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Abstract—Flexible electronics is becoming more prevalent in
a wide range of applications, particularly wearable biomedical
devices. These devices would greatly benefit from in-built in-
telligence allowing them to process data and identify features,
in order to reduce transmission and power requirements. In
this work, we present a novel time-domain multiply-accumulate
(MAC) engine architecture that can act as the basic block of an
artificial analogue neural network. The design does not require
analogue voltage buffers, making them easier to realise in flexible
technologies and consumes less power than conventional methods.
The research could be used in future to construct a low power
classifier for a low cost, flexible wearable biomedical sensor.

Index Terms—Flexible Electronics, MAC Operation, Neural
Networks, Analogue Signal Processing, Wearable Sensors

I. INTRODUCTION

For over a decade, flexible electronics have become increas-
ingly popular in applications requiring wearable biomedical
sensors [1]. The use of flexible electronics enables a more
conformal skin-sensor interface, which allows them to be worn
for a longer period of time and provide more accurate results.
Additionally, they are also generally very low cost and hence
can be disposable [1]. While many manufacturers now provide
flexible PCBs that can house off-the-shelf integrated circuits
(ICs), the truly conformal devices are thin-film electronics
or conductive substances which are printed onto polymers.
In wearable applications, these designs are often referred to
electronic ’skin’ or ’tattoos’ [2].

While there are many examples of flexible sensors [3],
[4], these devices could benefit greatly from efficient data
processing that reduces power and transmission requirements.
There have been several works showing CPUs implemented
in thin-film technology on flexible substrates since 2000 [5],
[6], and the first SoC (System on Chip, 32-bit CPU with
memory and peripherals) research prototype on plastic was
announced by Arm Ltd. and PragmatIC in 2015 [7], [8].
However, these technologies are in relatively early stages of
development and non-complementary (Pseudo-CMOS). With
resistive [8] or NMOS [6] pull-ups, they are susceptible to
high leakage currents. While incorporating full-scale SoCs
would provide adequate processing, wearable flexible sensors
are typically short-life and single-use, meaning that these
energy hungry, complex systems would be too costly to use
in this application. In contrast, designing a bespoke classifier
to identify patterns from the sensor data automatically could
save significant power, area and cost [9].

A conventional classifier using standard digital cells will still
suffer from leakage. Conversely, analogue computing has long
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Fig. 1. A concept image of a neural network on flexible electronics interfacing
to a chemical sensing array. The operation of a single neuron is shown, X is
a vector of N inputs, W is a vector of N weights, b is a bias term and y is
the output value.

been known to provide advantages of energy efficiency and
real-time computation [10]. Furthermore, bio-inspired neural
networks are increasingly being used to classify sensors data
and a number of groups have presented analogue-based neural
networks in recent years [11]–[13].

Implementing analogue circuits in pseudo-CMOS technol-
ogy can be challenging, in particular due to difficulty in
buffering signals. In this research, we propose utilising time-
domain encoding to avoid these challenges. Previously, we
have used time encoding in electrochemical sensor front-ends
to create robust, low-power sensor arrays [14]. By creating a
time-domain analogue neural network in flexible technology,
it is feasible to integrate these two systems to create a bio-
inspired neural network with electrochemical sensor inputs for
a wearable and disposable biomedical device, as illustrated in
Fig. 1.

Thus, this paper presents a novel design of a multiply-
accumulate (MAC) engine, the core building-block of a neural
network, which uses time-domain inputs to create a robust
architecture applicable to wearable flexible biomedical devices.
We demonstrate a 10 times reduction in power consumption
over the digital equivalent implementation by eliminating leak-
age currents inherent to pseudo-CMOS technologies, while
acheiving close to ideal accuracy and using fewer gates and
overall all less area.

In Section II we cover some fundamental principles of artifi-
cial neural networks. Section III then covers challenges specific
to analogue neural networks, before Section IV introduces our
proposed architecture. Section V presents the results of this
architecture before we conclude and discuss future work in
Section VI.



