

Tutorial accompanying the study ”Computer-Assisted Language
Comparison: State of the Art”

Wu, Mei-Shin; Schweikhard, Nathanael E.; Bodt, Timothaeus A.; Hill, Nathan W.; List, Johann-Mattis

This tutorial supplements the study "Computer-Assisted Language Comparison: State of the

Art". In this tutorial, we explain in detail, how our workflow can be tested and applied.

The workflow consists of several Python libraries that interact, one producing the data

that can be used by the other. Since the data is available in different stages, each stage allows

us to intervene by correcting errors manually that were made by the automated approach.

For users who are interested in testing our workflow on their local machine or further

applying it in their own research, some basic knowledge of the Python programming language

and the commandline will be required. All the software offered here is available in the form of

free software. For more information on LingPy, the main programming library used here, we

recommend users to check the tutorial accompanying the study “Sequence comparison in 1

computational historical linguistics” by List et al. (2018)[1]. 2

1. Code Ocean Capsule

In order to facilitate it for users to quickly test our workflows without installing the software, we

have set up a Code Ocean Capsule which users can use to run the code remotely. Code Ocean

is an open access platform which enables researchers to reproduce their or others’

experiments. For a detailed introduction to the Code Ocean platform , please refer to the 3

website. To see how our experiments can be run from within the Code Ocean Capsule, follow

the following steps:

a) Navigate to the capsule: https://codeocean.com/capsule/8178287/tree/v2

b) Press the ​Re-Run​ button to reproduce the results.

c) View the progression in the ​Terminal​ panel.

d) Download all results and unzip the .zip file for further inspection on EDICTOR.

1 ​https://github.com/lingpy/lingpy-tutorial
2 ​https://academic.oup.com/jole/article/3/2/130/5050100
3 ​https://codeocean.com/

https://github.com/lingpy/lingpy-tutorial
https://academic.oup.com/jole/article/3/2/130/5050100
https://codeocean.com/

The following files can be found in the downloaded file:

File Stage Section

D_Chen_subset.tsv From raw data to tokenized data 3.1

D_Chen_partial.tsv From Tokenized Data to Cognate Sets 3.2

D_Chen_aligned.tsv From Cognate Sets to Alignments 3.3

D_Chen_crossids.tsv From Alignments to Cross-Semantic Cognates 3.4

D_Chen_patterns.tsv From Cross-Semantic Cognates to Sound
Correspondence

3.5

D_Chen_distance.dst Validation 4.2, 4.3

D_Chen_tree.tre Validation 4.2, 4.3

2. Installation Instructions

We assume that users who are interested in running the workflow on their local machine are

familiar with the essentials of command-line operations and system administration on either

Unix-like systems (such as Linux and MacOS) or Windows systems. Also, users should have

Python installed, including the package manager ​pip​. Additionally, the version control system 4 5

4 ​https://www.python.org/​, Version 3.5 or higher
5 ​https://git-scm.com/

https://www.python.org/
https://git-scm.com/

git ​will be required. We strongly encourage users to run this code in a virtual environment. A

virtual environment is a practical solution for creating independent configurations for testing and

experimenting, with no interference on the system-wide installation and without requiring

complex virtualization or containerization solutions. The Python Packaging User Guide gives 6

clear instructions on setting up a virtual environment on Windows, Linux and macOS.

We start by installing the dependencies from the commandline. In order to do so, we first

download the code that we will use with help of​ ​git​.

$ git clone https://github.com/lingpy/workflow-paper.git

$ cd workflow-paper

Now that we have done this, we can install all the packages we will need with help of ​pip​.

$ pip install -r requirements.txt

Now that this has been done, we need to configure the access to reference catalogs, such as

Concepticon and CLTS in order to make sure that they can be accessed readily by the code. 7 8

This can be done with help of the ​catconfig argument submitted with the ​cldfbench package

which organizes the linguistic datasets.

