

CERN openlab Report // 2019

ABSTRACT

Invenio is an open source framework, initially developed at CERN, but with many external users
and contributors at this moment and prospects of growing even more in the future. Its nature as a digital
library for large scale repositories renders it a very useful tool in other software projects, inside and out of
CERN alike.

The maintenance of Invenio's software falls under the responsibility of the IT-CDA-DR section. The
big workload that the section has to manage combined with the currently inefficient work management
when it comes to Invenio, results in Invenio falling behind, which affects badly not only the section, which
makes great use of Invenio in various other projects, but also the Invenio community, which stays inactive.

The goal of my two month internship at CERN was to fix this problem by developing a bot that
would send reports to the maintainers of Invenio, concerning the Invenio related tasks they have to fulfil,
thus helping them to organize their work and do it more efficiently.

The bot was developed using the python programming language and various contemporary
technologies, such as git, github and gitter APIs, pytest, travis CI, docker and sphinx.

There currently exist two commands for the bot, autobot report show, that shows the global report
for all maintainers and autobot report send, that sends the personalised reports to each corresponding
maintainer.

The end result was a basic prototype for the bot and a lot of work remains to be done in the future.
Some ideas for the future work are:

➢ Adjust the features to the users’ needs and desires.
➢ Improve the implementation resource-wise (e.g. cache the reports).
➢ Include customization features (e.g. sorting and filtering of the reports).
➢ Add synchronization with GitHub.

2

CERN openlab Report // 2019

TABLE OF CONTENTS

INTRODUCTION 04

BACKGROUND 05

TECHNOLOGIES 05

EXAMPLES 08

FUTURE WORK 10

3

CERN openlab Report // 2019

1. INTRODUCTION

The purpose of this report is to present the content and the progress of my project as an openlab
summer student at CERN during the summer of 2019.

The length of my internship was 9 weeks (1 July - 30 August), during which I worked in the
IT-CDA-DR section with the Invenio team.

Invenio is an open source framework, initially developed at CERN and mainly used for storing a big
amount and broad variety of files along with their metadata. As such, it serves as a digital library for large
scale repositories and provides tools for the management of institutional repositories. Its maintenance falls
under the responsibility of the IT-CDA-DR section, which also makes great use of its services for the rest
of its ongoing projects, such as Zenodo and CDS, to name the primary ones. That practically means that
most of the people in the section work on Invenio alongside their other responsibilities. Moreover, even
though Invenio has its roots at CERN, as an open source software, it also has many external individual
and organisational users and contributors, with prospect of growing even more in the future.

My project’s objective was to improve Invenio’s task management system by developing a bot that
would send personalised reports to each individual in the section, responsible for the maintenance of the
organization’s software (for the purposes of the present report these people will be referenced as
maintainers). These reports would serve not only as a regular reminder to the maintainers of the tasks that
are due and await their actions, but also as a means of organizing their tasks so that they can manage
them and work on them more efficiently. That fact makes the need for the reports to be personalised
crucial, especially since every maintainer is responsible for different tasks and parts of inveniosoftware.

After two months of work, at the time that this report is being written, the first prototype for the bot
has been implemented. As a first trial version, it includes only the very basic features that the mentioned
above concept entails. Currently, the bot can be used to send personalised reports to each maintainer via
gitter. The report for a specific maintainer contains a section for every inveniosoftware repository the
maintainer is responsible for, that urges the maintainer to act on tasks concerning open issues and pull
requests this repository might have (e.g. merge an open pull request that has passed all tests and has at
least one approving review, comment on an open issue that has last comment from a non maintainer,
etc.).

It only remains that the section tests the bot and after a trial period share their thoughts on it, so that
it is clear what things were helpful and need to stay as they are, what didn’t fit people’s needs and comfort
and has to be removed or changed and what is missing. This feedback will help determine the needed
improvements, adjustments and feature extensions and give guidelines for possible future work.

The project’s repository can be found here.

The project’s documentation can be found here.

Closing this short introduction, I would like to thank the whole section for being so open and making
my first time working a truly unique experience. I can only be happy that my project aims to improve and
help their working process. Even more special thanks to my mentor, Alex, who has been kind and helpful
and overall amazing beyond any expectation.

