
A portable, annotation-based, visual stepper for Common Lisp
João Távora
Ravenpack

joaotavora@gmail.com

ABSTRACT
Many programming systems feature a stepping debugger, a tool
that lets users execute code, section by section, in steps of their
own choosing. Despite many attempts throughout the decades,
the Common Lisp language is still lacking in this regard. We pro-
pose and describe the workings of a new, portable, visual stepping
facility for Common Lisp, realized as an extension to SLY, a cross-
implementation Common Lisp IDE for the Emacs editor. This facility
is realized as an increment to an existing source code annotation
system known as “stickers”, whose working principles we also de-
scribe in this work. As part of the solution arrived at for the main
objective, we also present two reusable software components: (1) a
simple, near portable technique for constructing a source-tracking
Common Lisp expression reader in terms of a preexisting compliant
expression reader and (2) a technique to carry over source-tracking
information to the expansion of macro expressions.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.

KEYWORDS
Debugging, Stepping, Common Lisp
ACM Reference Format:
João Távora. 2020. A portable, annotation-based, visual stepper for Common
Lisp. In Proceedings of the 13th European Lisp Symposium (ELS’20). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.3742759

1 INTRODUCTION
1.1 What is stepping
A program stepper lets users execute code, section by section, in
steps of their own choosing. A number of hidden control points are
inserted along the execution paths of the program. At each point,
the system may interrupt the program and wait for user instruc-
tions before and/or after executing the next section. Steppers often
fall within the category of program execution monitors, along with
profilers, tracers and other debugging tools. Stepping is the one
of the most popular forms of debugging since it allows users to
study the evolution of the state of a program by direct inspection,
as opposed to combining conjecture and experimentation. A step-
per gives users full control over the speed of the actual program

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’20, April 27–28 2020, Zürich, Switzerland
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.3742759

and often even allows manipulations of that state. This frequently
presents a debugging advantage over guessing a programs’ state or
monitoring its outputs.

Many programming systems, indeed all of the most popular
programming systems provide stepper tools as a part of a debugging
tool-chain, i.e. a set of programs often developed and distributed
alongside language compilers and interpreters. In languages such
as C, the prevalence of a stepping system (such as the popular gdb
program) is so strong that it becomes synonymous with the term
“debugger”. This sometimes leads to users migrating to the Lisp
family of languages being surprised to find debugging systems that
aren’t about stepping at all.

Stepper systems usually function through text-based interfaces
that are capable of displaying the source code of the relevant code
sections. Nevertheless, many users of stepper tools prefer to use
them through the more sophisticated user interfaces of editor pro-
grams and integrated development environments (IDEs). We shall
call these tools visual steppers1: special-purpose programs running
inside the IDE communicate with the stepper tool by means of a
protocol and visually annotate the source text of a programwith the
results of the stepping session. The expression about to be executed
may e.g. be marked with a red dot or highlighted in a special color.
Furthermore, a modern user’s expectations of a stepper system
might include the ability to add break points; to “step over” an
expression; to “step into” a call to a function defined elsewhere in
the source code; to “step out of” the current call; to “continue” to a
certain point, and to inspect the values of local and global variables
by mouse-clicking on their manifestations in the source code.

1.2 Common Lisp stepping
Common Lisp programmers are so detached from the practice of
stepping that some will simply declare that’s proof that they don’t
need one at all. There is a hint of truth to this declaration, as Com-
mon Lisp systems have traditionally directed efforts to other types
of debugging facilities such as powerful interactive program restarts
and function traces. At any rate, it seems undeniable that, stepper
or no stepper, Common Lisp programs will be debugged.

Nevertheless, an abundance of Common Lisp steppers have been
proposed throughout the decades, even if few have actually enjoyed
any adherence. Anecdotal evidence suggests potential newcomers
shy away from Common Lisp because of missing stepper function-
ality. Indeed, this reality appears not to be lost even on the authors
of the Common Lisp specification, which have included in their
work a provision for a special implementation-defined CL:STEP
macro.

Some Lisp implementations can and do implement stepping
to various levels of ability. SBCL combines its implementation of
CL:STEP with the restarts system to provide a text-based stepper,

1After the nomenclature used in [9]

https://doi.org/10.5281/zenodo.3742759
https://doi.org/10.5281/zenodo.3742759


ELS’20, April 27–28 2020, Zürich, Switzerland João Távora

while the LispWorks[2] and Allegro CL systems have sophisticated
graphical stepping dialogues with views to the source code and
program state. Unfortunately, these systems are unavailable to
whomever wishes to try portable programs across different Com-
mon Lisp implementations. Even if one switches between two im-
plementations that do have steppers, the difference in capability
and user interface is often enough to discourage the use of either
system.

The problem of interface inconsistency across implementations
is not exclusive to the stepper feature: other debugging tools such
as the inspector, the debugger or the REPL suffer from it. Thus,
many Common Lisp programmers will use a generic text editor
such as GNU Emacs[1] together with the SLIME[5] extension. This
combination forms a capable, implementation-agnostic Common
Lisp IDE that suppresses the problems described above and provides
a consistent user interface to many debugging features.

