
LLVM Code Generation for Open Dylan
Peter S. Housel

housel@acm.org

ABSTRACT
The Open Dylan compiler, DFMC, was originally designed in the

1990s to compile Dylan language code targeting the 32-bit Intel

x86 platform, or other platforms via portable C. As platforms have

evolved since, this approach has been unable to provide efficient

code generation for a broader range of target platforms, or to ade-

quately support tools such as debuggers, profilers, and code cover-

age analyzers.

Developing a code generator for Open Dylan that uses the LLVM

compiler infrastructure is enabling us to support these goals and

modernize our implementation. This work describes the design

decisions and engineering trade-offs that have influenced the im-

plementation of the LLVM back-end and its associated run-time

support.

CCS CONCEPTS
• Software and its engineering→ Compilers; Runtime en-

vironments.
KEYWORDS

compilers, dylan programming language

ACM Reference Format:
Peter S. Housel. 2020. LLVMCode Generation for OpenDylan. In Proceedings
of the 13th European Lisp Symposium (ELS’20). ACM, New York, NY, USA,

6 pages. https://doi.org/10.5281/zenodo.3742567

1 INTRODUCTION
The Dylan programming language [8] is a member of the Lisp

family of languages designed to combine much of the dynamicity

of other Lisp dialects (such as Common Lisp) with features that

enable efficient compiled code and support application delivery

using stand-alone executables and shared libraries. One aspect

of the language design that enables these goals is library-centric

compilation. Program code is organized into individual libraries,

and all definitions for a library are submitted at once to the compiler.

Information about all of the source definitions in the library allows

the compiler to make use of Dylan’s sealing feature. Sealing a class

or a generic function guarantees to the compiler that it will not

be extended (through subclassing of classes, or adding methods to

a generic function) beyond what is in the library being compiled.

Dylan compilers can use sealing guarantees to statically enumerate

subtypes and applicable methods at compile time, enabling type

inference and optimizations such as method inlining and more

specific method dispatch.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ELS’20, April 27–28 2020, Zürich, Switzerland
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-2-9557474-4-5.

https://doi.org/10.5281/zenodo.3742567

The structure of the Open Dylan
1
compiler, called DFMC (the

Dylan Flow Machine Compiler) is shown in Figure 1. When DFMC

needs to compile a Dylan library from a set of source files, process-

ing goes through the following phases:

• The Reader parses the input (using a state-based lexical ana-

lyzer and a LALR parser) into an abstract syntax tree based on

syntactic fragments. Interleaved with parsing, the Macroex-

pander rewrites the AST according to macro definitions vis-

ible in the source file’s lexical scope. When the compiler

parses a define library definition, it may load the library

databases of any referenced libraries so that macro (and

other) definitions become visible.

• The Object Modeling and Conversion phases build compile-

time representations of bindings, objects, and code. After

conversion, code from methods and other definitions is ex-

pressed using a Dylan-centric intermediate representation

called Dylan Flow Machine or DFM. The DFM representa-

tion is effectively Static Single Assignment (SSA), though

any variables that are assigned are converted into stack-

allocated or heap-allocated value cells rather than being split

into distinct SSA values.

• The Optimization phase iteratively transforms DFM func-

tions, performing (among others) type inferencing, tail-call

elimination, constant folding, common subexpression elimi-

nation, dead code removal, and method inlining.

• The Linking and Emitting phases use one of the selectable

back-ends to write out modeled objects and code for final

code generation and linking, as discussed in detail below.

• After compilation, the compiler writes out a database file to

persist information about the library for import into other

libraries.

Before the LLVM back-end described in the present work was

implemented, DFMC provided two selectable back-ends:

• The C back-end transforms the DFM intermediate represen-

tation into C language source code so that the final machine

code generation task can be passed on to a platform C com-

piler. Run-time support for this back-end is also written in

C, and the Boehm-Demers-Weiser conservative garbage col-

lector [2] is used to provide memory allocation.