4

https://inveniosoftware.org/
https://zenodo.org/
http://cds.cern.ch/?ln=el
https://github.com/inveniosoftware
https://github.com/inveniosoftware/autobot
https://autobot.readthedocs.io/es/latest/

CERN openlab Report // 2019

2. BACKGROUND

As mentioned in the introduction, Invenio is an open source software, used widely not only inside
CERN, but also by external individuals and organisations as well. Its nature as a digital library for large
scale repositories renders Invenio a very useful tool for the development of other software projects, inside
and out of CERN alike. As a result, Invenio has a very broad community of users and contributors, which
entails a big amount of repositories tied to it. That fact raises the question of how Invenio’s software is
going to be developed and maintained. As the founder of the Invenio organization, CERN undertook this
responsibility and assigned it to the IT-CDA-DR section, which maintains, at this moment, 126 repositories
hosted on Github under the inveniosoftware owner.

In order to keep track of this vast amount of work, the section divided the responsibilities with
respect to the repositories, resulting in each individual in the section undertaking the maintenance of
certain repositories, thus earning the role of maintainer for them. One repository can have more than one
maintainers, which is often the case, but the efforts are of course oriented towards making the project
management as simple as possible, which means that most of the repositories don’t have more than 3
maintainers. This distribution of the workload is referenced in a yaml file, called repositories.yml, where
the repositories accompanied by some key information can be viewed in a simplistic hierarchical format.

The presented above project management plan for Invenio may sound good in theory, but
experience showed that it doesn’t have satisfying results. The big Invenio related workload, which is only
small part of the goals the section has to accomplish, combined with the fact that the efforts to tackle this
work creates many shared responsibilities that render the management confusing and inefficient, often
results in Invenio related tasks to get left behind or undone. As a consequence, Invenio’s software is being
outdated, which is of course unwanted, not only for the sake of the section, which uses Invenio as a
valuable tool in its other projects, but also for Invenio itself, as an open source community and a CERN
product with aspirations of growing in users and contributors, that is currently inactive and badly
maintained and gives off an overall unpolished image.

Thus, the idea for the project I undertook during my summer internship was born. The plan was to
keep the project management as it is, but enhance it, so as to make the maintainers more aware of the
tasks they need to finish, prioritize their work and all in all work more efficiently. In order to do that, I was
called to implement a bot, that using the information stored in the repositories.yml file, would send a report
to each maintainer, advising them on the tasks they have to do and in that way helping them manage their
work and follow through with it.

3. TECHNOLOGIES

The programming language that was used for the development of the bot was python. In order to
work on the project and run my code, I created a python virtual environment with all the required
dependencies and this is what I would advise for anyone that wants to install and run this bot service.

Even though I was already familiar with the python language, my involvement with this project gave
me the opportunity to expand my knowledge on it and learn how to use it more efficiently, as well as how
to use it with many contemporary technologies, python oriented and widely used alike.

This part of the report is dedicated to giving a short introduction to these technologies, as well as to
presenting how I used them in my project and what I learned in the process.

5

https://github.com/inveniosoftware
https://github.com/inveniosoftware/opensource/blob/master/repositories.yml

CERN openlab Report // 2019

3.1 Git
Git is a version control system that is widely used in the programming community for managing the

different versions of the source code of projects. That way, the developer can go back to an old version of
the code if he/she finds that the changes made are not for some reason desired after all. Moreover, git
gives the ability to store different versions of the code at a certain time, which makes it easy for a team of
developers to work on the same project concurrently without interfering with each others work. That fact
has made git very popular as a project management system too.

Git was used in this project for both objectives; to keep track of the different versions of the code, as
well as for the management of the project in general. Again, I was already familiar with git before this
internship, but I had only used it in individual projects to keep track of their history. During this project, I
had the opportunity not only to greatly expand my git skills on tracking and managing the different versions
of my code, but also to familiarise myself with the process of managing a section project using git.
Concerning the latter, we used the GitHub host in order to organize our workflow as follows:

➢ My supervisor created issues describing the tasks that needed to be done.
➢ I worked on one issue at a time and when I was done I created a pull request tied to it.
➢ My supervisor reviewed my pull request and I made adjustments following his comments.
➢ We repeated the last step until we were satisfied with the result of the work, when he could merge

the pull request and close the corresponding issue.