Regrettably, even though Emacs provides visual stepper inter-
faces for many programming languages, SLIME doesn’t provide
a portable stepper interface. We believe this to be due to the fact
that the technical challenges to be surmounted are greater than
for other debugging tools. Among other problems, the portability
mandate of SLIME implies it is ultimately only allowed to invoke
functionality present in all the Common Lisp systems it connects
to. This mandate implies that even if all implementations where to
implement some form of CL:STEP, that alone wouldn’t be powerful
enough to, say, communicate source location information to and
from Emacs, annotating the program source.

1.3 A portable, visual stepper for Common Lisp
We should note that none of the obstacles listed above are con-
ceptual in nature, so there must still be hope for a portable, visual
stepper for Common Lisp. The SLIME/Emacs combination makes
it a particularly attractive target for such a tool, given its relevance
among Common Lisp users and the flexibility of Emacs’s Elisp
language.

In fact, the SLY Common Lisp IDE[11], a derivative program of
SLIME, has redesigned some of the underpinnings of its predeces-
sor to make the development of new extensions easier. We shall
describe how “stickers”, a feature that SLY has recently acquired,
lets users manually instrument selected Common Lisp forms whose
results they are interested in. Stickers are already a “poor man’s
stepper”, in the sense that they have some fundamental semantics
of stepping but still encumber the user with work than could be
performed automatically. To fill this gap, we shall explore methods
of combining stickers with automatic code analysis. We shall then
be able to present an innovative stepper tool for the Common Lisp
language based on the SLY extension to the Emacs editor, hereafter
designated the SLY/Emacs stepper.

2 RELATEDWORK
“Stepping is an old idea.” So go the opening words of this section’s
namesake in the article “Annotation-Based Program Stepping”, writ-
ten by MIT’s G. Parker in 1987[9]. In this article, the author surveys
the efforts of the 1970 decade to develop various kinds of stepping
tools in the MACLISP environment. Likewise, we shall proceed to

evaluate a small sample of Common Lisp stepper systems, focusing
on the ones that are portable, visual and intersect our methodology.

In the remainder of Parker’s paper[9], a visual stepper system, Vi-
siStep, is described. Its distinguishing characteristics are the integra-
tion with the MACLISP system and an annotation-based approach,
a key difference to other evaluator-based techniques.

Annotation-based program stepping is a form of code instru-
mentation. It comprises the addition of statements to the program
shortly before its compilation. By way of a so-called wrapper macro,
these statements are added before and after each section to be
stepped. The addition is transient and invisible: it does not modify
the source file. Furthermore, the program cannot itself discern the
presence or absence of these additional statements, so its outputs
are unmodified. Parker[9] points out that this approach can work
with an unmodified evaluator, since the compiler is simply given
more instructions to compile. He also asserts this approach to be
more efficient, more portable and more selective, the latter mean-
ing that it allows the user to select only those sections of the code
that he wishes to step through. However, the author acknowledges
the annotation-based stepper’s difficulty in handling some macro’s
non-evaluated syntactic elements (such as the arguments to COND),
and how it must rely on “code-walking knowledge”[9, I-4.8] to
determine the forms where the wrapping may take place.

By contrast, an evaluator-based or interpretative approach in-
volves writing a Lisp evaluator or instrumenting the Lisp inter-
preter. The evaluator itself then becomes responsible for issuing
the stepper-enabling statements before and after each evaluation.
“UniCStep - a Visual Stepper for COMMON LISP”, written by I.
Haulsen and A. Sodan in 1989[6], presents such a stepper system,
written for an early version of the GNU Emacs editor. The au-
thors reply directly to Parker’s contention’s of the superiority of
the annotation-based approach, asserting the evaluator-based ap-
proach to be more comfortable and flexible because the user does
not have to specify in advance what to step and where to stop.
They assent to one technical disadvantage such as the fact that
evaluator-based alternative need a loader to be emulated and more
sophisticated ways of remembering the source of the loaded code.

We should note a more recent attempt at a Common Lisp stepper,
such as Pascal Bourguignon’s work[4]. This consists of a portable,
evaluator-based approach that replicates the implementation-defined
behavior of Common Lisp’s STEP macro. Bourguignon’s stepper
provides a replacement package for the standard COMMON-LISP
package, through which the user must re-load the code whose
forms can then be passed to the STEP macro. This stepper has no
editor or source-tracking integration as of yet, but it seems to have
been in the plans at some point during its development.

Finally, a word should be spared for Emacs’s edebug.el authored
ca. 1988 by Daniel LaLiberte[7]. Edebug is designed to step through
Emacs Lisp programs within Emacs itself. Since it executes inside
the Lisp machine that is also the editor, the source-tracking integra-
tion is very good. edebug.el is an annotation-based stepper that
deals with the problem of amacro’s un-evaluated syntactic elements
by skipping macros it knows nothing about. The macros whose
expansions the user is interested in can be annotated separately
with edebug.el-specific declarations.



