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Abstract. Today’s computer architectures are increasingly specialized and hetero-
geneous configurations of computational units are common. To provide efficient
programming of these systems while still achieving good performance, including
performance portability across platforms, high-level parallel programming libraries
and tool-chains are used, such as the skeleton programming framework SkePU.
SkePU works on heterogeneous systems by automatically generating program com-
ponents, "user functions", for multiple different execution units in the system, such
as CPU and GPU, from a high-level C++ program. This work extends this multi-
backend approach by providing the possibility for the programmer to provide ad-
ditional variants of these user functions tailored for different scenarios, such as
platform constraints. This paper introduces the overall approach of multi-variant
user functions, provides several use cases including explicit SIMD vectorization
for supported hardware, and evaluates the result of these optimizations that can be
achieved using this extension.

Keywords. Skeleton programming, SkePU, Heterogeneous computing, Multi-
variant user functions, Vectorization

1. Introduction

Programming of complex multi-core and heterogeneous computer architectures can be a
difficult task, especially when there is a desire to fully and efficiently utilize the available
processing resources. Managing the required workload distribution, synchronisation, and
data management often requires expert knowledge and long-time experience. This is
especially true if also performance portability is desired, as different systems can vary
widely in terms of both the number and types of processing cores, as well as in other
characteristics such as memory hierarchy.

High-level parallel programming frameworks aim to improve on this situation by re-
ducing the user-facing complexity of programs. A small number of highly optimized but
still general programming building blocks are presented through a high-level interface.
This category of frameworks include application specific languages, PGAS (Partitioned
Global Address Space) interfaces, dataflow models, and more, but most importantly for
this paper: the skeleton programming [4] concept, borrowing the higher-order operations
of functional programming such as map and reduce, and implemented as an abstrac-
tion level that is portable across both multi-core and heterogeneous computers and larger
supercomputer clusters. Skeleton programming uses generic building blocks encoding
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common computational patterns as the high-level programming interface. Examples of
such patterns are often divided into two categories: data parallel patterns such as the
aforementioned map and reduce, and task parallel patterns including task farming and
parallel divide-and-conquer, among others.

The core contribution of this paper is a generalization of the variant selection mech-
anism for the skeleton programming framework SkePU, where the problem-specific, se-
quential user code used to customize a skeleton at skeleton instantiation can be provided
in several variants, some of which might even be platform-specific. This is done in a
general-purpose programming environment, which differentiates the approach from ex-
isting domain-specific variant selection [8]. Our work is also tightly integrated with a
platform modeling system [10] allowing build-time lookup of eligible variants going be-
yond only algorithmic choice or minor variations in performance tuning parameters. The
approach is powerful and flexible enough to allow selection based on hardware architec-
ture, levels of heterogeneity, software installations, and more.

Relevant background on SkePU is introduced in Section 2, followed by the idea and
implementation of the core contribution in Section 3. We present several use cases in
Section 4 and experimental evaluation results in Section 5. We discuss related work in
Section 6 and conclusions and future work in Section 7.

2. Background: SkePU

One example of a skeleton programming framework is SkePU2 [6, 7], a C++ compiler
toolchain and runtime library implementing data-parallel skeleton programming. SkePU
targets heterogeneous systems with multiple backends, such as multi-core CPU, GPUs
using either CUDA or OpenCL, or even a "hybrid" combination of several backends at
once [15]. Each skeleton pattern defined in SkePU (one of Map, Reduce, MapReduce,
Scan, or MapOverlap) is instantiated with a user function, typically a small piece of
code that is applied once for each element in the input data at run-time. This creates
a skeleton instance that can be called like a normal C++ function, but internally pro-
vides automatic backend selection and data management (using smart containers) across
backends.

The SkePU framework performs source code analysis of the input program by an
external source-to-source compiler. This tool locates SkePU skeleton instances used by
the programmer, and identifies the user functions that are needed to instantiate them. The
parameter signature and body of these functions is used to generate fully instantiated
backend wrappers and kernels for each user function and skeleton instance (including
distinct source files for GPU execution). Each user function therefore has a number of
(implicit) implementation variants available for it, and the runtime library part of SkePU
will select automatically among these variants at program execution time.

The main contribution of this paper is the extension of the variant selection system
in SkePU to be a user-facing feature of the framework, as presented in the next section.

2http://www.ida.liu.se/labs/pelab/skepu/
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Figure 1. Overview of the components involved in SkePU variant selection and subsequent build process.