3.2 github3.py - GitHub API
github3.py is a python library that provides the developer with methods to interact with the GitHub

API. It is basically a wrapper that helps the python developer make easy use of the GitHub API without
actually having to have knowledge on it and use it directly. Using this library, it’s possible to have most of
the normal interactions between a user and GitHub, such as viewing information concerning a repository,
creating comments, issues, pull requests, etc.

A primary task in my project was to fetch the information needed for building the reports for the
maintainers. For that purpose, I had to make use of the GitHub API, since Invenio’s software is hosted on
GitHub (under the inveniosoftware account). Due to the nature of the project, I only had to make requests
to get information. First, I used github3.py to login as a user with a GitHub token, so as to have all the
required rights and accesses. After that, I could use the library’s methods to fetch the information on the
target repositories. I found this library very helpful and easy to use and I believe it saved me a lot of time
and made my code neat and easy to understand.

3.3 Gitter API
Gitter is an instant messaging chat room, used by GitHub users and developers, in order to

communicate on code related issues, shared projects and repositories etc. Gitter gives the ability to create
a room and invite people to it, in order to discuss on a common topic/project.

Another crucial point in my project was sending the reports to the maintainers, once they were built.
For that purpose, I used Gitter as the default report dispatch resource, since it’s so tightly related to
GitHub and Invenio is a GitHub based organisation. The bot makes brief use of the Gitter API, in order to
send the reports; first, it makes a post request in order to get the room it shares with the maintainer by
providing the maintainer’s username and after, it makes a post request again, in order to send the report
to this room.

6

https://en.wikipedia.org/wiki/Git
https://github.com/
https://github3py.readthedocs.io/en/master/
https://github.com/inveniosoftware
https://gitter.im/
https://developer.gitter.im/docs/welcome

CERN openlab Report // 2019

3.4 pytest
pytest is a python library that assists the developer in implementing tests for his/her python code, in

order to determine if it works in every valid possible scenario. It is fit for writing small tests that are meant
to check the functionality of snippets of code. That way, it is easier for the developer to realize where the
problem in the code lies and come up with the appropriate solution. The library also allows for scaling the
tests, in order to have more complex functional testing, meant for whole modules.

For this project, I used pytest only for unit test implementation. The nature of the project as an
external service, that makes requests to GitHub and Gitter APIs alike, rendered another library for testing,
the mock library, very useful. In more detail, when the bot runs normally, it makes requests to external
APIs. These requests are resource expensive and redundant when the bot runs in test mode, so I used
the mock library in order to imitate the behavior of the github3.py library classes and methods without
actually making the requests to the GitHub API. That way, it was possible to check the functionality of my
code without wasting time and resources.

Through developing these tests for my project’s code, not only did I make the debugging and the
problem resolving process easier and simpler for me (or anyone who is going to contribute to this project
in the future), but I also ensured that the end product of my work will be reliable. Last but not least, I
learned a lot about the professional procedures of developing a project with proper tests.

3.5 Travis CI
Travis CI is a continuous integration tool used for building and testing projects hosted at GitHub. In

order to configure the way that Travis runs, you just need to add a .travis.yml file to your project. This file
determines, among others, the programming language the project uses and the building and testing
environment along with the dependencies that are required. By adding your project’s repository in your
Travis repositories, it is possible to ensure that Travis builds and tests the project remotely every time you
push a feature to it.

We used Travis for this project in order to automate the testing procedures and improve the
project’s overall management. For that purpose, I added the .travis.yml to the project, specifying that the
language used is python and that whenever something is pushed, three tests have to be run, each in a
different environment; lowest, release and devel. It is also specified that the devel tests are allowed to fail.
The tests run in each of these environments are defined in a run-tests.sh file. Except for the unit tests
mentioned before, there are also tests concerning the format of the files (we followed the black format and
isort conventions), as well as tests for the docs.

3.6 Docker

Docker is a virtualization software that aims to improve the procedures of running a certain project
in different machines and environments by simplifying the dependencies organization and the
requirements installation process. Using operating-system-level virtualization, it offers a set of platform as
a service (PaaS) tools, that enable the developer to receive and deliver software in well defined packages,
called containers, that are closely tied to their libraries and requirements. The communication between
containers is also very clean and simple. As a result, taking care to put only the necessary requirements in
a container, meaning only the requirements that are needed for it to run independently, docker makes it
easy to build a container system that allows the developer to run lightweight, independent software tasks
in any machine. It is easy to configure how docker will be run for someone’s project by adding a Dockerfile
in it.