• The HARP back-end, which was the primary one used for

the commercial Dylan product, generates 32-bit Intel x86

machine code for the Windows, Linux, and FreeBSD oper-

ating systems. After transforming the DFM representation

into a HARP-specific machine-oriented representation, the

back-end does basic x86 instruction selection, graph-coloring

register allocation, and simple branch optimization before

directly writing out (in the Windows case) COFF object files.

1
Before it was released as open-source software, the Open Dylan implementation was

initially known as Harlequin Dylan, and later as Functional Developer

https://doi.org/10.5281/zenodo.3742567
https://doi.org/10.5281/zenodo.3742567

ELS’20, April 27–28 2020, Zürich, Switzerland Peter S. Housel

Reader

Macroexpander

Document
Document

Source Object Modeling

Conversion
Optimizer

HARP C LLVM

Library

Database
Library

Database
Library

Database

.obj .c .bc

Selectable

Back-ends

Fragment

AST DFM

DFMDFMDFM

Figure 1: DFMC Compiler Structure

Microsoft CV4 Symbolic Debug Information format is also

written into the object file output.

Most of the run-time support for this back-end is written

in the HARP machine representation, made available us-

ing a stand-alone runtime generator tool. The remainder of

the run-time is in C. Either the Boehm-Demers-Weiser con-

servative collector, or the Memory Pool System [3] (which

supports incremental generational collection) can be used,

selectable at build time.

2 THE LLVM BACK-END
The LLVM back-end was developed with the following goals in

mind:

• Support debug information on platforms other than Win-

dows.

• Expand support to other architectures while minimizing the

inefficiencies incurred by compiling via C code.

• Take advantage of optimizations provided by the LLVM com-

piler infrastructure.

• Eventually support integrationwith non-conservative garbage

collectors such as the Memory Pool System.

The following sections discuss details of the design decisions

implemented in the back-end.

2.1 Back-end Intermediate Representation
LLVM defines an SSA-based representation for code, along with an

extensive set of architecture-independent and architecture-specific

intrinsic functions. Once code is compiled into the LLVM IR, the

LLVM analysis and optimization phases and code generators can

output assembly or machine code for a variety of target architec-

tures and platforms. Most compilers using the LLVM infrastructure

construct the IR representation by interfacing with the LLVM li-

braries (either directly from C++ or indirectly via C bindings). Other

alternatives include writing out the LLVM assembly language repre-

sentation and letting the infrastructure parse it, and directly writing

out the IR in LLVM’s compact binary “bitcode” format.

Though Open Dylan provides a foreign-function interface that

would have allowed using the LLVM libraries through their C bind-

ings, it was judged that it would be easier long-term to use a Dylan-

native intermediate representation. This has allowed the interface

to fit better stylistically with the surrounding code. For instance,

the LLVM libraries construct IR objects such as types, constants,

and instructions within a context so that (through hash-consing)

semantically equivalent objects are actually identical. Since the

DFMC back-end does very little code analysis at the LLVM IR level,

this property is not as useful there, making the burden of always

making a context available less worthwhile.

Given a Dylan-native IR, the back-end could either write out

textual LLVM assembly language or bitcode. In addition to the

overhead of writing out and parsing textual representations, the

assembly language has historically not provided many compati-

bility guarantees as the LLVM language has evolved. Though the

documentation for the bitcode format representation of LLVM IR

is somewhat incomplete, often requiring reverse-engineering, the

relative stability of the format has made this effort worthwhile.

Though the native IR does not attempt to unify equivalent objects

such as LLVM types or constant expressions, the bitcode represen-

tation requires that they be unified and enumerated in order to

represent references. The Dylan LLVM bitcode writer does this at

bitcode output time, collecting all referenced IR objects into equiva-

lence classes and performing partition refinement before assigning

indices and writing out bitcode records for each item.

2.2 Type Representation
LLVM uses a typed intermediate representation. This means that

unlike the HARP back-end (but like the C back-end), the LLVM

back-end must take care to use the right type representation within

LLVM Code Generation for Open Dylan ELS’20, April 27–28 2020, Zürich, Switzerland

generated code and in run-time support routines, and to insert cast

operations when necessary.