$ cldfbench catconfig

You will be prompted to ask if you want to clone actual versions of Concepticon, Glottolog, and

CLTS, and the easiest way to deal with this is to agree and type “y” in all cases.

3. Getting Started

There are two basic ways in which you can run our workflow:

1. You can run it by downloading a set of Python scripts and running them directly on your

computer.

6 ​https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
7 ​https://github.com/concepticon/concepticon-data
8 ​https://github.com/cldf-clts/clts/

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://github.com/concepticon/concepticon-data
https://github.com/cldf-clts/clts/

2. You can use the ​cldfbench​ package to run the commands via the commandline, without

downloading the data directly.

The advantage of solution 2 is that you do not have to download extra data, since we have

integrated the code directly in the ​lexibank version of the dataset of Hmong Mien languages by

Chén (2012)[2]. Once this dataset has been installed (and this is the first package we have

installed in the previous section as part of all dependencies needed), you can type commands

on your commandline, and the code will be carried out. The disadvantage is that the code

example itself is not that easy to process for people less experienced with Python. For this

reason, we will only note the commands in each of the steps we discuss in the following, and

not explain them in more detail.

3.1 From Raw Data to Tokenized Data

The first script essentially loads the data from the repository and creates a wordlist that contains

a subselection of all the data that was used. Some aspects of the more difficult “lifting” of data

have already been done and distributed along with the original data package , which specifically 9

also contains the orthography profile in the file ​etc/orthography.tsv and can be automatically

applied with help of the ​cldfbench​ package.

$ cldfbench lexibank.makecldf chenhmongmien

But since the data is available in the form of a ​cldf package with the original orthography

already tokenized to the formats we need, you can also skip this step and convert the data to

the wordlist format required by the​ ​lingpy​ package.

$ python 1_select.py

If you want to test the version from the CLDF-repository directly with​ ​cldfbench​, you can type:

$ cldfbench chenhmongmien.wf_select.

This will select a part of the languages and a part of the concepts, as indicated in the main study

and write them to a file D_Chen_subsets.tsv​. Additionally, you will see some statistics on the

9 ​https://github.com/lexibank/chenhmongmien

https://github.com/lexibank/chenhmongmien

terminal, specifically a table indicating the coverage for each language. If you want to select all

languages, and not just a subset, type:

$ python 1_select.py all

The output ​A_Chen_subset.tsv is generated due to the argument all is used. Once the argument

all is used in the first stage, it has to be added to the rest of stages to ensure that the workflows

process the correct files.

Doculect Words Coverage

Bana 502 1.00

BiaoMin 488 0.97

CentralGuizhouChuanqiandian 454 0.90

Chuanqiandian 501 1.00

EasternBahen 492 0.98

EasternLuobuohe 499 0.99

EasternQiandong 442 0.88

EasternXiangxi 492 0.98

Numao 490 0.98

WesternBaheng 500 1.00

WesternLuobuohe 488 0.97

WesternQiandong 494 0.98

WesternXiangxi 502 1.00

Younuo 500 1.00

ZaoMin 455 0.91

Already now you can inspect the data with the help of the ​EDICTOR tool. In order to do so,

open the tool’s website at ​https://digling.org/edictor/ and wait until the page is loaded (note that

we recommend to browse EDICTOR in Firefox, but GoogleChrome should also not cause

further problems).

https://digling.org/edictor/
https://digling.org/edictor/
https://digling.org/edictor/
https://digling.org/edictor/

The data is in the file ​D_Chen_subset.tsv​, in order to load it to the tool, press the ​Browse button

and select the file. Once this has been done, press the ​Open the file button to examine the

data, as illustrated in the following figure.

The segmented strings are displayed in the TOKENS column. Press ​Select Columns to inspect

the raw forms and other aspects of the data, as shown in the following figure.

In order to save data to your computer, after you have manually edited them, you need to

“download” them. This may be a bit surprising, since effectively, you do not download the data,

but since the EDICTOR is working on a browser, it does not have any access to the data on

your computer, and ​download is the only way to communicate with your machine. Thus, in

order to save your data and load it to your machine, you first have to press the ​save icon at the

top-right corner in order to to store the edited data in the web browser. When now pressing the

download icon at the top-right, your browser will either directly download the data and store

them in your download folder, or it will ask you to specify a specific file destination.