A portable, annotation-based, visual stepper for Common Lisp ELS’20, April 27–28 2020, Zürich, Switzerland

3 METHODS
Our proposed portable stepper system for SLY/Emacs can be broken
down into three main components:

(1) A non-intrusive source code annotation system, called “stick-
ers”. This system primarily allows “interesting” Common
Lisp forms to be designated by the user. On compilation, the
annotated code is transmitted to the Common Lisp compiler,
and executes equivalently to non-annotated code;

(2) A source-tracking reader, i.e. a process by which a stream
of characters containing source code forms is read into a
symbolic expression representing the form, whilst recording
the positions of the start and end characters of each sub-
form;

(3) A specialized code walker, a process by which an arbitrary
Common Lisp form can be traversed at compilation-time
to determine the syntactic value of each of its sub-forms as
processed by the compiler after the macro-expanding phase.

It should become apparent that the application of 3. to the results
of 2. relieve users in 1. of the need to manually designate forms of
interest. They sole job becomes requesting the annotated compila-
tion of arbitrary lengths of source code, leaving the stepper system
to automatically annotate all possible forms of interest.

The following subsections detail the workings of each compo-
nent in this arrangement.

3.1 Stickers
Stickers are a form of code annotation in use in SLY/Emacs. Initially
conceived as an alternative to the PRINT or FORMAT statements in-
troduced by users when debugging programs, this system lets users
visually mark individual symbolic or compound forms in whose fu-
ture execution they’re interested in. Crucially, the visual markings
exist only in Emacs’s memory for as long as the user wishes. They
aren’t saved in the source code itself. When the compilation of the
containing top-level form happens from within SLY/Emacs, SLY
will collect those visual markings, enumerate them, and emit for
compilation a modified version of the form. This process is called
arming the stickers.

The modified version is functionally equivalent to the original
in the sense that i.e. user programs have no way to detect which
one they are executing. The modifications consist of multiple in-
vocations of a special RECORD wrapper macro2, whose definition is
presented below in much simplified fashion:
(defmacro record (id &body body)

`(let ((%retval :exited-non-locally)
(%condition)
(%sticker (find-sticker ,id)))

(handler-bind ((condition (lambda (c)
(setq %condition c))))

(before-sticker %sticker)
(unwind-protect

(values-list
(setq %retval (multiple-value-list

(progn ,@body))))

2This macro is very similar to the WRAP macro presented in [9], which the exception
that for some technical reason that other version was realized as a special form.

(after-sticker %sticker %retval %condition)))))

E.g., if the user marks the forms (foo (bar)) and (bar) inside
the following expression:
(let ((baz 42)) (+ (foo (bar)) baz))

The sticker system will collect the two markings, label them
with the numbers 1 and 2 and emit the following equivalent form
for compilation:
(let ((baz 42)) (+ (record 1 (foo (record 2 (bar)))) baz))

As can be seen, every time the expression above is executed, ex-
pansion of thewrappermacro causes the functions before-sticker
and after-sticker to be called with the appropriate %sticker ob-
ject. Depending on the user’s preference, these functionsmay decide
to stop execution of the program (by way of invoke-debugger),
or to simply record the fact that the sticker was traversed. The
list of recordings can later be retrieved and replayed later inside
SLY/Emacs.

In our simple example, the benevolent user placed stickers on
two expressions that are indeed executed, i.e. they exist in places
of evaluation as defined by the syntax of the (let ...) special
form and the (+ ...) function form. If a sticker had instead been
placed on the expressions ((baz 42)) or + – two examples of non-
evaluated forms – that would have created a difficulty, since the
code would become syntactically invalid and fail compilation. In
a worse situation, the code would still be syntactically valid but
semantically absurd.

SLY/Emacs’s sticker system doesn’t have a way to reject these
individual stickers, so it proceeds heuristically: it rejects the com-
pilation of the whole top-level form if it determines that arming
stickers results in an increase to the number of compilation warn-
ings. In that case, the original form is compiled but the stickers
fail to arm. This strategy works for a vast majority of cases, but it
doesn’t seem impossible to construct a pathological case where the
principle of functional equivalence stated above is violated.

3.2 Source-tracking form reader
At its simplest definition, a source-tracking form reader is a vari-
ation of the Common Lisp CL:READ function that invokes a hook
every time a sub-form is read, and proceeds to pass to this hook a
measure of the character distance traveled so far to read it. This
enables programs that need both the usual results of CL:READ and
a table of form-to-source-code pairings.

Since the Common Lisp standard doesn’t specify any form of
source-tracking reader, some preexisting alternatives were evalu-
ated:

(1) Eclector[8], a self-described “portable Common Lisp reader
that is highly customizable and can return concrete syntax
trees”, is a full realization of a Common Lisp code reader
that doesn’t rely on any preexisting reader. Its distinguishing
characteristic are “concrete syntax trees” that aren’t repre-
sented by CONS cells, rather by CLOS objects that mimic the
properties of such cells while also keeping “concrete” source
file information;

(2) hu.DWIM.reader[3], by Pascal Bourguignon, is another full
realization of a compliant, portable and programmable Com-
mon Lisp reader. Though not a source-tracking reader per se,



ELS’20, April 27–28 2020, Zürich, Switzerland João Távora

it could be used in conjunction with a mechanism to track
character counts in streams;

Any alternative could have been used for our purposes (the
second one with minor changes). However, since we wish to mini-
mize our program’s dependency chain we also searched for simpler
alternatives.