3. Idea and Implementation

There are multiple scenarios where a user function with a singular definition can be too
restrictive for the purposes of performance: use cases include algorithms with different
tradeoffs in time complexity versus memory complexity (some platforms may have very
limited memory space available per execution thread), instruction set architecture dif-
ferences such as native double or half precision floating point arithmetics, the existence
of SIMD vector instructions, or other hardware-accelerated implementations of com-
mon computations. Since these attributes are constrained on the underlying platform,
the software-defined code variants must somehow be declared compatible only with the
appropriate hardware configurations. For this we employ a combination of language at-
tributes, annotations at source-code level that are recognized by the SkePU source-to-
source compiler, in addition to the platform description language XPDL [10].

A platform description (such as the one given in Listing 1) is supplied to the SkePU
source-to-source compiler and depending on the attributes in the model, user function
variants are either included or removed from the resulting program. In this example, the
user function variant in Listing 3 requires the Intel AVX extension to the instruction set.
The list of variants for each user function and their prerequisites for inclusion are de-
clared in a manifest file (example given in Listing 4). Here XPDL metaprogramming
queries or other statically evaluated expressions can be used. As the model in Listing
1 declares the platform to support this extension (line 7 in Listing 1), this vectorized
variant will be included for variant selection at run-time. In cases where library or bi-
nary compatibility is not required for the extension, this filtering of eligible variants can
also happen at run-time, as long as the XPDL model is available for querying. This ap-
proach is preferred when a single program executable might run on different hardware
configurations.

User function variants are defined externally from the main source file. The vari-
ants are placed in individual source files in subdirectories, following a standard naming
schema, with one directory for each user function. A component implementation descrip-
tor file defines the hardware platform and run-time requirements for each variant. See
Figure 1 for an illustration of the workflow: the outlined rectangles denote directories in
the file system and the filled rectangles represent files.
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Listing 1: XPDL model for an Intel Xeon Gold 6130 CPU. Please refer to XPDL publi-
cations [10] and documentation for details about the syntax.

1 <?xml version="1.0" encoding="UTF-8"?>
<xpdl:model xmlns:xpdl="http://www.xpdl.com/xpdl_cpu"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xpdl.com/xpdl_cpu xpdl_cpu.xsd ">
<xpdl:component type="cpu" />

6 <xpdl:cpu name="Intel_Xeon_Gold_6130" num_of_cores="16"
num_of_threads="32" isa_extensions="avx avx2">

<xpdl:group prefix="core_group" quantity="16">
<xpdl:core frequency="2.1" unit="GHz" />
<xpdl:cache name="L1" size="32" unit="KiB" set="16" />

11 <xpdl:cache name="L2" size="1" unit="MiB" set="16" />
</xpdl:group>
<xpdl:cache name="L3" size="22" unit="MiB" set="1" />
<xpdl:power_model type="power_model_Gold_6130"></xpdl:power_model>
</xpdl:cpu>

16 </xpdl:model>

4. Use Cases

In this section we present two use cases in detail: user function vectorization and multi-
variant components with the Call skeleton. We also provide further examples for appli-
cation of multi-variant components at the end of the section.

4.1. Vectorization Example

As an example of where user function variants are applicable, consider instruction set
extensions for SIMD vectorization. These extensions allow the processor to compute the
same instruction in parallel over multiple data items, even from a single thread. Many
compilers today are auto-vectorizing [11–13], but this optimization requires a number of
preconditions to be satisfied, such as the correct data alignment and no pointer aliasing;
and even then, additional compiler flags are often required. For a high-level parallel
program such as a SkePU application, aggressive inlining and loop unrolling must also be
applied by the backend (external to SkePU) compiler before there is even an opportunity
for auto-vectorization.

For the aforementioned reasons, vectorization is a good motivational use case for
multi-variant user functions. Consider the SkePU program in Listing 2. The program per-
forms element-wise addition of two vectors using the SkePU Map skeleton with arity 2.
The user function add is trivial, with two inputs (one from each vector) and the function
body returning the sum of the two elements. This user function is straight-forward for
the SkePU source-to-source compiler to handle when generating output for all backends:
sequential CPU, OpenMP, CUDA, and OpenCL; it is just a matter of copying the func-
tion body. However, by this approach, the CPU backends will not be guaranteed opti-
mal performance in the case of the hardware platform supporting SIMD ISA extensions.
As such, it makes sense to provide a variant of add and make it available for run-time
selection.
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Listing 2: A SkePU program performing element-wise vector addition.

float add(float a, float b) { return a + b; }

int main(int argc, char *argv[])
4 {

const size_t size = N; // multiple of 8
auto vector_sum = skepu2::Map<2>(add);
skepu2::Vector<float> v1(size), v2(size), res(size);
vector_sum(res, v1, v2);

9 }

Listing 3: Variant of the add user function with explicit vectorization.