Be careful when editing data in the EDICTOR without saving and downloading them. If you

close your browser, all the edits you made will be lost, so you should regularly save and

download your data when working with the EDICTOR. As a shortcut, you can also type

CONTROL+S to save and CONTROL+E to “export” the data (i.e., to download them).

3.2 From Tokenized Data to Cognate Sets

Partial cognate detection is an important task, specifically when working with Southeast Asian

language data. The algorithm we use for this taks was first proposed in the study “Using

Sequence Similarity Networks to Identify Partial Cognates in Multilingual Wordlists” by List et al.

(2016)[3], where the algorithm is described in due detail.

To illustrate how the algorithm works, we provide an example with four words for ‘moon’

in the Eastern Baheng, Eastern Qiandong, Bana and Biao Min language varieties.

The major steps of the algorithm are the following:

1. Calculate the distances of all morpheme pairs.

2. Create a fully connected network from the distance scores.

3. Filter the network by deleting edges in the following fashion:

 A. Two morphemes in the same word should not be linked (see the dashed lines in the

following figure).

 B. A morpheme in a word should not be linked to two morphemes in another word (see

the yellow edges in the figure).

4. Remove the edges with similarity scores below a given threshold.

Once this has been done, an algorithm for Community Detection in networks[4] is used

to partition the network into “communities”, with each community representing one partial

cognate set.

In order to calculate partial cognates, we use the algorithm as provided by the ​lingpy​ ​software

package and apply it to our subselection of languages.

$ python 2_partial.py

If you want to test the version from the CLDF-repository directly with​ cldfbench​, you can type:

$ cldfbench chenhmongmien.wf_partial.

This will take some time when you run it the first time. The data can be found in the file

D_Chen_partial.tsv​.

To inspect the data with EDICTOR, load ​D_Chen_partial.tsv as shown before. Then press

DISPLAY to select ​SETTINGS in the drop-down menu. Select ​PARTIAL in the ​Morphology
and Colexification Mode​ entry. Press the ​Refresh​ button.

In order to investigate the partial cognates, you need to select the column which stores the

identifiers. To do so, press ​Select Columns​ and select ​COGIDS​ in the drop-down menu.

If you right-click on any number in the “COGIDS” column, a pop-up window will open and show

all the cognate sets for a given word form in the form of an alignment. Since we have not yet

aligned the data, the alignment will be wrong at this point.

3.3 From Cognate Sets to Alignments

To align the data, we use the new procedure for template-based alignment, which is available

from the ​lingrex package which we have installed as one of the requirements of our workflow,

and the ​sinopy package, which helps us to compute syllable templates from all morphemes in

the data. Running the code is again straightforward.

$ python 3_alignment.py

If you want to test the version from the CLDF-repository directly with​ ​cldfbench​, you can type:

$ cldfbench chenhmongmien.wf_alignment

The aligned data will be stored in the file ​D_Chen_aligned.tsv​. To inspect the alignments in

EDICTOR, load this file and follow the previous steps we mentioned in Section 3.2. In addition

to selecting the ​COGIDS column now, we also select the ​STRUCTURE column, since this

column provides the templates for each morpheme, which we have automatically added to the

data with help of​ ​sinopy​.

As we already mentioned, if you right-click on any number in the “COGIDS” column, a pop-up

window will show the alignment. Click on the = ​sign to modify the alignment. The modification

itself is very straightforward: just click on a sound segment to move it to the right, and click on a

gap segment to delete this segment.

3.4 From Alignments to Cross-Semantic Cognates

The algorithm for cross-semantic cognate detection as we propose it here is illustrated in more

detail in the main study. It is implemented as part of the ​lingrex package. Again, it is

straightforward to run the code.