We reasoned that our stepper tool already expects a compliant
Common Lisp implementation. Therefore it may, by definition,
also expect a compliant CL:READ. So we set out to design a portable
source-tracking reader that completely reuses the implementation’s
reader instead of replacing its implementation entirely. To achieve
this, we settled on an arrangement of two separate techniques:

• A character counting stream. This wraps the input CL:STREAM
object (from which we intend to CL:READ from) inside a
so-called “gray stream” object. Such objects are not in the
standard but are still widely available and used extensions
to the Common Lisp standard3. Gray streams allow the in-
dividual character reading operations to be intercepted and
controlled by the user. In this case, our character counting
stream is equivalent to the wrapped input stream except for
the fact that it keeps count of the number of characters read
so far.

• A substitute read-table, achieved by rebinding the variable
*READTABLE*. This table shadows each of the entries of the
current read-table (using GET/SET-MACRO-CHARACTER) with
a function that fully controls the influence of each character
over the returned symbolic expression. By setting up this
function in a particular manner, the resulting table remains
functionally indistinguishable from the original one, while
gaining the ability to invoke a hook that records source
positions.

The inter-operation of the two techniques is summarized by the
READ-TRACKING-SOURCE function:
(defun read-tracking-source

(&optional (stream *standard-input*)
(eof-error-p t) eof-value
recursive-p (observer #'ignore))

(let* ((ccs (char-counting-stream stream))
(*readtable*

(substitution-table
*readtable*
(lambda (shadowed-entry)
(let (;; correct for the fact that

;; one character of the form
;; has already been read.
(start (1- (char-count ccs)))
(results (multiple-value-list

(funcall shadowed-entry)))
(end (char-count ccs)))

(multiple-value-prog1 (apply #'values results)
(when results

(funcall observer (car results)
start end))))))))

(read ccs eof-error-p eof-value recursive-p)))

3They are already heavily used in SLY/Emacs, for example

This mechanism provides a simple, reliable4 and portable5 way
to read source-code. We can demonstrate its use on the simple (let
...) form already presented above:
(with-input-from-string

(s "(let ((baz 42)) (+ (foo (bar)) baz))")
(read-tracking-source
s t nil nil
(lambda (form start end)

(format t "~&(~2,a ~2,a) <=> ~a"
start end form))))

This expression returns the intended symbolic expression rep-
resenting the form, (LET ((BAZ 42)) (+ (FOO (BAR)) BAZ)),
while also producing the desired table of source positions:
(1 4 ) <=> LET
(7 10) <=> BAZ
(11 13) <=> 42
(6 14) <=> (BAZ 42)
(5 15) <=> ((BAZ 42))
(17 18) <=> +
(20 23) <=> FOO
(25 28) <=> BAR
(24 29) <=> (BAR)
(19 30) <=> (FOO (BAR))
(31 34) <=> BAZ
(16 35) <=> (+ (FOO (BAR)) BAZ)
(0 36) <=> (LET ((BAZ 42))

(+ (FOO (BAR)) BAZ))

3.3 Specialized code walker
Equipped with a correspondence between forms and source code,
the Common Lisp side of our stepper system nears a state where
it may inform SLY/Emacs of where to place sticker annotations. A
final obstacle remains: as we have seen in 3.1, only a subset of these
forms may be annotated with the RECORD macro, i.e. we are only
interested in the ones that are executable.

Clearly, we need an agent that understands the semantics of
each Common Lisp special form6, determines sub-expressions of
interest in our source-mapped tree and discards all the others. As
was already noted in [9], this seemingly simple task is severely
complicated by macros and by the specific constraints of a stepper
system.

3.3.1 Mnesic macroexpansion. To reach a state where nothing but
special and function forms exist, a macroexpander must remove
macro calls by expanding them. However, in doing so, our program
must also remember whence each macro’s expansion came, specif-
ically the source position of the form in its pre-expansion state.
This behavior is what we refer to as mnesic macroexpansion, the
opposite of amnesic macroexpansion.

Take the form:
4This was tested in SBCL, Allegro CL, CCL and ECL. There are differences to
the way that some implementations will construct the standard read-table (for ex-
ample, SBCL and Allegro CL represent “constituent” characters differently) and
SUBSTITUTION-TABLE has special provisions for that. The same technique should
in theory work with non-standard read-tables, but this has not been tested.
5As noted, except for the use of gray streams.
6The human programmer is such an agent, but he is precisely the one we are trying to
relieve of these tasks.



A portable, annotation-based, visual stepper for Common Lisp ELS’20, April 27–28 2020, Zürich, Switzerland

(LET ((BAZ 42))
(COND ((PLUSP BAZ) (FOO)) (T (BAR))))

It may be expanded to something like7:
(LET ((BAZ 42))

(IF (PLUSP BAZ)
(FOO)
(THE T (BAR))))

By this point, the system may finally come to the realization that
only the forms 42, baz, (plusp baz), (foo), (bar), (if ...) and
(let ...) are in positions of evaluation. Regrettably, it may now
have lost track of where each form lives in the source.

