
Partial Evaluation Based CPS Transformation: An
Implementation Case Study

Rajesh Jayaprakash
TCS Research, India

rajesh.jayaprakash@tcs.com

ABSTRACT
We demonstrate the implementation of a partial evaluation based
CPS transformation in the context of pLisp, a Lisp dialect and IDE
for beginners. The CPS transformation employs a modular tech-
nique that unifies the treatment of the language constructs; we
illustrate the transformation by explicating the conversion process
for a single construct (viz., if). To the best of our knowledge, this
framework is also novel in that the partial evaluation and CPS
transformation techniques are implemented in the implementation
language of the system itself (i.e., C), as opposed to bootstrapping
from an existing Lisp dialect.

CCS CONCEPTS
• Software and its engineering→ Compilers;

KEYWORDS
Lisp, partial evaluation, CPS transformation

ACM Reference Format:
Rajesh Jayaprakash. 2020. Partial Evaluation Based CPS Transformation:
An Implementation Case Study. In Proceedings of the 13th European Lisp
Symposium (ELS’20). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
5281/zenodo.3740941

1 INTRODUCTION
Partial evaluation [12] is a well-established technique for optimizing
programs. A program is partitioned into a static and a dynamic part,
with the static part comprising data and values known beforehand,
and the dynamic part comprising data and values not known at
compile-time. The compilation or translation process ’executes’ the
static part so that only a residual program is left over for execution
later, thereby resulting in a smaller/faster program.

Continuation Passing Style (CPS) [14] is a style of programming
in which every function call is augmented with an additional ar-
gument known as a continuation; this continuation embodies the
rest of the computation, and the function is expected to perform its
computation and then invoke the continuation with the result of
the computation. There are a number of advantages to program-
ming in CPS, a few of them being a) simplifying the effort needed
at the compiler back-end b) making explicit the semantics of the
computation (e.g., order/sequencing of execution primitives) and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’20, April 27–28 2020, Zurich, Switzerland
© 2020 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.3740941

c) enabling the easier implementation of advanced control struc-
tures like non-local control transfers. Transformation of a program
to CPS is a step in a typical compiler pipeline that includes steps
like assignment conversion, renaming, closure conversion, and lift
transformation.

A naive CPS transformation [8] results in quite inefficient code,
and these inefficiencies are removed using techniques like inlining.
Another option for removing these inefficiencies is to leverage par-
tial evaluation based techniques [6]. The ’static’ program fragments
that would have been generated by the naive CPS transformation
are recognized as such and are executed by the so-called meta-
language interpreter [15] during the transformation process itself,
thereby preventing the inefficient code from being generated in the
first place.

Figure 1 illustrates the CPS transformation of the expression
(+ x 1) using both a naive approach (Figure 1a) and a partial
evaluation based approach (Figure 1d) 1. The output of the naive
transformation is typically optimized by repeated β-reductions
(Figure 1b) and inlining (constant propagation of a lambda form
followed by a β-reduction; Figure 1c). The quasi-syntactic (and
semantic) equivalence of the optimized naive CPS transformation
and the partial evaluation based CPS transformation is to be noted,
although this equivalence is achieved by different routes; in the
case of the partial evaluation approach, the inlining optimization is
effected by execution of the relevant code fragment (the let forms
in Figure 1b) by the metalanguage interpreter (explained in section
3).

pLisp [11] is a Lisp-1 dialect and an integrated development
environment modelled on Smalltalk that targets beginners, with
the following features:

• Graphical IDE with context-sensitive help, syntax colouring,
autocomplete, and auto-indentation

• Native compiler
• User-friendly debugging/tracing
• Image-based development
• Continuations
• Exception handling
• Foreign function interface
• Package/Namespace system

The native compiler in pLisp implements a partial evaluation
based CPS transformation step through a modular and flexible
framework, embodying an elegant construct-dependent technique
for the creation of the metalanguage closures, which is detailed in
this paper.