$ python 4_crosssemantic.py

If you want to test the version from the CLDF-repository directly with ​cldfbench​, you can type:

$ cldfbench chenhmongmien.wf_crosssemantic

The output file is ​D_Chen_crossids.tsv​, and we load it into the EDICTOR tool, just as we did

before, but when checking the ​SETTINGS in the menu this time, we need to specify that the

column “CROSSIDS” holds the partial cognates. To do so, just type in ​CROSSIDS in the text

field ​Partial Cognates​ in the settings menu and then press the ​refresh​ button.

To inspect the distribution of partial cognates, press ​ANALYZE in the top-level menu and select

Cognate sets​ in the drop-down menu.

As a result, a new panel will open and show the distribution of all cognate sets across the

different language varieties. Pressing the red button with the cognate set identifier on the left will

open the alignment. Pressing the yellow buttons with the word identifiers will show you the

original morpheme. On the right, in the column ​CONCEPTS​, you will find those cognate sets

which are attested for more than one concept as separated by a comma. Clicking on this field

will modify the main wordlist panel in such a way that only the selected concepts will appear.

3.5 From Cross-Semantic Cognates to Sound Correspondence Patterns

As a final step, we will try to infer the major correspondence patterns in the data, using the

algorithm by List (2019)[5] which is available from the ​lingrex package. Running the code is

straightforward, as before.

$ python 5_correspondence.py

If you want to test the version from the CLDF-repository directly with ​cldfbench​, you can type:

$ cldfbench chenhmongmien.wf_correspondence

This creates two output files. One, called ​D_Chen_patterns.tsv is the file without wordlist that

can be loaded by EDICTOR and inspected, and one file contains the patterns that have been

inferred alone, called ​D_patterns_Chen.tsv​. In order to inspect the patterns, we recommend to

use the EDICTOR tool, which requires the same steps that we already applied when loading our

cross-semantic cognates. Once this has been done, press the ​ANALYZE button in the top

menu and select ​CORRESPONDENCE PATTERNS​ in the drop-down menu.

In order to allow for a good display, the doculect names are all abbreviated. Hovering the mouse

cursor on an abbreviation will show you the full name.

Clicking on a cell in the correspondence pattern panel will allow you to see not only the sound in

question, but the full morpheme in which this sound occurs.

4. Validation

We calculate the shared cognates between language pairs and output the scores in the form of

a pairwise distance matrix. The script ​6_phylogeny.py gives two documents, a distance matrix

(​A_Chen_distance.dst or ​D_Chen_distance.dst​) and a tree file, based on a Neighbor-Joining

analysis (​A_Chen_tree.tre​ or ​D_Chen_tree.tre​).

There are many ways to work with the distance matrix , here, we give one of the

approaches to visualize the matrix as a neighbor-net network with the help of SplitsTree.

To get started, first make sure to install SplitsTree [6] and follow the installation 10

instructions. In order to compute the distance matrix with our code, use the command line (here

we compute it for the entire dataset, so we run it with the keyword ​all​)

$ python 6_phylogeny.py all

To generate a Neighbor-Net from the distance matrix, open the file ​A_Chen_distance.dst or

D_Chen_distance.dst with any plain text editor and start the SplitsTree software. Then click on

File​ and ​Enter Data​, as shown in the image below.

10 ​https://software-ab.informatik.uni-tuebingen.de/download/splitstree4/welcome.html

https://software-ab.informatik.uni-tuebingen.de/download/splitstree4/welcome.html

Then copy the distance matrix and paste it into the ​Enter Data Dialog​, and press ​Execute.

You can now inspect the network. To analyze the data further, you can compute the delta

scores, showing the degree of reticulation in the data, by pressing ​Analysis ​and then ​Compute
Delta Score​, as shown below.

The resulting Neighbor-Net is shown in the following figure. For the purpose of illustration, the

Mienic language varieties are colored in red, the Hmongic group is highlighted in blue.

The following table shows the delta scores we computed from the data.