1 #pragma skepu vectorize 8
void add(float* c, const float *a, const float *b)
{

__m256 av = _mm256_load_ps(a);
__m256 bv = _mm256_load_ps(b);

6 __m256 cv = _mm256_add_ps(av, bv);
_mm256_store_ps(c, cv); // return by pointer

}

Listing 4: Manifest file for user function add.

skepu::VariantList {
2 skepu::Variant("add_avx",

skepu::Requires(
xpdl::includes<xpdl::cpu_1::isa_extensions, xpdl_avx>::value

), skepu::Backend::Type::CPU
)

7 };

Listing 3 contains a variant of add that is defined in a separate file as outlined in
Section 3. This file is referenced from the manifest, as seen in Listing 4. In this case,
there needs to be a block of eight elements available for the function to enable the use
of SIMD instructions, which is different in signature to the default variant.3 This variant
uses compiler intrinsic functions which map directly to Intel AVX instructions. The ele-
ments in this variant are passed and returned by pointer, and the component implemen-
tation descriptor contains the specification of how many elements it accepts in one block
(here illustrated by an inline pragma). The elements in the array have to be copied to
intermediate vector registers before computation.

3The need for framework support in this example is not a universal trait; user function variants can be defined
with the same signature and even without any required platform constraints.

A. Ernstsson and C. Kessler / Multi-Variant User Functions



4.2. Generalized Multi-variant Components with the Call Skeleton

The version 2 revision of SkePU [7] introduced an atypical skeleton construct known as
Call. The Call skeleton, unlike all other skeleton constructs in SkePU and other typical
skeleton programming libraries, does not encode a computational pattern, but rather is
an entry point for a self-contained component for arbitrary computations. This construct
is highly useful in SkePU for two main reasons: firstly, not all computations can be
efficiently expressed as data-parallel algorithms, which is the type of patterns present in
SkePU, and it is desirable to let generic computations integrate with the smart container
and backend selection and tuning systems within SkePU. Secondly, the optimal way to
structure computations is in general different for different parallel backends; there needs
to be a way to provide variants also for these non-skeleton computations.

A common class of computations that fit the above criteria are sorting algorithms.
Another example is the fast Fourier transform (FFT) [19], which has several highly op-
timized implementations available at library level. In cases such as FFT, an instance of
Call can instantiated with a naive sequential FFT algorithm as the default user function,
and additional user function variants are specified as shown in Figure 1 and implemented
as thin wrappers over libraries such as FFTW for CPU and CuFFT for Nvidia GPUs.
Both the backend type and the presence of libraries in the target system is specified and
taken into account for variant selection.

4.3. Other Use Cases

There are a number of other use cases for when multi-variant user functions can be
useful for improving performance portability. Below are some suggestions: The user can
specify a hand-optimized user function variant to be used only with a certain backend,
such as CUDA (declared via the platform attribute in the user function’s component
implementation descriptor), while the generic auto-generated user function is used for
all other backends. Even within the same backend and the same platform constraints,
complex user functions may offer multiple variants implementing the same computation
by different algorithmic approaches. Selection between the variants can be controlled
by input size and shape, as well as other run-time properties such as idle resources and
memory pressure. See e.g. the CellSort sorting algorithm [9] where the algorithm used is
closely coupled to the characteristic architecture and instruction set of the Cell processor.
When SkePU skeletons are invoked from a language other than C++, components that
have a variant defined for that language would have lower overhead due to bridging and
data representation and would open up for improved compiler optimization.

5. Performance Evaluation

We present performance evaluations for two distinct use cases for multi-variant user
functions: vectorization of Map-type skeleton applications on real and complex numbers,
and specialization of the algorithms used in the user function of a stencil-type image
filtering operation using MapOverlap.
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Figure 2. Element-wise vector addition, three variants. Execution time normalized (per element).
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Figure 3. Element-wise complex vector multiplication, three variants. Execution time normalized (per ele-
ment).

5.1. Vectorization

To demonstrate the performance gained from vectorization of user functions in a scenario
in which automatic compiler optimization might be prohibited, we test the example from
Section 4.1 using the Intel C++ Compiler v.18.0.1. -O3 level optimization is enabled for
all benchmarks, and the results are presented as the average of 100 runs. All computations
are performed on single-precision floating point data. The target system uses Intel Xeon
Gold 6130 processors. Two vectorization scenarios are evaluated:

Element-wise vector addition: Three variants are compared: no vectorization, and
vectorization by a factor of four and eight, respectively.

Element-wise vector multiplication of complex numbers: Complex numbers
stored in struct-of-arrays format, with four input data containers in total. Three versions
are tested: no vectorization, factor eight direct vectorization, and a refactored vectorized
version using fused multiply add (FMA) vector instructions.