1This code was generated by the pLisp compiler; the names of the binding variables in
the abstractions have been shortened to improve readability

https://doi.org/10.5281/zenodo.3740941
https://doi.org/10.5281/zenodo.3740941
https://doi.org/10.5281/zenodo.3740941

ELS’20, April 27–28 2020, Zurich, Switzerland Rajesh Jayaprakash

(a) Naive CPS conversion

(b) After β -reduction

(c) After inlining

(d) Partial evaluation based CPS conversion

Figure 1: Naive and partial evaluation based CPS
conversion of ’(+ x 1)’

2 COMPILER PIPELINE
The pLisp compiler transforms the Lisp source code to CPS and
emits C code, which is then passed to LLVM to produce native code.
The compiler does the transformation in the following passes [15]:

• Desugaring/Macro expansion
• Assignment conversion
• Translation
• Renaming
• CPS conversion
• Closure conversion
• Lift transformation
• Conversion to C

These compiler passes produce progressively simpler Lisp di-
alects, culminating in a version with semantics close enough to
C. Figure 2 illustrates this transformation. Since LLVM is used to
convert the C code to native code, the pipeline does not include
passes like register allocation/spilling.

Desugaring/Macro expansion: This pass performs macro expan-
sion, resulting in a dialect called plisp_k (’k’ stands for ’kernel’)
that is shorn of all macro invocations. The backquote construct used
in macro-expansion is itself implemented as a macro, so the order
of definitions of backquote and its supporting functions is critical.
Accordingly, the source file listing the definitions of the core library
objects contains the macro-expansion-related infrastructure before
the other definitions.

Figure 2: pLisp compiler transformations

Assignment conversion: Assignment conversion replaces all as-
signed variables with mutable cells, thereby making variable bind-
ings immutable (i.e., the contents of the cell may change over time,
but the binding of a cell to a variable will not). In the interests of
simplicity and to avoid the introduction of one more object type,
mutable cells in pLisp are simulated by CONS objects whose CDR
is NIL. Assignment conversion produces code in a dialect called
plisp_k_no_set, which differs from plisp_k only with respect to
the absence of the set construct (replaced by the setcar primitive).

Translation: This pass produces an intermediate language dialect
called pLisp_IL (Figure 3) and differs from the previous dialects
in that a) it does not have a recursion construct (letrec) and b) a
new multibinding construct called let* is introduced (note: this
let* is distinct from the similarly-named core library form). This
pass also performs syntactic simplifications like removal of empty
lets, conversion of applications of lambda expressions to lets,
η-reductions and copy propagation.

exp ::= literal | var
| (if exp exp exp?)
| (primop exp+)
| (lambda (var*) exp)
| (error exp)
| (call/cc exp)
| (exp exp*)
| (let ((var exp)*) exp)
| (let* ((var exp)*) exp)

Figure 3: pLisp_IL grammar

Renaming: The renaming pass ensures that no two logically
distinct variables in the code have the same name, so that variable
capture is avoided. Introduction of fresh variable names utilizes
the same infrastructure that implements the gensym feature in the
pLisp core.

CPS Conversion: The CPS conversion pass converts the code
to CPS style, and produces the dialect plisp_IL_CPS (Figure 4)
characterized by restrictions on let forms: they can now only have

Partial Evaluation Based CPS Transformation: An Implementation Case Study ELS’20, April 27–28 2020, Zurich, Switzerland

one binding, and the expressions that can be bound to the let
identifiers (denoted by le in the figure) are restricted to literals,
lambda expressions, and primitive operations. The CPS conversion
pass also injects code to save the generated continuation object:
this is useful for implementing the break/resume functionality for
the debugger.

exp ::= (var val*)
| (if val exp exp)
| (let ((var le)) exp)
| (error exp)
| (call/cc exp)

val ::= literal | var
le ::= literal

| (lambda (var*) exp)
| (primop val+)

Figure 4: pLisp_IL _CPS grammar

Closure conversion: In this pass, functions are converted into
closures, so that the free variables referred in the lambda expression
body are fetched from the environment that is stored along with
the code. The lambda expressions are thus implicitly passed the
code/environment pair as their first parameter.

Lift transformation: The lift transformation pass converts all pro-
cedures to the top level and thereby linearizes the code. Please note
that lift transformation is predicated on the procedures having un-
dergone a closure conversion. This pass results in the plisp_IL_Lift
dialect, where the code linearization is manifested as further re-
strictions on let bindings (only literals and primitive operations
are permitted as letable expressions).

Conversion to C: The C conversion pass, in addition to handling
the Lisp-to-C syntax translation, also performs additional tasks like
decorating the variable names so that they do not violate the C
syntax rules for variable names and keywords.