Like many Lisp implementations, Open Dylan uses tagged point-

ers, with the lower two bits indicating whether a Dylan value

is a heap object, a (fixed-size) integer, or a character. At present

the LLVM generic byte pointer type i8* is used to represent Dy-

lan <object> values; in the future an alternative address space

marker may be added to the pointer type in order to mark garbage-

collectable pointers for the LLVM generator of static GC root infor-

mation.

When necessary, casts to other types are inserted at the point

of use. Operations on tagged integers or characters require an

inttoptr cast, along with (potentially) a shift to remove the tag.

Accesses to heap objects require a bitcast to a struct pointer

type reflecting the heap layout of the object. Dylan heap objects

are represented using a single header word, a pointer to a garbage-

collector “wrapper” structure (also used to provide concrete type

information at run time), followed by one or more pointer-sized

slots.

Objects may also have an optional “repeated slot” used to imple-

ment various types of containers. Repeated object pointer slots are

used for generic container types such as <simple-object-vector>,
and repeated “raw”-typed slots for specialty containers such as

<string>.
In addition to ordinary object pointer types that belong to the

Dylan value type hierarchy, Open Dylan supports a number of

raw types for values such as untagged bytes, machine words, and

floating-point values. These normally have a straightforward map-

ping to LLVM primitive types and are used to implement higher-

level operations and as part of the foreign-function interface.

2.3 Primitive Functions
The Open Dylan compiler defines a set of intrinsic “primitive” func-

tions, which are used in the implementation of the base dylan
library and other low-level libraries to represent operations such

as pointer equality, object memory allocation, numeric format con-

version, or raw memory access. The HARP and LLVM compiler

back-ends divide these primitive functions into three categories:

those that are expanded in-line when they are called, those that gen-

erate a call to a run-time support routine, and those that generate a

call to an implementation written in C. Many of these primitives

are called with or return raw-typed values.

The following demonstrates the implementation of the arith-

metic + operation on <single-float> using calls to primitive

functions that unbox the <single-float> values as raw values,

perform the addition as another raw value, and then box the result.

DFMC optimizations can make use of the fact that the boxing and

unboxing primitives are inverses of each other and allow them to

cancel each other out when calls to this method are inlined.

define sealed inline method \+

(x :: <single -float >, y :: <single -float >)

=> (z :: <single -float >)

primitive -raw -as-single -float

(primitive -single -float -add

(primitive -single -float -as-raw(x),

primitive -single -float -as-raw(y)))

end method;

Since the HARP back-end works primarily with word-size values,

and the C back-end is able to take advantage of C type promotion

rules, much of the Open Dylan code base was somewhat “loose”

with the types of arguments to primitives. The LLVM intermediate

language, being strictly typed, requires explicit integer widening

and narrowing operations, so the translation of primitive calls

frequently had to take this into account by adding automatic con-

versions. In some cases, explicit calls to cast primitives had to be

added to convert between pointer and (integer) address types.

2.4 Run-Time Support Routine Generation
The definition of the Dylan language requires that a base library

named dylan be provided so that programs can make use of the lan-

guage’s built-in macro syntax, classes, and functions by importing

the dylan module that it exports. The Open Dylan implementation

of this base library uses some “bootstrap” definitions found within

the source of the compiler, but with the bulk of the library written

as ordinary Dylan source files.

Included with the shared library generated for the dylan library

are the run-time support routines needed by all libraries written

in Dylan. These routines include implementations of the primitive

functions, helper routines that implement function entry points,

and interfaces with system facilities such as the garbage collector

or arithmetic trap handling.

To build the run-time support routines we use a specialized gen-

erator tool based on many of the libraries that make up DFMC. This

includes the reader, macroexpander, and enough of the modeling

phases that the tool can process the source for the dylan library.