To recover this information, it is not enough to naively consult
the hash-table produced in 3.2, since some forms didn’t exist in
our original source-tracked version. Even if they did, the macroex-
panding facilities are not generally obliged to return the same CONS
objects for the forms, regardless of whether they expand them or
not.

In the Eclector library discussed in section 3.2, a RECONSTRUCT
function attempts to solve this very problem by correlating the fully
macro-expanded “raw” tree with the original “concrete syntax tree”,
returning a mirroring of the former that keeps as much from the
latter as possible. After some experimentation with this approach,
we noticed it missed many forms in executable positions and so
decided it wasn’t producing the results we had hoped for. More-
over, the quality of results tended to vary across implementations,
possibly due to the aforementioned CONS-related problems.

To overcome this obstacle we need a different approach. Instead
of trying to recover from a fully macroexpanded tree, we must
hook into macroexpansion as soon as it happens. This shall allow
us to lose as little source-tracking information as possible. Thus, we
conclude that a programmable, portable code-walker is necessary.
Such a system shall let us execute a hook at each macroexpansion
step shortly before and shortly after each expansion.

After surveying open-source alternatives for code-walkers, we
settled on a program called AGNOSTIC-LIZARD[10], which fits ex-
actly these requirements8. AGNOSTIC-LIZARD:WALK-FORM, its main
primitive, produces the desired full macroexpansion and can be
given a set of callback functions as hooks.

Here’s the snippet that illustrates our use of this walker:
(defun mnesic-macroexpand-all (form subform-positions)
(let (stack (expansion-positions (make-hash-table)))

(values
(agnostic-lizard:walk-form
form nil
:on-every-form-pre
(lambda (subform env)

(push (list
:from subform

:at (gethash subform subform-positions))
stack)
subform)

:on-every-form

7This expansion is SBCL’s.
8Furthermore, AGNOSTIC-LIZARD contains useful provisions to shield user code from
certain nonconformities in the macroexpansions of certain built-in macros, such as
DEFUN.

(lambda (expansion env)
(push (pop stack)

(gethash expansion expansion-positions))
expansion))

expansion-positions)))

As we can see, our MNESIC-MACROEXPAND-ALL function uses a
stack to take advantage of the manner in which macroexpansion
traverses the tree: there may be more than one consecutive call to
each of the callbacks :ON-EVERY-FORM-PRE and :ON-EVERY-FORM.
However, in the end, the calls to one and the other perfectly mirror
each other. Each element of the stack holds the result looked up
in the SUBFORM-POSITIONS hash-table for non-expanded forms.
That source information is later saved on the output hash-table
EXPANSION-POSITIONS, whose keys are of expanded forms.

If we give this function the form:
(COND ((FOO) (BAR)) ((BAZ) (QUUX)) (T 42))

We may obtain something9 like:
(IF (FOO) (PROGN (BAR))

(IF (BAZ) (PROGN (QUUX))
(IF T (PROGN 42) NIL)))

The resulting hash-table EXPANSION-POSITIONS, returned as a
second value, has these mappings:
(IF (FOO) ..) => (:from (COND ((FOO)..)) :at (0 . 42))
42 => (:from 42 :at (38 . 40))
(BAR) => (:from (BAR) :at (13 . 18))
(PROGN 42) => (:from (PROGN 42) :at NIL)
(PROGN (BAR)) => (:from (PROGN (BAR)) :at NIL)
T => (:from T :at (36 . 37))
(IF T ...) => (:from (COND (T 42)) :at NIL)
(QUUX) => (:from (QUUX) :at (27 . 33))
NIL => (:from NIL :at NIL)
(IF (BAZ) ..) => (:from (COND ((BAZ) ..)):at NIL)
(BAZ) => (:from (BAZ) :at (21 . 26)))
(FOO) => (:from (FOO) :at (7 . 12)))
(PROGN (QUUX))=> (:from (PROGN (QUUX)) :at NIL)

As can be seen, numerous new forms appeared in the expansion,
but MNESIC-MACROEXPAND-ALL succeeded in keeping the source
information information for all of the relevant ones.

3.3.2 Annotating interesting forms and putting it all together. Afinal
piece of the puzzle is needed. A function named FORMS-OF-INTEREST
is to be given the fully macroexpanded tree and along with the
source-tracking information for that tree. Its task is to traverse the
tree while looking for each of the 25 Common Lisp special com-
pound forms10, considering the evaluation rules of each. Unknown
forms are assumed to be function calls, whose evaluation rules are
equally well known. For each sub-expression in a position of exe-
cution, the source location is looked up and the form is collected,
so that it can later be reported to SLY/Emacs’s sticker system for
annotation. Though its listing is too large to include here, its imple-
mentation is straightforward but for one detail described in section
4.1.
9This is Allegro CL’s expansion. SBCL’s is much simpler, and thus not so good for
illustrative purposes.
10In reality, a few macros like COND and DEFUN are left unexpanded by
AGNOSTIC-LIZARD so they are analysed separately as well