Expressions entered at the top level (i.e., the Workspace in pLisp)
are compiled into anonymous closures, and are supplied the identity
function as their continuation.

3 PARTIAL EVALUATION BASED CPS
TRANSFORMATION

3.1 pLisp Object Representation
In this subsection we briefly describe the pLisp object model, inas-
much as is required to set the context for this work. The following
object types are supported by pLisp [11]:

• Integers
• Floating point numbers
• Characters
• Strings
• Symbols
• Arrays
• CONS cells
• Closures
• Macros

Objects are internally represented by OBJECT_PTR, a typedef for
uintptr_t, the C language data type used for storing pointer values.

The four least significant bits of the value are used to tag the object
type (e.g., 0011 for character objects, 0110 for CONS cells, and so
on), while the remaining (n-4) bits (where n is the total number
of bits) of the value take on different meanings depending on the
object type, i.e., whether the object is a boxed object or an immediate
object. If the object is a boxed object, the remaining bits store the
referenced memory location. The use of the GC_posix_memalign()
call (from the Boehm Garbage Collector library) for the memory
allocation obviates the loss of the four least significant bits and
ensures that the four least significant bits of the returned address
are zeros.

3.2 Metalanguage Interpreter
The metalanguage interpreter in pLisp is written in C. While the
semantics of the metalanguage interpreter are easier and more nat-
ural to represent and implement in Lisp, this option is not available
in the present situation: we are implementing pLisp from scratch
and therefore do not have a core/kernel Lisp implementation from
which to bootstrap. S-expressions which are input to the interpreter
are pLisp objects, more specifically linked CONS cells, internally
represented as OBJECT_PTR values. A subset of the pLisp object
types, viz., atoms (excluding types like closures, of course) and
CONS cells comprising atoms or other CONS cells, is thus accepted
by the interpreter.

The workhorse of the CPS transformation process is the function
mcps() 2. This function accepts the source language expression,
and depending on its type (i.e., abstraction, application, and so on),
creates the corresponding closure M which, when invoked, would
perform the code transformation for that type.

The CPS transformation process is also predicated on a class of
secondary closures m, the purpose of which is to transform value
expressions (identifiers and literals) in the source dialect (plisp_IL)
into general expressions in the target dialect (plisp_IL_CPS). The
closure M takes an argument of type m.

The partial evaluation semantics are captured in these two clo-
sures: the code executed by these closures would have, in a naive
CPS transformation, formed a part of the generated code, thereby
leading to code bloat and the attendant performance hit.

Listing 1 presents the data structures used by the interpreter.
The structures reg_closure_t and metacont_closure_t are the
realizations of the closures m and M respectively. The first three
fields of each structure correspond to the implementation of a
closure in a language like C, i.e., the function pointer representing
the function and the machinery required to store the closed-over
values. The function pointer field in effect specializes the closures:
by assigning different functions to this field, we are able to handle
the various source language constructs (if, let, and so on) in a
modular way. In addition to these three fields, the structure for
m has a field called data; the need for and usage of this field is
explained in the next section.

Figure 5 depicts the object model underpinning the interpreter.
In the interests of space, not all the elements corresponding to the
language constructs are shown. It is to be noted that there isn’t
a one-to-one mapping between the language construct entities
of M and m (e.g., there is an entity called lambda_metacont_fn,

2https://github.com/shikantaza/pLisp/blob/master/src/metacont.c

ELS’20, April 27–28 2020, Zurich, Switzerland Rajesh Jayaprakash

but no entity called lambda_cont_fn). The absence of such an
entity is because it is not always the case that the body of M is
of the form (MCPS⟦E⟧ λV), which necessitates the presence
of the symmetric entity. Also, the dependency or linkage between
the transforming entities and the transformed entities is cleanly
captured by the OBJECT_PTR reference; the use of this reference
enables flexibility and allows us to switch the object representation
easily if desired. Finally, please also note the self-referential loop
labelled ’data’ for reg_closure_t: the self-reference refers to the
data field, which, while generic in intent, is used in practice to
store only entities of class m (we have explained this further in
subsection 4.2).

4 A DETAILEDWALKTHROUGH
In order to explain the internals of the translation process and to
bring out the mechanics of the interpreter better, we walk through
the translation process for the pLisp if construct in this section.

