
with the GPL version 2 or 3 license used only by 780 projects. This finding
indicates that few enterprise open source projects seem to follow a business
model based on relicensing GPL code for proprietary development. Sur-
prisingly, for 3 535 projects no license was found, and for 3 374 projects the
license did not match one with an SPDX identifier.

We compared the earlier version of this dataset mentioned in Section 3
against the Reaper dataset of engineered software projects [40] in terms of
stars, commits, pull requests (PRs), authors, and committers (see Table 1).
Reaper initially contained 1 853 205 projects in the form login-name/project-
name, from which 1 849 500 were successfully associated with a project ID
of GHTorrent. Null values were substituted with zero in both datasets,
thus metrics were calculated on the basis of the entire dataset sizes (17 252
for this, 1 849 500 for the Reaper). It appears that in all dimensions this
dataset is considerably richer than the Reaper one. The difference most
likely stems from this dataset’s considerable selectivity, as it contains two
orders of magnitude fewer projects than Reaper.
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6 Related Work

While the relationship between academic or semi-academic institutions and
open source software has been favorable [33], with large open source projects
such as the Berkeley Software Distribution (BSD) [43] originating from
them, this has not always been the case for business. The relationship
between business and open source software was often tense in the past, with
GPL-licensed software described as “an intellectual property destroyer”, un-
American, and “a cancer” [38]. Meanwhile, others asserted that open source
was compatible with business [24], and researchers quickly identified several
business models that are based on open source software [5, 1], as well as sig-
nificant industrial adoption of open source software products [48]. In short,
research associated with the involvement of enterprises in open source soft-
ware can be divided into four areas [29]: a) company participation in open
source development communities [6, 25]; b) business models with open source
in commercial organizations [5, 22]; c) open source as part of component
based software engineering [2, 34]; and d) usage of open source processes
within a company [35, 14].

We consider our study part of the first area. According to Bonaccorsi
et al. [6], companies participated in one third of the most active projects
on SourceForge as project coordinators, collaborators in code development,
or code providers. Hauge et al. [23] also identified the role of component
integrator. By providing their proprietary software to the open source com-
munity, companies can benefit from reduced development costs, advanced
performance, repositioning in the market, and additional profit from new ser-
vices [29]. Still, the provided software should be accompanied by adequate
documentation and information to help the community members engage in
it [23].

Although companies marginally participated in open source projects in
the past, the participation has recently increased, especially in the larger
and more active projects, with a crucial part of the open source code being
provided by commercial organizations, particularly small and medium-sized
enterprises (SMEs) [36]. For instance, 6%–7% of the code in the Debian
GNU/Linux distribution over the period 1998–2004 was contributed by cor-
porations [45].

Bird et al. in their study regarding email social networks [4] faced the
challenge of duplicate email aliases while matching identities of the email
archives of Apache to identities of Concurrent Version System (CVS) repos-
itories. The issue was resolved by extracting email headers that included
the sender to produce a list of < name, email > identifiers. The similarity
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of the identifier pairs of the list was then computed through a clustering
algorithm, and the resulting clusters were manually evaluated.

Similarly, German and Mockus [15] linked identical contributors of CVS
repositories with multiple names or emails of different spelling. Using their
infrastructure they identified the top contributors of the Ximian Evolution
project, and found that the top ten contributors were Ximian employees
and consultants, and also that private companies such as RedHat, Ximian
and Eazel, severely affected the development of the GNOME project [16],
similarly to the way the Mozilla project was mainly developed by Netscape
employees [39].