This is desirable because many of the primitive functions and entry

points need to reference classes and functions defined in the base

library. Parsing the same source means that there is a single “source

of truth” for these definitions.

Listing 1 illustrates a compile-time expander for a simple prim-

itive function. The run-time support generator tool locates all of

the run-time primitive definitions such as this one and executes

them, causing the IR for support routines to be generated for output.

When necessary, these routines can access the compile-time models

for definitions found in the dylan library, giving information such

as the size and layout of <double-integer> class instances. Calls

to ins routines in the body of this definition insert LLVM basic

blocks and instructions into function definitions, which are then

written out (as bitcode) to be included in the run-time support.

It is often convenient for the run-time support routines written

in C (such as the interface to operating system thread and synchro-

nization primitives) to have access to the object layouts of a few

select Dylan types. To facilitate this, the run-time support generator

tool also writes out a C language header file with type definitions

corresponding to the definitions in the dylan library.

2.5 Entry Points and Calling Conventions
The Open Dylan implementation of multi-method dispatch [1] has

a number of different ways of generating code for function calls.

When the exact method to be called is known to the compiler

due to type inference and sealing rules, then DFMC can either

inline the method call or invoke the method’s internal entry point

ELS’20, April 27–28 2020, Zürich, Switzerland Peter S. Housel

Listing 1: Sample Run-Time Primitive Function Definition
define side -effect -free stateless dynamic -extent

&runtime -primitive -descriptor primitive -wrap -unsigned -abstract -integer
(x :: <raw -machine -word >) => (result :: <abstract -integer >);

let word -bits = back -end -word -size(be) * 8;
let maximum -fixed -integer

= generic/-(generic/ash(1, word -bits - $dylan -tag -bits - 1), 1);

// Check for greater than maximum -fixed -integer
let cmp -above = ins --icmp -ugt(be, x, maximum -fixed -integer);
ins --if (be , cmp -above)

// Allocate and initialize a <double -integer > instance
let class :: <&class > = dylan -value(#"<double -integer >");
let double -integer = op--allocate -untraced(be, class);
let low -slot -ptr

= op --getslotptr(be, double -integer , class , #"%% double -integer -low");
ins --store(be, x, low -slot -ptr);
let high -slot -ptr

= op --getslotptr(be, double -integer , class , #"%% double -integer -high ");
ins --store(be, 0, high -slot -ptr);
ins --bitcast(be, double -integer , $llvm -object -pointer -type)

ins --else
// Tag as a fixed integer
let shifted = ins --shl(be, integer -value , $dylan -tag -bits);
let tagged = ins --or(be, shifted , $dylan -tag -integer);
ins --inttoptr(be, tagged , $llvm -object -pointer -type)

end ins --if;
end;

(IEP) directly. In this case, because the exact arity of the called

function is known and any keyword arguments are already split

into separate arguments, the call is able to use the LLVM fastcc
calling convention, ensuring that as many arguments as possible

are passed in registers.

The compiler generates an internal entry point for each com-

piled method. Following the formal arguments, artificial arguments

representing the next applicable method(s) (used to implement

next-method calls) and the <method> object itself (so that closed-

over values stored in closure objects can be accessed). When these

values are not used, the caller passes LLVM undef values, allowing

the LLVM code generator to avoid emitting code to set them.

At the other extreme, generic functions about which nothing is

known are called using the external entry point (XEP) convention.

Because the number of arguments the function will accept is un-

known, the caller passes the <function> object and the number of

arguments at the head of the function arguments. Since the func-

tion arity is not guaranteed to match between the caller and the

entry point, and because the entry point may need to collect #rest
arguments or keyword arguments into a stack-allocated vector,

LLVM ccc (C calling convention) is used.

The XEP entry points are pre-generated as part of the run-time

support, using LLVM intermediate representation builders similar

to those used for primitive functions. Several external entry point

variants are available, for monomorphic (single-method) functions

with or without optional arguments, for object slot accessors, and

for generic functions that need to use the dispatch machinery. For

each variant, 20 different variants are generated, one for each pos-

sible required argument arity. The compiler initializes the xep slot

of each <function> object according to the function signature and

number of methods.