ELS’20, April 27–28 2020, Zürich, Switzerland João Távora

As we are nearing the end of our journey, we can now start
putting all the pieces together. The following snippet is the final
form of our Common Lisp function. Its results can be handed to
SLY/Emacs for instrumentation through stickers as described in
section 3.1. After compilation, the instrumented code is now step-
pable.
(defun stepper-sticker-locations (string)

(with-input-from-string (stream string)
(let* ((form-positions (make-hash-table))

(form-tree
(read-tracking-source
stream nil nil nil
(lambda (form start end)
(setf (gethash form form-positions)

(cons start end))))))
(multiple-value-bind (expanded-tree

expansion-positions)
(mnesic-macroexpand-all form-tree

form-positions)
(forms-of-interest
expanded-tree expansion-positions)))))

4 RESULTS AND FURTHERWORK
We have released the result of our work on the GitHub platform11.

From an end user’s perspective, to put the new SLY/Emacs step-
per to work means pressing the key chord C-c C-s P (control-c,
control-s, capital P) while the cursor is on a top-level form. This
causes the interesting sub-forms of that top-level form to be auto-
matically decorated with sticker overlays, which by default uses
different shades of the color gray. As described in 3.1, a posterior
compilation of that same top-level form shall arm the stickers and
convert the overlays’ color to shades of blue. From this point on,
the stickers are executed as soon as the user arranges for the in-
strumented code to be run as usual.

Note that the default behavior of the sticker system doesn’t
equate the execution of an instrumented form to a break point,
i.e. the invocation of the Lisp debugger. This is by design. As was
explained in section 3.1, the default behavior is to have sticker
executions merely record the return values (or non-local exits)
for later replay. This which can be achieved with the key chord
C-c C-s C-r or via M-x sly-stickers-replay. Alternatively, the
key chord C-c C-s S (or M-x sly-stickers-fetch) can be used
to fetch the most recent recordings for each sticker and visually
decorate the source code, indicating (1) stickers that have been
executed; (2) those that haven’t yet, and (3) those that have exited
non-locally.

Finally, to enable the classic stepper functionality, the user must
explicitly select “breaking stickers” by affecting the value of the
SLYNK-STICKERS:*BREAK-ON-STICKERS* variable.

We shall see, as we discuss its limitations, that the resulting
SLY/Emacs stepper tool is still in its infancy. It can nevertheless be
said to work reasonably well for a majority of normal circumstances,
succeeding in instrumenting forms effectively and efficiently, while
providing satisfactory methods of navigation among stickers.

11See https://github.com/joaotavora/sly-slepper.git.

4.1 Limitations concerning atoms
In section 3.3.2, we sidestepped a notorious difficulty with atomic
forms, i.e. one-symbol symbolic expressions. This class of difficulties
is already alluded to in [9, I-4.8]. The problem with atoms can be
observed with the simplest of forms:

(lambda (x) x)

In this example, we note that the atom X has two different man-
ifestations in the encompassing form. Naturally one wants only
the latter to be annotated, and not the first. However, that is hard
to determine reliably since both are represented by the very same
object. This is in stark contrast to compound forms represented by
different CONS cells.

We can enhance the form/position pairings table used above
to record the fact that there is more than one manifestation of an
atom, but that’s not enough to know in MNESIC-MACROEXPAND-ALL
which of those is a in a position of execution. The reason is that the
AGNOSTIC-LIZARD macroexpander will only traverse sub-forms of
forms actually returned by a macro’s expansion. In this example,
our hook is only called on the (lambda (x) x) and x forms, not on
the (x) form. The latter form is merely an argument to the macro
itself where we have no power of intervention, and thus there is
no easy way to invalidate the first manifestation.

However, since we do know that x is manifested at (9 . 10)
and (12 . 13) it is possible to devise heuristics to trace back to the
knowledge gathered when first reading the form and traverse the
atom’s parent forms, given only the atom. A very simple heuristic
can proceed like this: if the atom exists inside a compound form
that does not occur in the final expansion, then that atom isn’t
interesting, otherwise, it is. This appears to solve the above situation
but fails miserably in the presence of the LOOP macro since this
macro has all the variable definition “unprotected” by parenthesis.

Hard-wiring exceptions to LOOP and other macros could amelio-
rate the situation, but overall this strategy feels murky and insuffi-
cient. On the other hand, if more aggressive strategies of atomic
annotation are attempted, the SLY/Emacs sticker system has already
shown to be reliable in the sense that if it needs to fail (because of
an incorrect form being annotated), it will mostly do so early. Thus
the potential to mislead users to wrong debugging conclusions is
minimized.

A different approach to solve this problem could revisit Eclector’s
“concrete syntax trees” or a variation thereof and use a portable,
programmable macroexpander that also understands these types
of trees, where different manifestations of the same atomic form
are represented by different objects.

For now, the proposed SLY/Emacs’s stepper works around this
limitation by behaving conservatively and only annotating atoms
in positions that are guaranteed to be safe, such as inside function
call forms. This makes for the majority of situations in practice.
Furthermore, users can always manually add stickers to other atom
manifestations they are interested in and know to also be safe.