II. NEURAL NETWORK FUNDAMENTALS

A neural network typically consists of three layers; an
input layer, a number of fully connected hidden layers and an
output layer. Each layer consists of a certain number of nodes,
or ’neurons’. In the input and output layers, the number of
neurons is dictated by the number of inputs and outputs to
the neural network respectively. The number of neurons in
each hidden layer, and quantity of hidden layers overall, gives
an indication of the complexity of the network. This concept
takes inspiration from biology, where the inputs to a neuron
determine how likely it is to fire. The artificial neuron, shown
in Fig. 1, takes in a set of inputs, multiplies each by a weight,
and adds the total sum to a bias. This is called a multiply
accumulate (MAC) operation, the result of which represents
the importance of that particular neuron to the network. Finally,
a non-linear - or ’activation’ - function, is applied to the result
of the MAC operation to give the neural network non-linearity.
A MAC operation or set of parallel MAC operations followed
by a decision, without the activation function, can be referred
to as a linear classifier, and hence the MAC engine is a basic
building block of a neural network. For a single class (output),
where a decision is made based upon a threshold, a linear
classifier can be represented by a simple equation, as shown
in Fig 1. Typically, if there is just one class, the output y is a
single value and the input data is said to be part of that class
if y is greater than 0, and not otherwise. This model can then
be extended to multiple classes, as shown in (1).

Y1×M = X1×N .WN×M + B1×M (1)

In this case there are M classes, so X is still a vector of N
inputs, W is now an N x M matrix of weights, B is a vector
of M biases and Y is a vector of M outputs. The correct class
can be determined by the maximum value in Y.

III. ANALOGUE COMPUTATION FOR NEURAL NETWORKS

A digital implementation of a MAC operation with instan-
tiated digital multipliers and adders requires a large number
of gates per operation which grows with network size. More
recently, methods of using the inherent physics of electrical
components (for example, Ohm’s law and Kirchoff’s Current
Law) have been reported to carry out these multiply and add
operations in the analogue domain for an area and energy
efficient solution. Furthermore, with the outputs of many
biological sensors in the analogue domain, it can be more
efficient to process in analogue before converting to digital.

A. Crossbars

A typical architecture for performing matrix multiplication
with analogue components is by using a crossbar network [12],
[15]. A crossbar network encodes the weights as a matrix of
conductances (resistors) which connect each input row and
output column. If the column potential is assumed to be 0
V, and the inputs are applied as an analogue voltage on the
rows, then the current flowing out of each column is given
by (2). This architecture is now particularly being used for
memristor-based networks [12]. Thus, by simply arranging
these passive components in a crossbar network, a real-time
multiply accumulate engine is created.
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Fig. 2. The crossbar architecture for magnitude-encoded inputs. Implemented
for comparison purposes in this work.

In many neural network models, inputs and weights can
also be negative. To obtain an equivalent result to (2), we
split the positive and negative input-weight products into
two accumulations and the difference is then calculated. To
implement this, we duplicate the crossbar network to create
two branches for positive and negative weights respectively.
Each branch uses the absolute values of the weights. We
then use a switched capacitor subtractor to compute the final
result. Negative inputs also need to be considered, as this
changes which accumulation the input-weight product should
be added to. To solve this, we raise the potential of the crossbar
output column to a virtual ground which corresponds to a zero
input. Consequently, negative inputs below this potential cause
currents to leave the branch and reduce the accumulation. Fig.
2 shows a schematic of this solution. Additional features of
this schematic are discussed in Section III-B.

Iout = Vin,0G0 + Vin,1G1 + ...+ Vin,N−1GN−1 (2)

B. Crossbar Challenges

One of the main challenges in an analogue crossbar network
is the loading effect that occurs when inputs are shared
between multiple output classes. Each subsequent branch adds
additional load impedance to the input row, affecting the input
magnitude and reducing the accuracy of the overall network.
This is known as sneak current [11]. Therefore for a larger
network, either compensation schemes or many buffers are
required for each branch and input. To be confident that an
input signal is reaching a branch without degradation, N x
M buffers are required, which is infeasible in a large system.
Furthermore, in pseudo-CMOS technologies it is difficult to
create a conventional analogue buffer. A basic source follower
(SF) is a functioning alternative, but suffers from non-linearity
and loading effects introducing further errors to the network.
Consequently, to ensure the architecture shown in Fig. 2
operates correctly, an SF buffer is used at every input in
both branches. A compensation conductance, GC+, is used to
balance the overall branch impedance with that of the negative
branch, ensuring the buffer gain is matched.