When polymorphic method dispatch is known to be required,

either at the call site or within the generic function’s external entry

point, then a decision tree of objects called engine nodes is built.
Every engine node has an engine node entry point, also generated

as part of the run-time support, most with multiple variants. For

example, a discriminator engine point is responsible for checking

the argument value of a single argument position and then choosing

with which child node discrimination should continue. Some of

these node types make use of dispatch code written in Dylan to

make discrimination decisions before chaining to the next node’s

entry point. Engine node entry points are passed the engine node

object, a reference to the dispatch “head”, and all of the function’s

required arguments. These are also able to use the LLVM fastcc
convention.

Once the applicable method is located, when it can, the leaf en-

gine node will call into its internal entry point directly. For methods

with keyword parameters or other optional arguments, the method

entry point (MEP) is used instead. The MEP scans through the

optional arguments and determines the values of each keyword

argument (explicitly passed or defaulted) and then chains to the

IEP with a tail-call.

LLVM Code Generation for Open Dylan ELS’20, April 27–28 2020, Zürich, Switzerland

2.6 Multiple Return Values
Like Common Lisp, the Dylan language allows functions to return

zero or more values. Most standard calling conventions are not

designed to support variable numbers of return values, making

this a challenge to support. DFMC solves this with a vector of 64

values in thread-local storage (part of a Thread Environment Block

structure). This storage is effectively a large register file, one that

sometimes needs to be spilled to stack and restored. The primary

(zeroth) value is returned in the main function return register, and

(in the HARP and C back-ends) the return value count is placed in

thread-local storage.

The LLVMback-end takes advantage of the fact that most current

architecture ABIs support returning a structure of up to two words

in registers. IEPs and the generated entry points return a type

defined as:

%struct.mv = type { i8*, i8 }

placing the count of return values in the second word.

When a function returning multiple values is inlined, the inter-

mediate return values may be available as local SSA values. Though

the DFM representation does not distinguish between different

kinds of multiple-value temporaries, the LLVM back-end makes an

effort to ensure that a local SSA representation is used rather than

forcing them to go through thread-local storage. These two strate-

gies reduce the overhead of working with multi-value functions.

2.7 Foreign Function Interface
Support for interfacing with C and other languages has been a goal

of most Dylan language implementations. Using the raw types to

represent scalar values, along with facilities for modeling C struc-

tures, variables, and functions, Open Dylan is able to interoperate

with a variety of C language application programming interfaces.

Some support for calling Objective C methods is also available.

The LLVM tools’ support for link-time optimization means that

code from Open Dylan and other languages using the LLVM inter-

mediate representation can be optimized or inlined across language

barriers.

One challenge for the LLVM back-end is that while the LLVM

intermediate representation is able to isolate front-end compilers

from most of the specifics of the calling convention, it does not hide

many of the details of passing and returning aggregate values such

as structures and arrays. Providing platform-specific support for

transforming aggregate argument and return values into function

signatures that LLVM will support, just as the Clang compiler does,

is an area for future work.

2.8 Non-Local Exit and Unwind-Protect
The Dylan language supports stack-unwinding non-local exit and

forced cleanups during unwinding with the block construct and
its cleanup clause.

The HARP code generator implements this by building a chain

of bind-exit and unwind-protect frames on the stack. Non-local

exits traverse this chain, executing unwind-protect cleanups and

then restoring the final frame and instruction pointers.

The LLVM back-end reduces the overhead of constructing bind-

exit frames by using the Itanium C++ ABI facilities for “zero-cost”

exception handling, which optimizes for the case where the excep-

tion is not taken. When starting a bind-exit block, only a single

word uniquely identifying the exit block needs to be stored into

the bind-exit frame. Function calls within the block that might po-

tentially cause an unwind contain branches to LLVM landingpad
blocks that handle the unwind or cleanup. LLVM code generation

builds tables that can locate these exception landing pads with

the help of a Dylan-specific “personality function” included in the

run-time support routines.