Taxon Delta score

Bana 0.34706

Biao Min 0.27289

Central Guizhou Chuanqiandian 0.29924

Chuanqiandian 0.29172

Dongnu 0.32416

Eastern Baheng 0.32056

Eastern Luobuohe 0.33529

Eastern Qiangong 0.32083

Eastern Xiangxi 0.33736

Jiongnai 0.32644

Kim Mun 0.26992

Mien 0.25672

Northeast Yunnan Chanqiandian 0.29748

Northern Qiandong 0.28447

Numao 0.34185

Nunu 0.32375

She 0.31671

Southern Guizhou Chuanqiandian 0.34376

Southern Qiandong 0.30988

Western Baheng 0.35259

Western Luobuohe 0.3211

Western Qiandong 0.31137

Western Xiangxi 0.35174

Younuo 0.2996

Zao Min 0.26797

The average delta score is 0.313. As mentioned before, the distances between taxa are

calculated via shared cognates. The shorter the distances between two taxa, the higher the

similarities between them. If the taxa share cognates not only within their group but also outside

their groups, the network finds it challenging to determine the best cluster for them. The larger

the reticular structure, or the less tree-like the data is, the higher is the delta score. For one

particular language variety’s delta score this means that this specific language contributes to a

certain amount of conflict in the data.

5. Conclusion

In this tutorial, we provided details of how to execute our workflow for Computer-Assisted

Language comparison, using the scripts we wrote, while at the same time illustrating how the

results can be manually inspected and modified. We have not discussed the details of the code

we wrote, but we recommend users proficient in Python to have a look.

6. References

1. List J-M, Walworth M, Greenhill SJ, Tresoldi T, Forkel R. Sequence comparison in
computational historical linguistics. Journal of Language Evolution [Internet].
2018;3(2):130–44. Available from:
https://academic.oup.com/jole/article/3/2/130/5050100?guestAccessKey=cf8fe64e-3996-
4cb1-ba2c-317a7cd81bf4

2. 陳其光CQ. Miàoyáo yǔwén [Internet]. Běijīng: Zhōngyāng Mínzú Dàxué 中央民族大学
[Central Institute of Minorities]; 2012. Available from:
https://en.wiktionary.org/wiki/Appendix:Hmong-Mien_comparative_vocabulary_list

3. List J-M, Lopez P, Bapteste E. Using sequence similarity networks to identify partial
cognates in multilingual wordlists. In: Proceedings of the Association of Computational
Linguistics 2016 (Volume 2: Short Papers) [Internet]. Berlin: Association of
Computational Linguistics; 2016. pp. 599–605. Available from:
http://anthology.aclweb.org/P16-2097

4. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal
community structure. Proc Natl Acad Sci USA. 2008;105(4):1118–23.

5. List J-M. Automatic inference of sound correspondence patterns across multiple
languages. Computational Linguistics [Internet]. 2019;1(45):137–61. Available from:
https://www.mitpressjournals.org/doi/full/10.1162/coli_a_00344

6. Huson DH. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics.
1998;14(1):68–73.

https://academic.oup.com/jole/article/3/2/130/5050100?guestAccessKey=cf8fe64e-3996-4cb1-ba2c-317a7cd81bf4
https://academic.oup.com/jole/article/3/2/130/5050100?guestAccessKey=cf8fe64e-3996-4cb1-ba2c-317a7cd81bf4
https://academic.oup.com/jole/article/3/2/130/5050100?guestAccessKey=cf8fe64e-3996-4cb1-ba2c-317a7cd81bf4
https://en.wiktionary.org/wiki/Appendix:Hmong-Mien_comparative_vocabulary_list
https://en.wiktionary.org/wiki/Appendix:Hmong-Mien_comparative_vocabulary_list
http://anthology.aclweb.org/P16-2097
http://anthology.aclweb.org/P16-2097
https://www.mitpressjournals.org/doi/full/10.1162/coli_a_00344
https://www.mitpressjournals.org/doi/full/10.1162/coli_a_00344