7 Research Ideas

The provided dataset can be employed in various ways. First, it can be
used to study the involvement of enterprises in OSS development by exam-
ining whether they are mostly takers or givers, their roles within projects,
and how they shape a project’s evolution and success [6]. Second, it can
be employed in studies regarding OSS business models, to investigate how
their choice is affected by different enterprise characteristics such as the
employees’ education level, the enterprise’s age, size, service variety, and
whether it is family-owned or not [22]. Third, it can be used for research on
the composition and structure of OSS supply chains and value chains, par-
ticularly to identify the added, deleted, and unchanged dependencies and
their effect between releases for different types of packages such as build
and test tools [11]. Furthermore, it can be employed in studies concern-
ing enterprise-driven global software development, to measure benefits and
tackle issues induced from the physical separation among project members
such as strategic, cultural, communication, and knowledge management is-
sues [27]. Another use involves identifying product or process differences
between enterprise and volunteer-driven software development in terms of
cost, service and support, innovation, security, usability, standards, avail-
ability, transparency, and reliability [41]. Finally, it can be used to study
enterprise regulatory, compliance, and supply chain risks, to investigate the
risk domains that enterprises face when engaging in OSS development, the
available sources of risk mitigation, and the heuristics by which managers
apply this understanding to manage such projects. From these insights, for-
malized risk mitigation instruments and project management processes can
be developed [18].
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A Appendix: Key SQL Queries

Listing 1: SQL query for deriving the table above average projects

-- Projects with above average number of stars and commits

CREATE TABLE indoss.above_average_projects as

select merged_domain_projects.*,

project_stars.stars as star_number,

project_commit_count.commit_count

from indoss.merged_domain_projects

inner join indoss.project_commit_count

on project_commit_count.id = merged_domain_projects.project_id

inner join indoss.project_stars

on project_stars.id = merged_domain_projects.project_id

where

project_stars.stars > (select avg(stars) from

indoss.project_stars) and

project_commit_count.commit_count > (

select avg(commit_count) from indoss.project_commit_count);
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create index on indoss.above_average_projects(project_id);

create index on indoss.above_average_projects(domain_id);

Listing 2: SQL query for deriving the table candidate projects

-- Candidate company projects from all heuristics

CREATE TABLE indoss.candidate_projects as

select project_id,

-- Same domain top committers

a as sdtc_domain,

-- Multi-committer valid enterprise

b as mcve_domain,

-- Multi-committer probable company

c as mcpc_domain

from (

-- The null casts are needed due to BUG #5974: UNION construct

type cast gives poor error message

select project_id,

domain_id as a, null::integer as b, null::integer as c

from indoss.same_domain_top_committers

union all

select project_id,

null::integer, domain_id as b, null::integer as c

from indoss.multi_committer_valid_enterprise_projects

union all

select project_id,

null::integer, null::integer as b, domain_id as c

from indoss.multi_committer_probable_company_projects

) as t;

create index on indoss.candidate_projects(project_id);
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Listing 3: SQL query for deriving the table cohort projects

-- Cohort projects matching the above average projects

CREATE TABLE indoss.cohort_projects as

select projects.id as project_id,

project_stars.stars,

project_commit_count.commit_count

from projects

inner join indoss.project_commit_count

on project_commit_count.id = projects.id

inner join indoss.project_stars

on project_stars.id = projects.id

left join indoss.forks_clones_noise

on projects.id = forks_clones_noise.id

left join indoss.above_average_projects

on projects.id = above_average_projects.project_id

where

-- Remove project clones

forks_clones_noise.id is null and

-- No common projects across cohorts

above_average_projects.project_id is null and

project_stars.stars > (select avg(stars) from

indoss.project_stars) and

project_commit_count.commit_count > (

select avg(commit_count) from indoss.project_commit_count);

create index on indoss.cohort_projects(project_id);

Listing 4: SQL query for deriving the table commit range

-- The most recent commit for each project

CREATE TABLE indoss.commit_range AS

select project_commits.project_id as project_id,

min(created_at) as earliest,

max(created_at) as most_recent

from commits

inner join project_commits

on project_commits.commit_id = commits.id

group by project_commits.project_id;

create unique index on indoss.commit_range(project_id);
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Listing 5: SQL query for deriving the table deduplicated projects