For scalar element addition, the results show that there is always a benefit of vec-
torization if available. However, as seen in Figure 2 the overhead of loading and stor-
ing vector registers is significant when there is only one vector instruction to compute.
The choice between four element vector instructions and eight element variants does not
matter as much, as the best performer is inconsistent. It is clear that more computation is
required to get the most out of manual vectorization.

We also evaluate complex number multiplication (Figure 3). The complex numbers
are stored in cartesian form and multiplied element-wise according to (a+bi)×(c+di) =
(ac−bd)+(ad+bc)i. There are more vector instructions to amortize the register transfer
overhead over in this case, even though the number of inputs is doubled. An alternate
version with FMA instructions provides more efficient computation but at the cost of
reducing this amortization factor.
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Table 1. User function variants for median filtering.

Variant Time complexity Memory complexity Dependencies

Double loop O(n2) O(1) None

Histogram O(n+ |D|) O(|D|) None

qsort O(n logn) O(n) C standard library
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Figure 4. Median filtering using different median computation algorithms.

5.2. Median Filtering

To demonstrate and evaluate the application of multi-variant user functions to provide
different algorithmic approaches to the same computation, we look at the median filter-
ing operation on images. For each pixel in the output image, the filter selects the me-
dian value of all pixels in a region surrounding the corresponding pixel in the input im-
age. The region is defined by a radius, the same in both x and y dimensions. Using the
MapOverlap skeleton, the image filter is then implemented directly by providing the
median-finding algorithm as the user function. This can be done in several ways: by sort-
ing the elements in the region, brute-force counting search, or by a histogram collec-
tion, among others. The characteristics of the aforementioned three approaches are com-
pared in Table 1 (in the table, n denotes input size and |D| denotes the size of the value
domain).

A comparison of execution times for the different variants is presented in Figure 4.
The OpenCL variants target a single NVIDIA Tesla K20c GPU. The radius is varied in
the range 1-9 pixels, but note that this has an effect in two dimensions and will scale the
input region in the user function quadratically. The input image is fixed at 512 × 512
pixels, in 24-bit RGB format. The results show that there is no algorithm that is optimal
across both backends; we even see that, on the GPU, the best variant varies with the filter
radius.

6. Related Work

High-level parallel programming using skeletons or patterns [4] allows to model seman-
tics as well as parallelization-relevant properties (such as type of parallelism, data ac-
cess pattern, data locality constraints) of a computation using special predefined generic
constructs (called skeletons or patterns) at a level of abstraction that is clearly above that
of source code (such as OpenMP, OpenCL or CUDA). Existing skeleton programming
frameworks include SkePU [6, 7], FastFlow [1], Marrow [14], GrPPI [5], Thrust [3] and
others.
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None of these skeleton programming frameworks considered automated, platform-
specific operator specialization for multi-element groups in skeleton instantiations or
calls. Lift, [18] on the other hand is a framework consisting of a functional pattern-based
programming language, a compiler and an intermediate representation with pre-defined
skeleton-like constructs for the hierarchical, functional modeling of data-parallel com-
putations. It allows for (cost-model directed) rewriting of Lift IR trees by a design space
exploration process to automatically take into account platform-specific structures such
as SIMD operations, data transfers and data layout transformations, which can be ex-
pressed by OpenCL-specific constructs. While Lift is more general than our method, it
requires the programmer to specify skeleton instances as a hierarchically nested func-
tional decomposition of multiple primitive operators. In contrast, our approach is based
on the simpler SkePU programming API, which is more high-level and does not require
special tooling nor automated design space exploration nor an explicit intermediate rep-
resentation.

PetaBricks is another framework which also exposes algorithmic variant ("choice")
selection [2, 16]. In contrast to SkePU, PetaBricks is task-oriented with a more involved
run-time scheduling system, and does not integrate a platform modeling subsystem into
the toolflow.

It is also possible to take a more domain-specific approach. SLinGen [17] is a gen-
erative programming environment for linear algebra which outputs optimized C code,
including optional vectorization driven by intrinsics. The Cl1ck system for matrix com-
putations [8] focuses on generating multiple alternative application variants for a single
operation.

The limitations of compiler auto-vectorization are explored by Larsen et al. [11] who
also suggest improvements to the programming language and environment to facilitate
the optimization in more scenarios.

7. Conclusions and future work

Introducing multi-variant user functions increases the performance portability aspect of
SkePU programs by allowing the (expert) user to supply optimized source code for dif-
ferent target architectures. The extension is optional to use and not source breaking, and
does not impact the programmability of the SkePU framework.

The multi-variant user functions is a part of the multi-variant component program-
ming model developed within the EXA2PRO4 project. Definition and declaration of user
function variants will follow the general component declaration syntax in the EXA2PRO
compilation workflow and, together with SkePU skeletons as components themselves,
provide nested component selection in the EXA2PRO run-time system.
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