To overcome the challenges of analogue buffering, this work
proposes to encode inputs in the time-domain. This approach,
presented in the following section, improves robustness by
removing the dependence on the amplitude of the signal, hence
the loading effect of a large resistive array is not critical.
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Fig. 3. The capacitor voltage Vcap increases linearly with a constant current
a), which can be controlled with the binary weighted current mirror b).

IV. THE PROPOSED ARCHITECTURE

Time encoding of data is a popular technique whereby the
signal is quantised as a pulse width. However, sampling in
time requires a capacitive storage which, if implemented in
a crossbar architecture with constant voltage inputs, would
induce a non-linear charge curve. Instead, our solution departs
from the typical crossbar architecture to charge a capacitor
linearly using a constant current, as shown in Fig. 3a, which we
can achieve using current mirrors provided the output device
remains in saturation. In this section, we describe how to map
inputs and weights to this design to obtain equivalent operation
to the crossbar architecture to emulate a MAC engine.

A. Representing Inputs and Weights in Current Mode

To encode an input in time, it is straightforward to represent
the magnitude as a pulse width. To represent weights, we can
use the property of current mirrors that output to input ratio
is dependent on the W/L ratios of the devices used. Thus,
we can use weighted current mirrors to represent a full range
of weights, as shown in Fig. 3b. With the outputs connected
together, these weighted mirrors create a current proportional
to the sum of the neuron’s weights, given by (3). By connecting
the input pulses to the gate switches of the corresponding
output device, we obtain a current profile that when integrated
gives a total charge equivalent to the weighted sum of inputs.

Iout(t) = Iref
G0

GU
+ Iref

G1

GU
+ ...+ Iref

GN−1

GU
(3)

We now connect the output current to a capacitor, which
is reset by connecting both terminals to VDD. The charge
delivered to the capacitor during the calculation window gives
it a final voltage that is a weighted sum of the input-weight
products, given by (4). This is equivalent to multiplying (2) by
a sampling resistance, ’R’.

Vc−out =
1

C

N−1∑
i=0

Iout,iTin,i (4)

We also need to consider negative inputs and weights. The
latter can be dealt with by using two branches and a subtractor,
as explained in Section III-A, but negative inputs must be
handled differently, since the direction of current flow can’t
be changed in a current mirror. In the proposed architecture,
shown in Fig. 4, is a capacitor in each branch, one accumulat-
ing the positive input-weight products, the other the negative.
Inputs can be directed to the appropriate accumulation using
a demultiplexer, which directs the input pulses to the correct
branch. If the weights are fixed, the input control signal, XSW ,
can be connected for each input depending on the sign of the
corresponding weight.
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Fig. 4. Final architecture of the current mode, time encoding architecture.

V. SIMULATION RESULTS

The time encoding architecture (TEA) proposed in Section
IV was simulated and results were compared to a crossbar
design described in Section III-A, henceforth known as mag-
nitude encoding architecture (MEA). Both architectures were
designed and simulated in PragmatIC’s sub-micron process
[8]. The MEA uses source follower buffers and a virtual
ground to handle negative inputs. The key metrics evaluated
were accuracy and power consumption. For comparison, an
equivalent MAC engine was synthesised from VHDL code.

A. Data Sets

Accuracy was tested using a set of 1000 generated data
points, each with 8 ’properties’, corresponding to inputs, and
assigned to one of three output classes. A model was then
created with a set of weights and a bias to give an ideal
accuracy, allowing comparison of the MAC engine model
accuracy with a benchmark. The data points were converted
into voltages or pulse widths, and the voltage output of each
neuron were compared through a ’maximum’ function to
determine the chosen class.

B. Accuracy Results

As shown in Table I, the accuracy of the MEA is very
dependent on the value set for the virtual ground (i.e. the
potential of the column on the crossbar network). While the
inputs are scaled such that 2.25V corresponds to ’0’, there is
a 10.6% accuracy loss compared to the model. This is due to
the loading effect on the buffers described in section III-B.
By setting this virtual ground to 2.13 V, the value of a zero
input into the non-ideal loaded buffer, the accuracy improves
to 89.3%, a loss of 0.6%. The solution of adjusting the virtual
ground is not practical however, as it would have to be tuned
for each new set of weights.