-- Probable company projects deduplicated by mean metrics

CREATE TABLE indoss.deduplicated_projects as

select merged_projects.* from indoss.merged_projects

left join indoss.forks_clones_noise

on merged_projects.project_id = forks_clones_noise.id

where

-- Remove project clones

forks_clones_noise.id is null;

create index on indoss.deduplicated_projects(project_id);

Listing 6: SQL query for deriving the table distinct company domains

-- All collected domains

create table indoss.distinct_company_domains as

select domain, max(name) as name, max(cik) as cik,

bool_or(fg500) as fg500, bool_or(sec10k) as sec10k,

bool_or(sec20f) as sec20f

from indoss.all_company_domains

group by domain;

create index on indoss.distinct_company_domains(domain);

Listing 7: SQL query for deriving the table domain blacklist

create table indoss.domain_blacklist (domain varchar(255));

\copy indoss.domain_blacklist from

’data/domain_blacklist_input.txt’;

create index on indoss.domain_blacklist(domain);

Listing 8: SQL query for deriving the table domains

CREATE TABLE indoss.domains AS

select (row_number() over())::int id, domain::text

from (

SELECT DISTINCT LOWER(SUBSTR(email, POSITION(’@’ in email) +

1)) AS domain

FROM users_private

) d;
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create index on indoss.domains(id);

create index on indoss.domains(domain);

Listing 9: SQL query for deriving the table enterprise project details

-- Details of the identified company projects

CREATE TABLE indoss.enterprise_project_details as

select

concat(’https://github.com/’, substr(projects.url, 30)) as url,

aap.*,

project_size_metrics.files,

project_size_metrics.lines,

coalesce(pull_request_number.pull_requests, 0) as pull_requests,

projects.created_at as github_repo_creation,

commit_range.earliest as earliest_commit,

commit_range.most_recent as most_recent_commit,

project_committer_count.committer_count,

project_author_count.author_count,

domains.domain as dominant_domain,

coalesce(project_commit_committer_domain_count.domain_count, 0)

as dominant_domain_committer_commits,

coalesce(project_commit_author_domain_count.domain_count, 0)

as dominant_domain_author_commits,

coalesce(project_committer_domains.domain_count, 0)

as dominant_domain_committers,

coalesce(project_author_domains.domain_count, 0)

as dominant_domain_authors,

distinct_company_domains.cik,

distinct_company_domains.fg500,

distinct_company_domains.sec10k,

distinct_company_domains.sec20f,

projects.name as project_name,

users.login as owner_login,

distinct_company_domains.name as company_name,

users.company as owner_company,

license

from indoss.above_average_projects as aap

inner join indoss.domains

on domains.id = aap.domain_id

left join indoss.distinct_company_domains
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on distinct_company_domains.domain = domains.domain

inner join projects

on projects.id = aap.project_id

inner join users

on projects.owner_id = users.id

left join indoss.commit_range

on commit_range.project_id = aap.project_id

left join indoss.project_commit_author_domain_count

on aap.domain_id = project_commit_author_domain_count.domain_id

and

aap.project_id = project_commit_author_domain_count.project_id

left join indoss.project_commit_committer_domain_count

on aap.domain_id =

project_commit_committer_domain_count.domain_id and

aap.project_id =

project_commit_committer_domain_count.project_id

left join indoss.project_author_domains

on aap.domain_id = project_author_domains.domain_id and

aap.project_id = project_author_domains.project_id

left join indoss.project_committer_domains

on aap.domain_id = project_committer_domains.domain_id and

aap.project_id = project_committer_domains.project_id

left join indoss.project_committer_count

on aap.project_id = project_committer_count.id

left join indoss.project_author_count

on aap.project_id = project_author_count.id

left join indoss.pull_request_number

on aap.project_id = pull_request_number.project_id

left join indoss.project_size_metrics

on aap.project_id = project_size_metrics.project_id

left join indoss.licenses

on concat(’https://github.com/’, substr(projects.url, 30)) =

licenses.url

25



where not projects.deleted;

create index on indoss.enterprise_project_details(project_id);

create index on indoss.enterprise_project_details(domain_id);