In addition to its low overhead in the usual case, this scheme

also has the potential to interoperate well with C++ exception

handling. The disadvantage, however, is that when non-local exits

are frequent the cost can be quite high, mostly due to the overhead

of locating the unwind tables using the system dynamic linker.

The Gabriel ctak benchmark [4] is an example of a program that

performs poorly with this scheme.

2.9 Thread-Local Storage
Open Dylan supports module variables that are thread-local. In the

LLVM back-end, these are implemented using the thread_local
storage model for global variables. This requires that when a new

thread is started, thread-local variables in all loaded libraries be set

to their initialization values, and that the storage locations be added

to the set of roots known to the garbage collector. Dynamically

loading a new library can also cause new thread-local storage to be

added.

2.10 Debugging Support
The LLVM intermediate representation can express source-level

debugging information, including source code locations, local and

global variable locations, and types. This information is translated

into platform-specific debug information, such as DWARF or Mi-

crosoft CodeView format. The Open Dylan LLVM back-end can

generate this debug metadata, so that profilers, code coverage ana-

lyzers, and other tools can work transparently with Dylan libraries.

The LLVM project’s LLDB debugger does require that it recog-

nize a language type before it will make use of local variable and

type information. The encoding of local variable and type metadata

was designed to be compatible with that generated by the Clang

compiler, and so we were able to submit a patch to the LLDB de-

velopers to explicitly support the Dylan language. Most debugging

tasks can be handled using this support.

The Open Dylan programming environment includes a debug-

ger that operates on a remote process. In addition to supporting

breakpoints, stepping, and reading local variables, the debugger can

also compile definitions and dynamically load them into the run-

ning remote process for execution, implementing a REPL for Dylan.

Redefinitions are handled by compiling libraries in “loose” mode,

which suppresses sealing and other kinds of optimizations, making

the compiled code rely on dynamic typing and introspection opera-

tions. While this has long been supported on theWindows platform

using the HARP code generator, we are currently expanding it to

work with LLVM-generated code, integrating the LLVM debugger

as a component to handle low-level and platform-specific debugger

functionality.

ELS’20, April 27–28 2020, Zürich, Switzerland Peter S. Housel

3 BUILD SYSTEM INTEGRATION
The Open Dylan compiler uses the system linker to link compiler

output into shared libraries; for the LLVM and C back-ends, ex-

ternal tools are also used for the final machine code generation

task. Because different platforms, different toolchains, and even

individual installations can vary widely, it is helpful to have a way

to configure how Open Dylan invokes these external tools without

requiring changes to the compiler. To allow this, the Open Dylan

compiler implements an interpreted domain-specific language for

toolchain builds, Christopher Seiwald’s Jam [7], re-implemented

in Dylan for ease of integration. Toolchain-specific build scripts

provide Jam functions that can define build steps and establish

dependency relationships between build products. When the Open

Dylan compiler has finished compiling all libraries needed for a

project, it invokes these build script functions to determine final

code generation and linking steps. These steps are then executed

in parallel as dependencies and CPU resources allow.

Taking this approach to configuring build tools has made it

possible to support all three compiler back-ends and a variety of

external toolchains on Windows, Linux, BSD, and macOS platforms

with a minimum of effort.

4 RELATEDWORK
The CLASP[5, 6] implementation of Common Lisp is also designed

to compile a Lisp using the LLVM compiler infrastructure. As such,

there are many similarities in implementation techniques, including

the (external) calling convention, multiple-value return, and stack

unwinding. Dylan does have the advantage of being able to take

advantage of sealing information; for example, inlining of arith-

metic and other frequent operations can be handled in a general

way rather than with special-casing in the compiler.

5 CONCLUSION AND FUTUREWORK
The LLVM back-end to the Open Dylan compiler demonstrates a

number of techniques for building a Lisp-family compiler using the

general-purpose language implemetation infrastructure provided

by the LLVM project.