4.1 An Abstract View
At an abstract level, the part of the implementation function mcps()
that translates if constructs (more precisely, the function stored in
the field mfn of the structure metacont_closure_t, corresponding
to M) can be represented [15] by the function shown in Figure 6.

MCPS⟦(if Etest Ethen Eelse)⟧
= (λm . (MCPS⟦Etest⟧

(λVtest . (let ((Ikif (mc → exp m)) ; Ikif fresh
(if Vtest

(MCPS⟦Ethen⟧ (id →mc Ikif))
(MCPS⟦Eelse⟧ (id →mc Ikif)))))))

Figure 6: Transformation function for if construct

We deconstruct the function as follows.
(1) The function MCPS returns a closure (tagged as M in the

previous section). The closed-over values for the returned
closure depend on the source language construct in question;
in this case, they are Etest, Ethen, and Eelse.

(2) The argument to this closure is another closure (tagged asm
earlier), which handles the conversion of value expressions
(literals and identifiers) in the source dialect.

(3) When the closure M is invoked with the argument, it evalu-
atesMCPS on Etest, creates another closure of classm (this
is explained below), and applies the former to the latter.

(4) The closure of class m mentioned above builds the target
expression in the plisp_IL_CPS dialect. The closed-over val-
ues for this closure are Ethen, Eelse, and m (the argument to
M itself). This is the canonical CPS transformation of if:
evaluate the test expression, branch on to the CPS transfor-
mation of the consequent or the alternative expression based
the truth-value of the test expression.

(5) The body of the closure defined by (λVtest.(let.. is an S-
expression built up partly with literals like let and fresh
symbols, and partly with return values of function applica-
tions in the metalanguage.

(6) id→mc andmc→exp are helper functions; the first converts
an identifier to a closure of classm, while the second converts
the metalanguage closure m into an abstraction in the target
dialect (i.e., the CPS-transformed equivalent expression).

In summary, elements of the source expression are partitioned
among multiple closures, and these closures (operating at different
stages of the transformation) utilize these elements to recursively
build the target expression.

4.2 Implementation
The definitions of the closure functions for transforming if con-
structs are provided in Listing 2.

The functions if_metacont_fn and if_reg_cont_fn slot into
mfn and fn in the respective closure data structures presented in
Listing 1. As mentioned earlier, the same data structures are repur-
posed to handle different constructs by suitably populating these
slots as required. Adhering to the convention for closure implemen-
tation, the first argument to both these functions are their parent
closure data structures themselves.

The computational steps of the abstract function MCPS are
jointly realized in an imperative fashion in these two functions:

if_metacont_fn:
(1) Retrieve the closed-over values from the closure data struc-

ture.
(2) Convert the if test expression to a closure M by calling

mcps().
(3) Create the regular closure object that would perform the

actual transformation.
(4) Invoke the closure created in step (2) on the regular closure

object and return the result.
if_reg_cont_fn:
(1) Retrieve the closed-over values from the closure data struc-

ture.
(2) Convert the consequent and alternative parts of the if ex-

pression to closures by calling mcps().
(3) Build the target expression by splicing together the S-expression

from literals like let and fresh symbols, and from results of
function calls of the above closures.

A couple of things are to be noted:
(1) The implementation contains calls like gensym() and list(),

which are C equivalents of the standard lisp operators.
(2) The slot data in reg_closure_t is also used to store closed-

over values (albeit not OBJECT_PTR values). However, such
a slot is useful to logically separate such values as originate
from the source language expressions (e.g., Ethen) from values
like m for purposes of clarity. There is also an element of
type-safety: closed_vals, being of type OBJECT_PTR *, is
safer from, e.g., an assignment perspective when compared
to data (which is of type void *).

4.3 Another Example
We illustrate the flexibility of the translation framework with a brief
look at the machinery for the translation of the let form (Figure
7).