Listing 10: SQL query for deriving the table fortune global 500

create table indoss.fortune_global_500 (name varchar(255), domain

varchar(255));

\copy indoss.fortune_global_500 from

’data/fortune-global-500/data.csv’ CSV;

create index on indoss.fortune_global_500 (domain);

Listing 11: SQL query for deriving the table licenses

create table indoss.licenses (url varchar(1023) primary key,

license varchar(255));

\copy indoss.licenses from ’data/licenses.txt’ delimiter ’ ’ null

’null’;

Listing 12: SQL query for deriving the table merged domain projects

-- Projects with a single common coalesced domain

-- Removing projects with different domains excludes 3874 out of

3303639

-- projects, which is insignificant.

CREATE TABLE indoss.merged_domain_projects as

select project_id,

(sdtc_domain is not null) as sdtc,

(mcpc_domain is not null) as mcpc,

(mcve_domain is not null) as mcve,

coalesce(sdtc_domain, mcve_domain, mcpc_domain) as domain_id

from indoss.deduplicated_projects

where

coalesce(mcve_domain, mcpc_domain, sdtc_domain) =

coalesce(mcpc_domain, sdtc_domain, mcve_domain)

and

coalesce(mcpc_domain, sdtc_domain, mcve_domain) =

coalesce(sdtc_domain, mcve_domain, mcpc_domain);
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create index on indoss.merged_domain_projects(project_id);

create index on indoss.merged_domain_projects(domain_id);

Listing 13: SQL query for deriving the table merged projects

-- Candidate company projects merged across heuristics

CREATE TABLE indoss.merged_projects as

select project_id,

max(sdtc_domain) as sdtc_domain,

max(mcve_domain) as mcve_domain,

max(mcpc_domain) as mcpc_domain

from indoss.candidate_projects

group by project_id;

create index on indoss.merged_projects(project_id);

Listing 14: SQL query for deriving the table multi committer probable com-
pany projects

-- Projects by companies that have multiple committers using

-- the company’s domain

CREATE TABLE indoss.multi_committer_probable_company_projects as

select projects.id as project_id, user_domain.domain_id

from indoss.probable_company_domain_committers

inner join projects

on probable_company_domain_committers.company_id =

projects.owner_id

inner join indoss.user_domain

on projects.owner_id = user_domain.user_id

-- Avoid individuals using e.g. .com domains; 5 is top decile

where committer_count >= 5;

create index on

indoss.multi_committer_probable_company_projects(project_id);
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Listing 15: SQL query for deriving the table multi committer valid enterprise
projects

-- Projects by companies that have multiple committers using

-- the company’s domain

CREATE TABLE indoss.multi_committer_valid_enterprise_projects as

select projects.id as project_id, user_domain.domain_id

from indoss.valid_enterprise_domain_committers

inner join projects

on valid_enterprise_domain_committers.company_id =

projects.owner_id

inner join indoss.user_domain

on projects.owner_id = user_domain.user_id

-- Avoid individuals using e.g. .com domains

where committer_count >= 10;

create index on

indoss.multi_committer_valid_enterprise_projects(project_id);

Listing 16: SQL query for deriving the table org domains

-- Domain associated with each organization

CREATE TABLE indoss.org_domains as

select users.id as id,

substr(email, position(’@’ in email) + 1) as domain

from users_private

inner join users

on users.login = users_private.login

where type = ’ORG’ and email is not null;

create unique index on indoss.org_domains(id);

create index on indoss.org_domains(domain);

Listing 17: SQL query for deriving the table probable company domain com-
mitters