The TEA, for the same size network, achieves an 89.6%
accuracy, a loss of 0.3%. Increasing the time allowed for the
subtraction capacitor to sample the two accumulation values
actually causes the percentage accuracy to increase above that
of the model by 0.2%, which is believed to be a feature of the
data used. The accuracy of this architecture is also affected by
the balance between the size of the storage capacitor and the
maximum input pulse width. If the capacitor is too small when
the maximum input is applied, the voltage stored will increase
to the level where the current mirrors drop out of saturation,
causing the charging current to decrease.

The two architectures were also compared in a different
model with two additional classes. The new model had a
different set of weights and new expected accuracy of 76.7%. It



TABLE I
ACCURACY RESULTS FOR 8 X 3 NETWORKS

Model Condition Accuracy

Ideal Model 8 Inputs, 3 Outputs 89.9 %

Magnitude
encoding

Virtual ground of 2.25V 79.3 %

Virtual ground of 2.13V 89.3 %

Time
encoding

Sampling time of 20µs 89.6 %

Sampling time of 70µs 90.1 %

142.9

8.3
8.7

8 x 3 Magnitude Encoding
(µW)

Input Buffers

Positive Output Buffer

Negative Output Buffer
102

12.7

14.3

7.56
8 x 3 Time Encoding
(µW) 

Demultiplexer

Positive Branch

Negative Branch

Reference Current, Iref

Total = 159.9 µW Total = 136.6 µW

Fig. 5. Power consumption of the presented analogue architectures.

was found that the TEA maintained it’s high accuracy without
adjusting any parameters, achieving 78.6%. In contrast the
MEA accuracy dropped significantly to 20.3%. This is due
to the loading effects on the buffers, showing that the network
would need to be re-tuned for each new set of weights.

C. Power Consumption and Performance Comparison

The total power consumption for the two 8 x 3 architectures
was simulated and averaged over a computation cycle. A
breakdown is shown in Fig. 5. The TEA shows a lower power
consumption of 136.6 µW, as it does not require the analogue
buffers which account for the bulk power loss in the MEA. It
can also be seen that the majority of power (almost 75%) in
the TEA is consumed by the demultiplexers.

An equivalent digital implementation of the same 8x3 MAC
engine array was synthesised for comparison with the analogue
architectures. The comparison is shown in Table II. Six-bit
values were used for input and output signals and the weights
were fixed. Once again, due to the pseudo-CMOS nature
of the technology, leakage dominates power consumption,
accounting for 98.5% of the all-digital total, although there
was no optimisation of the design to reduce this. Overall, these
simulations show that in this technology analogue architectures
consume significantly lower power (98.8% and 99% less for
the MEA and TEA respectively) compared to the equivalent
digital implementation.

Finally, a figure of merit (FoM) summarises the performance
of the architectures as million operations per second per
watt (MOPS/W), and highlights the power efficiency of the
analogue approaches. The choice between the MEA and TEA
will be dictated by the application requirements for speed,
area and accuracy. As described in Section III-B, problems
requiring larger networks are expected to scale better using
the proposed TEA approach.

VI. CONCLUSION

This paper has presented a time-domain current-mode ar-
chitecture for an analogue neural network MAC engine on
flexible electronics. By using this modality, errors due to non-
ideal buffers and loading effects are negated, as the weights

TABLE II
A COMPARISON OF ANALOGUE AND DIGITAL IMPLEMENTATIONS

SIMULATED IN THE PragmatIC PROCESS

Attribute All-Digital
Implementation

Magnitude
Encoding

Time
Encoding

Accuracy 89.9 % 89.3 % 90.1 %

Power (µW) 195 µW (Switching)
13 mW (Leakage) 159.9 136.6

Compute Time (µs) 10 50 150
FoM (MOPS/W) 364 6004 2343

of each branch do not affect the input currents. The proposed
architecture achieves close to model accuracy and consumes
137 µW on average, lower than a conventional analogue
implementation and an order of magnitude lower than an
equivalent digital implementation in this technology.

As a result, this technique could provide a viable method
of implementing neural networks in flexible electronics, en-
abling intelligence in sensing nodes. This could particularly
be applied to wearable chemical sensors where there is a
large amount of information available in which patterns of
physiological changes could be identified.
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