7

https://pypi.org/project/pytest/
https://pypi.org/project/mock/
https://travis-ci.org/
https://www.docker.com/

CERN openlab Report // 2019

We used docker in order to deploy the work done for this project. In our Dockerfile we determined
that the base for the docker image will be the standard python3 docker image, we installed cron, as well
as the requirements the project needs in order to run and of course the source code. After creating the
image, we pushed it to openshift, where we could configure the environment (e.g. adding GitHub and
Gitter tokens as secrets) and run the service as a cron job that will send the reports to the maintainers
periodically (e.g. once per month). Using docker helped me familiarise with a cutting-edge technology that
I am probably going to be using a lot in the future, but also simplified the deployment process of the
project and ensured that it can run as an efficient independent service on openshift, as well as be
downloaded and installed easily by any individual who wants to make local use of it.

3.7 Sphinx

Sphinx is a python library that gives the ability to the programmer to create beautiful documentation
for his/her project at the same time that it is being developed and without putting much effort, since it is
based on an automated process.

4. EXAMPLES

The result of my two month internship was a basic prototype for a bot that fetches target information
for the repositories specified in a predefined yaml file and sends reports to the corresponding maintainers
(also specified in the same yaml file) via Gitter.

There currently exist two commands that can be run via the command line:

➢ autobot report show: fetches the information on the repositories and builds a global report,
containing the tasks for every repository and its corresponding maintainers

➢ autobot report send: fetches the information on the repositories, builds a personalised report for
each maintainer containing the tasks he/she has to do and sends these individual reports

8

https://en.wikipedia.org/wiki/Cron
https://www.openshift.com/
https://pypi.org/project/Sphinx/

CERN openlab Report // 2019

As shown in the screenshots above, the two available commands share some options that they
offer to the user. Some important shared options are the ones that specify the target repositories and
maintainers the application is going to fetch the information for.

➢ With the o option it is possible to specify the organization the reports are being generated for (in
our case for Invenio).

➢ With the r option it is possible to specify the target repositories the report is being generated for.

➢ With the m option it is possible to specify the target maintainers the report is being generated for.

➢ With the e, i options it is possible to specify some configuration paths.

Moreover, there are some offered option specific to each individual command.

➢ For the autobot report show command, it is possible to specify the format the global report is
going to be shown in (e.g. json, yaml, markdown etc.) through the f option.

➢ For the autobot report send command, it is possible to specify the resource via which the
personal report is going to be sent (e.g. gitter, mattermost, CERN email etc.) through the v option.

The following screenshot is an example of a personal report sent via Gitter.

In the cases that the report is too large and can't be sent directly and whole via Gitter (more than
4000 characters), a link to a GitHub gist that contains the full report is sent.

9

CERN openlab Report // 2019

5. FUTURE WORK

There is still a lot of room left for progress and plenty material for future work. The feedback that we
are going to get from the people that are going to use this first prototype are going to be valuable and
critical for deciding what the course of this future work should be. The purpose of this section of the report
is to present some ideas and suggestions for the work to come in the future concerning this project.

➢ Make adjustments in the offered features in order to fit the clients’ needs and desires, as
they will be revealed by the feedback. One very important feature to be determined is the
nature of the actions that the bot proposes according to the repositories status, if they will
need to be expanded or limited or changed in content.

➢ Make improvements in the implementation in order to fetch the information from GitHub
faster and more efficiently in general, resource-wise. One suggested improvement would
be to cache the reports, so that when the bot is called with the same parameters and
nothing has changed, it won’t be necessary to waste time and resources fetching the
same information.

➢ Add features that will help the maintainers customize their report in order to manage their
tasks better, such as sorting and filtering, customizing the format of the report and the
resource used for receiving it (e.g. Mattermost instead of Gitter), as well as how often it
will be sent.

➢ Add the option of being synchronized with your GitHub account and of requesting the
report locally without the need of a GitHub token, but by being redirected to the GitHub
login page and adding the corresponding credentials, if not already logged in.

10