-- Number of organization’s committers using its domain

CREATE TABLE indoss.probable_company_domain_committers as

select company_id, count(*) as committer_count from (

select distinct company_id, committer_id

from indoss.probable_company_projects

inner join indoss.project_commit_committer_domain

on probable_company_projects.project_id =
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project_commit_committer_domain.project_id

inner join indoss.user_domain as company_domain

on company_domain.user_id = probable_company_projects.company_id

where company_domain.domain_id =

project_commit_committer_domain.domain_id

) as all_company_domain_committers

group by company_id;

create index on

indoss.probable_company_domain_committers(company_id);

Listing 18: SQL query for deriving the table probable company domains

-- The valid company domains those that belong to known companies

-- or end in a company suffix top or second-level domain

CREATE TABLE indoss.probable_company_domains AS

select valid_enterprise_domains.domain

from indoss.valid_enterprise_domains

left join indoss.distinct_company_domains

on distinct_company_domains.domain =

valid_enterprise_domains.domain

where

distinct_company_domains.domain is not null or

right(valid_enterprise_domains.domain, 4) = ’.com’ or

left(right(valid_enterprise_domains.domain, 7), 5) = ’.com.’ or

-- e.g. .com.au

left(right(valid_enterprise_domains.domain, 6), 4) = ’.co.’; --

e.g. .co.uk

create index on indoss.probable_company_domains(domain);

Listing 19: SQL query for deriving the table probable company projects

-- Projects under under probable company users

CREATE TABLE indoss.probable_company_projects as

select projects.id as project_id,

probable_company_users.user_id as company_id

from indoss.probable_company_users inner join projects

on probable_company_users.user_id = projects.owner_id;

create index on indoss.probable_company_projects(project_id);

create index on indoss.probable_company_projects(company_id);

29



Listing 20: SQL query for deriving the table probable company users

-- Users whose email matches that of a company

CREATE TABLE indoss.probable_company_users as

select org_domains.id as user_id,

indoss.probable_company_domains.*

from indoss.org_domains

inner join indoss.probable_company_domains

on probable_company_domains.domain = org_domains.domain;

create index on indoss.probable_company_users(user_id);

Listing 21: SQL query for deriving the table project author count

-- Count of different authors per project

CREATE TABLE indoss.project_author_count AS

select project_id as id, count(*) as author_count

from (

select distinct project_id, project_commit_details.author_id

from indoss.project_commit_details

) as ac group by project_id;

create index on indoss.project_author_count(id);

Listing 22: SQL query for deriving the table project author domains

-- Count of different authors for each committer domain per project

-- Will be used to obtain the number of authors for the dominant

domain

CREATE TABLE indoss.project_author_domains AS

select project_id, domain_id, count(*) as domain_count from (

select project_id, domain_id, author_id

from indoss.project_commit_committer_domain

group by project_id, domain_id, author_id) as a

group by project_id, domain_id;

create index on indoss.project_author_domains (project_id);

create index on indoss.project_author_domains (domain_id);

create unique index on indoss.project_author_domains (project_id,

domain_id);

30



Listing 23: SQL query for deriving the table project commit author domain
count

-- Count of commits for each committer domain per project

CREATE TABLE indoss.project_commit_author_domain_count AS

select project_id, domain_id, count(*) as domain_count

from indoss.project_commit_author_domain

group by project_id, domain_id;

create index on

indoss.project_commit_author_domain_count(project_id);

create index on

indoss.project_commit_author_domain_count(domain_id);

create unique index on

indoss.project_commit_author_domain_count(project_id,

domain_id);

Listing 24: SQL query for deriving the table project commit committer do-
main

-- Commits and their committer’s domain

CREATE TABLE indoss.project_commit_committer_domain AS

select project_commit_details.*, domain_id

from indoss.project_commit_details

left join indoss.user_domain

on project_commit_details.committer_id = user_domain.user_id

where domain_id is not null;

create index on indoss.project_commit_committer_domain(project_id);

create index on indoss.project_commit_committer_domain(domain_id);

Listing 25: SQL query for deriving the table project commit committer do-
main count