Future work will likely include adding support for LLVM type-

based alias analysis metadata, allowing the LLVM optimizer more

flexibility in reordering memory operations when it can infer that

different object pointers do not modify the same object. We also

hope to adapt our code generator to make use of LLVM’s garbage

collection safepoints facility, which generates GC root stack map

information for run-time garbage collection, and explicitly models

at compile time the relocations that a garbage collectormay perform.

This would allow us to use a relocating garbage collector such as

the Memory Pool System, expanding our GC options beyond our

current use of conservative collectors such the Boehm-Demers-

Weiser collector. Completion of these features will allow us to satisfy

the original goals we set for the LLVM back-end.

6 ACKNOWLEDGEMENTS
The Open Dylan developers gratefully acknowledge Functional

Objects for making the Functional Developer code base available

as open-source software, as well as the many developers who have

continued to improve it since.

REFERENCES
[1] Jonathan Bachrach and Glenn Burke. Partial dispatch: Optimizing dynamically-

dispatched multimethod calls with compile-time types and runtime feedback.

Technical report, 1999. URL https://people.eecs.berkeley.edu/~jrb/Projects/partial-

dispatch.htm.

[2] Hans-J. Boehm. Simple garbage-collector-safety. In Proceedings of the ACM
SIGPLAN 1996 Conference on Programming Language Design and Implementation,
PLDI ’96, page 89–98, New York, NY, USA, 1996. Association for Computing

Machinery. ISBN 0897917952. doi: 10.1145/231379.231394. URL https://doi.org/10.

1145/231379.231394.

[3] Richard Brooksby and Nicholas Barnes. The memory pool system: Thirty person-

years of memory management development goes open source. Technical report,

2002. URL https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-

paper.

[4] Richard P. Gabriel. Performance and Evaluation of Lisp Systems. MIT Press,

Cambridge, Mass., 1985. ISBN 0-262-07093-6.

[5] Christian E. Schafmeister. Clasp - a common lisp that interoperates with c++

and uses the llvm backend. In Proceedings of the 8th European Lisp Symposium,

ELS2015, pages 90–91. European Lisp Scientific Activities Association, 2015.

[6] Christian E. Schafmeister and Alex Wood. Clasp common lisp implementation

and optimization. In Proceedings of the 11th European Lisp Symposium, ELS2018,

pages 59–64, Marbella, Spain, 2018. European Lisp Scientific Activities Association.

ISBN 9782955747421.

[7] Christopher Seiwald. Jam: Make(1) redux. In Proceedings of the USENIX Ap-
plications Development Symposium Proceedings on USENIX Applications Develop-
ment Symposium Proceedings, UNIX’94, pages 79–88. USENIX Association, 1994.

URL https://www.usenix.org/legacy/publications/library/proceedings/appdev94/

seiwald.html.

[8] Andrew Shalit. The Dylan Reference Manual. Addison-Wesley Developer’s Press,

Reading, MA, 1996.

https://people.eecs.berkeley.edu/~jrb/Projects/partial-dispatch.htm
https://people.eecs.berkeley.edu/~jrb/Projects/partial-dispatch.htm
https://doi.org/10.1145/231379.231394
https://doi.org/10.1145/231379.231394
https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-paper
https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-paper
https://www.usenix.org/legacy/publications/library/proceedings/appdev94/seiwald.html
https://www.usenix.org/legacy/publications/library/proceedings/appdev94/seiwald.html

	Abstract
	1 Introduction
	2 The LLVM Back-End
	2.1 Back-end Intermediate Representation
	2.2 Type Representation
	2.3 Primitive Functions
	2.4 Run-Time Support Routine Generation
	2.5 Entry Points and Calling Conventions
	2.6 Multiple Return Values
	2.7 Foreign Function Interface
	2.8 Non-Local Exit and Unwind-Protect
	2.9 Thread-Local Storage
	2.10 Debugging Support

	3 Build System Integration
	4 Related Work
	5 Conclusion and Future Work
	6 Acknowledgements
	References