Partial Evaluation Based CPS Transformation: An Implementation Case Study ELS’20, April 27–28 2020, Zurich, Switzerland

Figure 5: Transformation object model

Listing 1: Data structures used in metalanguage interpreter
1 / / f o rwa rd d e c l a r a t i o n s
2 s t ruc t r e g _ c l o s u r e ;
3 s t ruc t met a con t _ c l o su r e ;
4
5 typedef OBJECT_PTR (∗ r e g_ con t _ f n) (s t ruc t r e g _ c l o s u r e ∗ , OBJECT_PTR) ;
6
7 typedef s t ruc t r e g _ c l o s u r e
8 {
9 r e g_ con t _ f n fn ;
10 unsigned int n o f _ c l o s e d _ v a l s ;
11 OBJECT_PTR ∗ c l o s e d _ v a l s ;
12 void ∗ d a t a ;
13 } r e g _ c l o s u r e _ t ;
14
15 typedef OBJECT_PTR (∗ metacont_ fn) (s t ruc t met a con t _ c l o su r e ∗ , s t ruc t r e g _ c l o s u r e ∗) ;
16
17 typedef s t ruc t met a con t _ c l o su r e
18 {
19 metacont_ fn mfn ;
20 unsigned int n o f _ c l o s e d _ v a l s ;
21 OBJECT_PTR ∗ c l o s e d _ v a l s ;
22 } me t a c on t _ c l o s u r e _ t ;

MCPS⟦(let ((Ii Ei)ni=1) Ebody)⟧
= (λm . (MCPS⟦E1⟧

(λV1 .
...

(MCPS⟦En⟧
(λVn . (let* ((Ii Vi)ni=1)

(MCPS⟦Ebody⟧m)))) ...)))

Figure 7: Transformation function for let construct

This is the canonical transformation of let: each of the bind-
ing expressions Ei undergoes transformation (sequentially), and
invokes its respective continuation. Finally the transformation of
the let body Ebody, which would have the references to the bind-
ings Ii populated by the let* form, is invoked on m, which is the
continuation that would have been provided by the whole let ex-
pression transformation context. Each of the nested closures (also
of type m) closes over a part of the let binding components. The

ELS’20, April 27–28 2020, Zurich, Switzerland Rajesh Jayaprakash

Listing 2: Closure function definitions for if construct
1 OBJECT_PTR i f _me t a c on t _ f n (me t a c on t _ c l o s u r e _ t ∗ mcls , r e g _ c l o s u r e _ t ∗ c l s 1)
2 {
3 OBJECT_PTR t e s t _ e x p = mcls−> c l o s e d _ v a l s [0] ;
4 OBJECT_PTR then_exp = mcls−> c l o s e d _ v a l s [1] ;
5 OBJECT_PTR e l s e _ e xp = mcls−> c l o s e d _ v a l s [2] ;
6
7 me t a c on t _ c l o s u r e _ t ∗ t e s t _m c l s = mcps (t e s t _ e x p) ;
8
9 r e g _ c l o s u r e _ t ∗ c l s = (r e g _ c l o s u r e _ t ∗)GC_MALLOC(s i z eo f (r e g _ c l o s u r e _ t)) ;
10
11 c l s −>fn = i f _ r e g _ c o n t _ f n ;
12 c l s −>n o f _ c l o s e d _ v a l s = 2 ;
13 c l s −> c l o s e d _ v a l s = (OBJECT_PTR ∗)GC_MALLOC(c l s −>n o f _ c l o s e d _ v a l s ∗ s i z eo f (OBJECT_PTR)) ;
14
15 c l s −> c l o s e d _ v a l s [0] = then_exp ;
16 c l s −> c l o s e d _ v a l s [1] = e l s e _ e xp ;
17
18 c l s −>da t a = c l s 1 ;
19
20 return t e s t _mc l s −>mfn (t e s t _mc l s , c l s) ;
21 }
22
23 OBJECT_PTR i f _ r e g _ c o n t _ f n (r e g _ c l o s u r e _ t ∗ c l s , OBJECT_PTR t e s t _ v a l)
24 {
25 OBJECT_PTR i _ k i f = gensym () ;
26
27 r e g _ c l o s u r e _ t ∗ c l s 1 = (r e g _ c l o s u r e _ t ∗) c l s −>da t a ;
28
29 OBJECT_PTR then_exp = c l s −> c l o s e d _ v a l s [0] ;
30 OBJECT_PTR e l s e _ e xp = c l s −> c l o s e d _ v a l s [1] ;
31
32 me t a c on t _ c l o s u r e _ t ∗ then_mc l s = mcps (then_exp) ;
33 me t a c on t _ c l o s u r e _ t ∗ e l s e _mc l s = mcps (e l s e _ e xp) ;
34
35 r e g _ c l o s u r e _ t ∗ k i f _ c l s = id_to_mc (i _ k i f) ;
36
37 return l i s t (3 ,
38 LET ,
39 l i s t (1 , l i s t (2 , i _ k i f , mc_to_exp (c l s 1))) ,
40 l i s t (4 ,
41 IF ,
42 t e s t _ v a l ,
43 then_mcls −>mfn (then_mcls , k i f _ c l s) ,
44 e l s e _mc l s −>mfn (e l s e _mc l s , k i f _ c l s))) ;
45 }