-- Count of commits for each committer domain per project

CREATE TABLE indoss.project_commit_committer_domain_count AS

select project_id, domain_id, count(*) as domain_count

from indoss.project_commit_committer_domain

group by project_id, domain_id;

create index on

indoss.project_commit_committer_domain_count(project_id);

create index on
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indoss.project_commit_committer_domain_count(domain_id);

create unique index on

indoss.project_commit_committer_domain_count(project_id,

domain_id);

Listing 26: SQL query for deriving the table project commit count

-- Number of commits per project

CREATE TABLE indoss.project_commit_count AS

select project_id as id, count(*) as commit_count

from project_commits

left join projects

on project_commits.project_id = projects.id

where

projects.forked_from is null

group by project_id;

create index on indoss.project_commit_count(id);

Listing 27: SQL query for deriving the table project committer count

-- Count of different committers per project

CREATE TABLE indoss.project_committer_count AS

select project_id as id, count(*) as committer_count

from (

select distinct project_id, project_commit_details.committer_id

from indoss.project_commit_details

) as ac group by project_id;

create index on indoss.project_committer_count(id);
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Listing 28: SQL query for deriving the table project committer domain rank

-- Project committers ranked by the number of their commits

CREATE TABLE indoss.project_committer_domain_rank AS

select project_id, domain_id, committer_id, commit_number,

rank() over (

partition by project_id

order by commit_number desc

) as committer_rank

from (

select project_id, domain_id, committer_id, count(*) as

commit_number

from indoss.project_commit_committer_domain

group by project_id, domain_id, committer_id

) as cn;

Listing 29: SQL query for deriving the table project committer domains

-- Count of different committers for each committer domain per

project

-- Will be used to obtain the number of committers for the dominant

domain

CREATE TABLE indoss.project_committer_domains AS

select project_id, domain_id, count(*) as domain_count from (

select project_id, domain_id, committer_id

from indoss.project_commit_committer_domain

group by project_id, domain_id, committer_id) as a

group by project_id, domain_id;

create index on indoss.project_committer_domains (project_id);

create index on indoss.project_committer_domains (domain_id);

create unique index on indoss.project_committer_domains

(project_id, domain_id);

Listing 30: SQL query for deriving the table project size metrics

-- Files and lines per project

CREATE TABLE indoss.project_size_metrics AS

select projects.id as project_id, files, lines

from indoss.size_metrics

inner join users

on users.login = split_part(size_metrics.name, ’/’, 1)

inner join projects
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on projects.name = split_part(size_metrics.name, ’/’, 2) and

projects.owner_id = users.id;

create index on indoss.project_size_metrics(project_id);

Listing 31: SQL query for deriving the table project stars

-- Number of stars per project

create table indoss.project_stars AS

select id, count(watchers.repo_id) as stars

from watchers

left join projects

on watchers.repo_id = projects.id

group by id;

create index on indoss.project_stars(id);

Listing 32: SQL query for deriving the table same domain top committers

-- Projects whose top N committers come from the same domain

CREATE TABLE indoss.same_domain_top_committers AS

select distinct project_id, domain_id

from indoss.project_committer_domain_rank

where committer_rank <= 3

group by project_id, domain_id

having count(*) = 3;

create index on indoss.same_domain_top_committers(project_id);

create index on indoss.same_domain_top_committers(domain_id);

Listing 33: SQL query for deriving the table sec 10-K domains

create table indoss.sec_10_K_domains (cik INT, domain varchar(255),

name varchar(255));

\copy indoss.sec_10_K_domains from ’data/sec/domains-10-K.txt’ CSV;

create unique index on indoss.sec_10_K_domains(cik);

create index on indoss.sec_10_K_domains(domain);
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Listing 34: SQL query for deriving the table sec 20-F domains

create table indoss.sec_20_F_domains (cik INT, domain varchar(255),

name varchar(255));