4.2 Interface limitations
As seen in section 3.1, SLY/Emacs’s sticker system has no notion of a
stack: all the armed stickers are enumerated serially and thus hierar-
chically equivalent. Therefore, the common “step in/step out/finish”



A portable, annotation-based, visual stepper for Common Lisp ELS’20, April 27–28 2020, Zürich, Switzerland

functionality of common steppers is unavailable as such. Once step-
ping has been initiated, it is currently not possible to “step over”
arbitrarily large sections of uninteresting code, nor is it yet possible
to designate a sticker to continue to. The nearest thing available is
the possibility to ignore a particular sticker number. Furthermore,
there is as of yet no notion of a stepping “session”: once armed,
stickers take effect immediately and stay armed (even if the corre-
sponding source code is deleted) until the definition they pertain
to is compiled again without stickers.

These features don’t seem hard to realize. E.g., to enable more
sophisticated navigation behavior behavior the RECORDmacro could
use a special variable to be made aware of recursive invocations
to itself or to the currently executing stack frame. Thus we could
keep track of stickers being executed inside each other, i.e. within
the dynamic scope of a previously active sticker annotation.

4.3 Portability
The system as been described as “portable” or “near-portable”. In-
deed, if a completely new conforming implementation of Common
Lisp were to spring into being, support for our stepper system
would have to deal with three potential sources of non-portability:
(1) support of the AGNOSTIC-LIZARD code-walking program, (2) dif-
fering representations of constituent characters in readtables (for
the source-tracking reader described in section 3.2), and (3) support
for “gray streams”. We defer the discussion of (1) to [10], noting
that that system is built with portability as its foremost requisite.
The “shielding” it offers is useful e.g. in dealing with SBCL’s imple-
mentation of CL:DEFMETHOD, which itself produces a complicated
transformation of its body. In (2), we note that the adjustments to
the read-table were needed only for SBCL’s implementation, which
doesn’t use a macro-character function for constituents. If the hy-
pothetical new implementation also did so, it is plausible that the
current code would support it. Otherwise, it would behave as the
remaining implementations, also requiring no extra work. Lastly,
for (3), we think it reasonable to expect support for “gray streams”
in new implementations, since it is a widely adopted extension, and
required by SLY/Emacs to begin with.

5 DISCUSSION
Common Lisp users are concerned about features that facilitate
day-to-day development. TRACE, REPLs, PRINT forms, the interac-
tive debuggers, profilers and stickers are all ways to solve certain
debugging problems: some are more suitable to some situations
than others. Therefore, it’s important to note that program stepping
is just another tool in the toolbox, not a panacea.

By the same token, if one does implement such a tool, it should
be done in a manner that is of actual, practical use. This was the
reasoning behind the SLY/Emacs stepper. We think it especially
fortunate that the annotation-based approach and the manner of
source-code correlation in SLY/Emacs’s stickers don’t make use
of direct references to source files or file positions. As was shown
in 3.1, we merely keep an enumerated list of stickers identifiers
synchronized between Common Lisp and SLY/Emacs, a mechanism
that is simple but effective. It adequately resists some modifications
to the source of the instrumented form or its whereabouts, such as
moving it around in the source file, or even adding white-space and

comments inside it. This detail is crucial in making stickers and
stepping usable for day-to-day programming, since the user isn’t
dragged away from his editor or forced to a special confinement
while stepping. We note that these advantages of annotation-based
steppers were already hinted at back in 1989 by the proponents of
evaluation-based steppers[6, l.41, l.42].

By contrast, a hypothetical evaluation-based visual stepper (such
an as enhanced version of [4]) would find it difficult to maintain
this advantage since the source-code correlation is achieved at
evaluation-time and is harder to mutate effectively afterwards. Per-
haps this fact can explain why the non-portable visual steppers of
the Allegro CL and LispWorks implementations don’t work directly
with the source-editing facilities present in these IDEs. A possible
solution would be to represent source-code correlation in terms of
sub-expression paths in the form tree instead of character positions,
but it would still be hard to resist deletions and insertions at top
level. A more heavy-handed solution would lock the source file
read-only for the duration of the stepping session. However, users
are normally adverse to such confinements.

We also think it fortunate that stepping is implemented as an
increment to the existing stickers functionality. As in [9], we con-
sider it an advantage of the annotation-based systems that users
are allowed to instrument only the definitions they are interested
in. Indeed, it is often the case that steppers become tedious to op-
erate because they step on too much. Yet, in our system, users can
manually adjust the automatically placed stickers, removing the
ones they are not interested in, or adding others.

It may also be noted that the usual stepping paradigm where
the program is stopped at each point is only one of the possibilities
afforded by stickers. As we explained in sections 3.1 and 4, two
further ones constitute innovative means of debugging: the post-
mortem replay of sticker recordings and the visual decoration of
source code with colors indicating the state of the most recent
execution of each sticker.

In formulating the development of the SLY/Emacs stepper, we
have also described (1) a simple, portable technique for constructing
a source-tracking reader in terms of a compliant reader implemen-
tation and (2) a reliable technique to carry over source-tracking
information to macroexpansion. It is conceivable that other debug-
ging tools could be constructed from either of these elements.