conversion process lends itself naturally to a recursive implemen-
tation, with the final closure (which acts on Ebody) being the only
non-recursive component.

These desired behaviours are captured elegantly in our imple-
mentation (Listing 3): the recursive behaviour is realized (at closure
creation time) by setting the fn slot in reg_closure_t to a recur-
sive function (let_cont_fn_recur), while the ’tail call’ behaviour

Partial Evaluation Based CPS Transformation: An Implementation Case Study ELS’20, April 27–28 2020, Zurich, Switzerland

is realized by setting the same slot to a non-recursive function
(let_cont_fn_non_recur). The bindings and the body of the let
are closed over both these categories of closure.

The same technique—specializing a closure into recursive and
non-recursive variants as needed—is used for applications and prim-
itive operations, which, similar to let, involve a variable number
of sub-expressions that need to be CPS-transformed.

5 RELATEDWORK
The number of Lisp/Scheme compilers is quite large; therefore in
the interests of space we cover representative ones, highlighting the
implementation techniques utilized by them that are of relevance.

The CHICKEN Scheme-to-C compiler [2, 5] employs a CPS-based
compilation strategy, and CPS conversion is one of the steps in
its compiler pipeline. However, the CPS conversion is written in
Scheme itself, as opposed to the implementation language of the
compiler (e.g., C). The CPS conversion algorithm is stated to be
based on the relatively naive algorithm outlined in [1], and the
optimizations induced by partial evaluation are realized at the later
(explicit) stages in the compiler pipeline.

Not all Scheme compilers use CPS transforms to provide support
for continuations. For example, Bigloo [3] implements call/cc by
copying the execution context to the heap, while Guile [10] imple-
ments continuations by copying the C stack to the heap. A similar
mechanism is employed by Gambit [7]. The Stalin Scheme compiler
[13] utilizes a lightweight CPS conversion technique that relies on
whole-program analysis, whereas normative CPS transformation is
syntax-directed and is concerned with local (expression-level) code
units.

Blocks [4] are an extension to the C, C++, and Objective-C imple-
mentations of Clang that provides a mechanism to create closures
in these languages. In contrast, the current work implements clo-
sures in ANSI C using the standard mechanisms available in the
language. Nested functions [9] are another available mechanism
for realizing closures in C. However, the extent of these nested
functions is limited to the containing scope, which falls short with
respect to the needs imposed by the CPS transformation.

6 CONCLUSION
We presented an implementation of a partial evaluation based CPS
transformation in the context of pLisp, a Lisp dialect and integrated
development environment for beginners. The object model un-
derpinning the metalanguage interpreter was presented, and the
implementation was illustrated with a detailed walkthrough of the
transformation for a single source language construct from both an
abstract and an implementation perspective. The framework has
been implemented in a modular fashion so that it is easy to swap
in and swap out implementations of the transformation functions
of the individual constructs, and to add support for new constructs.
A further improvement to flexibility would be to set up the struc-
ture of target expressions in a declarative manner, and to code the
transformation functions in such a way that the functions simply
fill in the computed values into a pre-built S-expression template
(somewhat along the lines of a context object with holes). This is
planned to be taken up as future work.

REFERENCES
[1] Andrew W Appel. Compiling with continuations. Cambridge University Press,

2007.
[2] Henry G Baker. Cons should not cons its arguments, part ii: Cheney on the mta.