\copy indoss.sec_20_F_domains from ’data/sec/domains-20-F.txt’ CSV;

create index on indoss.sec_20_F_domains(domain);

create unique index on indoss.sec_20_F_domains(cik);

Listing 35: SQL query for deriving the table size metrics

create table indoss.size_metrics (name varchar(1023), files INT,

lines INT);

\copy indoss.size_metrics from ’data/size_metrics.txt’ delimiter ’

’;

Listing 36: SQL query for deriving the table user domain

-- The email domain associated with each user

CREATE TABLE indoss.user_domain AS

select users.id AS user_id, valid_enterprise_domains.domain_id

FROM users LEFT JOIN users_private ON

users.login = users_private.login

LEFT JOIN indoss.valid_enterprise_domains on

LOWER(SUBSTR(email, POSITION(’@’ in email) + 1)) =

valid_enterprise_domains.domain;

create unique index on indoss.user_domain(user_id);

create index on indoss.user_domain(domain_id);

Listing 37: SQL query for deriving the table valid enterprise domain com-
mitters

-- Number of organization’s committers using its domain

CREATE TABLE indoss.valid_enterprise_domain_committers as

select company_id, count(*) as committer_count from (

select distinct company_id, committer_id

from indoss.valid_enterprise_projects

inner join indoss.project_commit_committer_domain

on valid_enterprise_projects.project_id =

project_commit_committer_domain.project_id

inner join indoss.user_domain as company_domain

35



on company_domain.user_id = valid_enterprise_projects.company_id

where company_domain.domain_id =

project_commit_committer_domain.domain_id

) as all_company_domain_committers

group by company_id;

create index on

indoss.valid_enterprise_domain_committers(company_id);

Listing 38: SQL query for deriving the table valid enterprise domains

-- Domains that are syntactically valid and unlikely to belong to a

non-company

CREATE TABLE indoss.valid_enterprise_domains AS

select domains.id as domain_id,

domains.domain as domain

from indoss.domains

left join indoss.domain_blacklist

on domain_blacklist.domain = domains.domain

where

domain_blacklist.domain is null and

position(’ ’ in domains.domain) = 0 and

position(’@’ in domains.domain) = 0 and

position(’(’ in domains.domain) = 0 and

position(’.’ in domains.domain) != 0 and

right(domains.domain, 4) != ’.org’ and

right(domains.domain, 6) != ’.local’ and

position(right(domains.domain, 1) in ’0123456789’) = 0 and --

e.g. 10.0.0.3

left(right(domains.domain, 7), 5) != ’.org.’ and -- e.g. .org.nz

left(right(domains.domain, 6), 4) != ’.or.’ and -- e.g. .or.at

right(domains.domain, 4) != ’.edu’ and

left(right(domains.domain, 7), 5) != ’.edu.’ and -- e.g. .edu.au

left(right(domains.domain, 6), 4) != ’.ac.’; -- e.g. .ac.uk

create index on indoss.valid_enterprise_domains(domain_id);

create index on indoss.valid_enterprise_domains(domain);
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Listing 39: SQL query for deriving the table valid enterprise projects

-- Projects under under valid company users

CREATE TABLE indoss.valid_enterprise_projects as

select projects.id as project_id,

valid_enterprise_users.user_id as company_id

from indoss.valid_enterprise_users inner join projects

on valid_enterprise_users.user_id = projects.owner_id;

create index on indoss.valid_enterprise_projects(project_id);

create index on indoss.valid_enterprise_projects(company_id);

Listing 40: SQL query for deriving the table valid enterprise users

-- Users whose email matches that of a valid company domain

CREATE TABLE indoss.valid_enterprise_users as

select org_domains.id as user_id,

indoss.valid_enterprise_domains.*

from indoss.org_domains

inner join indoss.valid_enterprise_domains

on valid_enterprise_domains.domain = org_domains.domain;

create index on indoss.valid_enterprise_users(user_id);
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