The SLY/Emacs stepper described in this essay is an effective
example of a portable, visual stepping facility for the Common
Lisp ecosystem. To the best of our knowledge, it is indeed the only
system combining these characteristics. As such, there is little to
compare it against. The closest match could well lie outside of
Common Lisp, in the aforementioned edebug.el[7] stepper, an
annotation-based approach that is equally well integrated with the
source code editor. That stepper has a more developed interface, but
requires custom declarations for stepping into macro expansions,
something the SLY/Emacs stepper handles automatically. Its current
limitations notwithstanding, we believe that the underpinnings of
the SLY/Emacs stepper – stickers, a simple source-tracking reader,
and mnesic macroexpansion – are solid. We envision enhancements
to its interface, perhaps by incorporating ideas of non-portable
visual steppers, or steppers for other programming languages.



ELS’20, April 27–28 2020, Zürich, Switzerland João Távora

6 ACKNOWLEDGEMENTS
Wewould like to thank Luís Oliveira and Michael Kirkland for early
comments and advice when discussing the stepper feature, as well
as Andrew Lawson for the encouragement to produce this work.
We also offer thanks to the reviewers who provided very insightful
comments.

REFERENCES
[1] Free Software Foundation 1984. Emacs GNU Emacs: An extensible, customizable,

free/libre text editor — and more. Free Software Foundation. https://www.gnu.
org/software/emacs/

[2] LispWorks 2011. LispWorks IDE User Guide: The Stepper. LispWorks. http:
//www.lispworks.com/documentation/lw61/IDE-W/html/ide-w-496.htm

[3] Pascal Bourguignon. 2007. Implements the Common Lisp Reader. https://hub.
darcs.net/hu.dwim/hu.dwim.reader/browse/source/reader.lisp

[4] Pascal Bourguignon. 2012. Implements a Common Lisp stepper. https:
//gitlab.com/com-informatimago/com-informatimago/-/blob/master/common-

lisp/lisp/stepper.lisp
[5] Helmut Eller, Luke Gorrie, Eric Marsden, et al. 2003. SLIME: The Superior Lisp

Interaction Mode for Emacs. Common-Lisp.net. https://common-lisp.net/project/
slime/

[6] Ivo Haulsen and Angela Sodan. 1989. UnicStep-a visual stepper for COMMON
LISP: portability and language aspects. ACM Sigplan Lisp Pointers III (07 1989).
https://doi.org/10.1145/121999.122003

[7] Daniel LaLiberte. 1988. Edebug: a source-level debugger for Emacs Lisp. FSF.
https://github.com/emacs-mirror/emacs/blob/master/lisp/emacs-lisp/edebug.el

[8] Jan Moringen and Robert Strandh. 2018. A Portable, Source-tracking Reader
for Common Lisp. LaBRI, University of Bordeaux. https://github.com/s-
expressionists/Eclector/blob/master/papers/to-submit-1/eclector.tex

[9] Glen Randolph Parker. 1987. Annotation-Based Program Stepping. SIGPLAN
Lisp Pointers 1, 4 (Oct. 1987), 3–11. https://doi.org/10.1145/1317216.1317217

[10] Michael Raskin. 2017. Writing a best-effort portable code walker in Common
Lisp., In Proceedings of 10th European Lisp Simposium. 10th European Lisp
Simposium I, 1, 11. https://doi.org/10.5281/zenodo.3254669

[11] João Távora et al. 2014. SLY: Sylvester the Cat’s Common Lisp IDE. GitHub.
https://github.com/joaotavora/sly.git

https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
http://www.lispworks.com/documentation/lw61/IDE-W/html/ide-w-496.htm
http://www.lispworks.com/documentation/lw61/IDE-W/html/ide-w-496.htm
https://hub.darcs.net/hu.dwim/hu.dwim.reader/browse/source/reader.lisp
https://hub.darcs.net/hu.dwim/hu.dwim.reader/browse/source/reader.lisp
https://gitlab.com/com-informatimago/com-informatimago/-/blob/master/common-lisp/lisp/stepper.lisp
https://gitlab.com/com-informatimago/com-informatimago/-/blob/master/common-lisp/lisp/stepper.lisp
https://gitlab.com/com-informatimago/com-informatimago/-/blob/master/common-lisp/lisp/stepper.lisp
https://common-lisp.net/project/slime/
https://common-lisp.net/project/slime/
https://doi.org/10.1145/121999.122003
https://github.com/emacs-mirror/emacs/blob/master/lisp/emacs-lisp/edebug.el
https://github.com/s-expressionists/Eclector/blob/master/papers/to-submit-1/eclector.tex
https://github.com/s-expressionists/Eclector/blob/master/papers/to-submit-1/eclector.tex
https://doi.org/10.1145/1317216.1317217
https://doi.org/10.5281/zenodo.3254669
https://github.com/joaotavora/sly.git

	Abstract
	1 Introduction
	1.1 What is stepping
	1.2 Common Lisp stepping
	1.3 A portable, visual stepper for Common Lisp

	2 Related work
	3 Methods
	3.1 Stickers
	3.2 Source-tracking form reader
	3.3 Specialized code walker

	4 Results and further work
	4.1 Limitations concerning atoms
	4.2 Interface limitations
	4.3 Portability

	5 Discussion
	6 Acknowledgements
	References