ACM Sigplan Notices, 30(9):17–20, 1995.
[3] Bigloo Scheme. URL https://www-sop.inria.fr/indes/fp/Bigloo/.
[4] Blocks. URL https://developer.apple.com/library/archive/documentation/Cocoa/

Conceptual/Blocks/Articles/00_Introduction.html.
[5] CHICKEN Scheme. URL https://call-cc.org.
[6] Oliver Danvy and Andrzex Filinski. Representing control: A study of the cps

transformation. Mathematical structures in computer science, 2(4):361–391, 1992.
[7] M Feeley. Gambit scheme. URL http://gambitscheme.org/wiki/index.php/Main_

Page.
[8] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. The essence

of compiling with continuations. In Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and implementation, pages 237–247,
1993.

[9] GCC Nested Functions. URL https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/
Nested-Functions.html#Nested-Functions.

[10] Guile. URL https://www.gnu.org/software/guile/.
[11] Rajesh Jayapraksh. plisp: A friendly lisp ide for beginners. In Proceedings of the

11th European Lisp Symposium, 2018.
[12] Neil D Jones, Carsten K Gomard, and Peter Sestoft. Partial evaluation and auto-

matic program generation. Peter Sestoft, 1993.
[13] Jeffrey Mark Siskind. Flow-directed lightweight closure conversion. Technical

report, Technical Report 99-190R, NEC Research Institute, Inc, 1999.
[14] Guy L Steele Jr. Rabbit: A compiler for scheme. Technical report, Technical

Report AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1978.

[15] Franklyn Turbak, David Gifford, and Mark A Sheldon. Design concepts in pro-
gramming languages. MIT press, 2008.

https://www-sop.inria.fr/indes/fp/Bigloo/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Blocks/Articles/00_Introduction.html
https://call-cc.org
http://gambitscheme.org/wiki/index.php/Main_Page
http://gambitscheme.org/wiki/index.php/Main_Page
https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/Nested-Functions.html#Nested-Functions
https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/Nested-Functions.html#Nested-Functions
https://www.gnu.org/software/guile/

ELS’20, April 27–28 2020, Zurich, Switzerland Rajesh Jayaprakash

Listing 3: Closure creation for let
1 r e g _ c l o s u r e _ t ∗ c r e a t e _ r e g _ l e t _ c l o s u r e (OBJECT_PTR b ind ings ,
2 OBJECT_PTR f u l l _ b i n d i n g s ,
3 OBJECT_PTR body ,
4 unsigned int no f_va l s ,
5 OBJECT_PTR ∗ va l s ,
6 r e g _ c l o s u r e _ t ∗ c l s)
7 {
8 r e g _ c l o s u r e _ t ∗ l e t _ c l o s u r e = (r e g _ c l o s u r e _ t ∗)GC_MALLOC(s i z eo f (r e g _ c l o s u r e _ t)) ;
9
10 i f (c on s_ l eng th (b i nd i ng s) == 0) / / l a s t b i n d i n g
11 l e t _ c l o s u r e −>fn = l e t _ c on t _ f n _non_ r e c u r ;
12 e l se
13 l e t _ c l o s u r e −>fn = l e t _ c o n t _ f n _ r e c u r ;
14
15 l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s = no f _ v a l s + 3 ;
16 l e t _ c l o s u r e −> c l o s e d _ v a l s = (OBJECT_PTR ∗)GC_MALLOC(l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s
17 ∗ s i z eo f (OBJECT_PTR)) ;
18
19 l e t _ c l o s u r e −> c l o s e d _ v a l s [0] = b i nd i ng s ;
20 l e t _ c l o s u r e −> c l o s e d _ v a l s [1] = f u l l _ b i n d i n g s ;
21 l e t _ c l o s u r e −> c l o s e d _ v a l s [2] = body ;
22
23 in t i ;
24 for (i = 3 ; i < l e t _ c l o s u r e −>n o f _ c l o s e d _ v a l s ; i ++)
25 l e t _ c l o s u r e −> c l o s e d _ v a l s [i] = v a l s [i − 3] ;
26
27 l e t _ c l o s u r e −>da t a = c l s ;
28
29 return l e t _ c l o s u r e ;
30 }

	Abstract
	1 Introduction
	2 Compiler Pipeline
	3 Partial Evaluation Based CPS Transformation
	3.1 pLisp Object Representation
	3.2 Metalanguage Interpreter

	4 A Detailed Walkthrough
	4.1 An Abstract View
	4.2 Implementation
	4.3 Another Example

	5 Related Work
	6 Conclusion
	References

