
New approaches for
Rhythmic Description

of Audio Signals

Enric Guaus i Termens
Research work

PhD in Computer Science and Digital Communication

Director: Dr. Xavier Serra

Pompeu Fabra University

September 2004



Abstract

The subject of this work is the study of how rhythmical description of music can
be included in Music Information Retrieval works, but from a more musical point
of view. The goal is to provide a suitable representation of rhythm and explore
how useful it can be for many different applications. This new representation
is based on the so called Rhythm Transform that transforms data from the
time domain to a so called rhythm domain. This transformation has proved to
give good results for automatic classification and similarity applications. The
theoretical and computational issues of the Rhythm Transform are explained,
and some results for specific applications are also shown.
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Chapter 1

Introduction

1.1 Music Content Processing

Let us imagine that we are in a CD store. Our decision to buy a specific CD will
depend on many different aspects like genre, danceability, instrumentation, etc.
Basically, the information we have is limited to the genre, artist and album, but
sometimes this information is not enough to take the correct decision. Then, it
would be useful to retrieve music according to different aspects on its content
but, what is the content?

The word content is defined as ”the ideas that are contained in a piece of
writing, a speech or a film” [1]. This concept applied to a piece of music can
be seen as the implicit information that is related to this piece and that is
represented in the piece itself. Aspects to be included inside this concept are, for
example, structural aspects, rhythmic, instrumental, and melodic characteristics
of the piece.

The concept of content-analysis is defined as the ”analysis of the manifest
and latent content of a body of communicated material (as a book or film) through
a classification, tabulation, and evaluation of its key symbols and themes in or-
der to ascertain its meaning and probable effect” [2]. Several techniques are
included under the concept of “Music-content analysis”, as techniques for au-
tomatic transcription, rhythm and melodic characterization, instrument recog-
nition and genre classification; that is, the techniques intended to describe any
aspect related to the content of music.

Music Content Processing is a topic of research that has become very rel-
evant in the last few years. The main reason for this is that a great amount
of audio material has been made accessible to the home user through networks
and other storage supports. This fact makes it necessary to develop tools in-
tended to interact with this audio material in an easy and meaningful way.
Many researchers are currently studying and developing techniques aimed at
automatically describe and deal with audio data in a meaningful way. There
are many disciplines involved in this issue, as signal processing, musicology,
psychoacoustics, computer music, statistics and information retrieval.

8
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1.2 Rhythmic Description

’Music is organization’. This is a debatable sentence, we know, but this is the
main idea that justifies lots of studies about music during the last centuries. It
is well known that a sound can be defined by using four features: frequency,
timbre, duration and intensity. Then, the ’Music is organization’ sentence could
be extended into these four dimensions.

For instance, if we look at the frequency organization through time, we can
study melodies, while if we look at the frequency distribution in a specific time,
we can study harmony (if the frequencies belong to different notes) or timbre (if
frequencies belong to a unique note). This simple example shows that multiple
relationships can be established between those four basic features.

Most of the musical elements can be defined in this way. But the main
problem we found is that these relationships are not so simple. For instance,
what is Rhythm? In a first approach for defining rhythm, one can think that
Rhythm is the time evolution of intensity. It is true, but it is not all the truth.
What is about harmonic rhythm? What is about rhythm defined by different
textures of a sound? Therefore, this is an incomplete definition.

Roughly speaking, rhythm can be defined as the time organization of any as-
pect of music. But there is no universally accepted definition of rhythm [36]. To
avoid confusion, we will define rhythm as the temporal and accentual patterning
of sound, and accentual means that sound is perceptually salient in some way
(melody, harmony, intensity accent, etc.).

According to Seashore in [11], there are two fundamental factors in the
perception of rhythm: an instinctive tendency to group impressions in hearing
and a capacity for doing this with precision in time.

From a perceptual point of view, we can assume that there exists a relation-
ship between sound and image cognition processes. If we analyze the Kanizsa’s
triangle shown in Fig.1.1, we will see a group of three black circles, with a black
contour triangle at the middle of them, and another white triangle in the top
of the picture. But it is not objectively true: the figure is only formed by three
incomplete circles and six lines. The cognitive process of audio can be seen
in a similar way, that is grouping elements (incomplete circles and lines) and
arranging them (circles and triangles). If we listen to a typical clock’s sound,
we will group the impulsive noise as a tic-tac sound. This grouping is perfectly
defined in time in such a way that we can predict when the next tic-tac will
sound.

This is just a simple example that shows us how complex a perceptual pro-
cess can be. Neither musical analysis nor rhythm analysis are a simple tasks.
Neither for rhythm. If this kind of analysis is not evident for humans, neither
for computers. One of the main goals of this study deals with the rhythmi-
cal description of music, a rhythmical description that should reflect all these
perceptual aspects of music. And this is not an easy task.

1.3 Motivation

Computer music community is a relative small group in the big computer sci-
ence field. Most of the people in this small group is a great enthusiast of music.
The problem arises when computers meet music. Sometimes, this world of num-
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Figure 1.1: Illusory Contours

bers, probabilities and sinusoids, everything about music can be forgotten: final
applications are really far from musicians or music enthusiasts requirements.

Our research into the Music Information Retrieval field tries to join these
two worlds, but sometimes it becomes a difficult task. More research is needed,
and this research should focus on different aspects of music:

• Objective description of music, where BPM detection or melody extraction
algorithms have to be developed and improved.

• Musicology description of music, where formal studies in a high level struc-
ture allow to distinguish between a Jazz solo and a Opera overture.

• Psychological aspects of music, that is, how the different musical stimulus
affect to the human behavior

All these (and probably more) aspects of music have to be taken into ac-
count when managing music. For instance, lots of successful studies about BPM
detection have been done, but this information could be completely useless if
it is not completed with other information, i.e. whether the song has swing or
not.

1.4 Objectives

The goal of this research work is to include the rhythmic aspects of music in
the Music Information Retrieval field providing it a more human (or musical)
point of view.
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swing
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240

Figure 1.2: Symbolic representation of a possible rhythm browser

On a first approach, Query by tapping (QBT) systems show to be good rhyth-
mical interfaces for music information retrieval. A QBT system is a multimedia
database containing rhythmical information of a set of audio files, with a set
of input/output interfaces that allows the user to browse and find the correct
audio file, under a specific criterion. Some successful implementations of QBH
systems are described in [38][21][37], but all these kind of systems are subject
to many kinds of restrictions (monophonic input audio, little databases, etc.).

By using the rhythmical properties of music described in this research, the
QBH system should be able to find the correct audio file without those limita-
tions, that is, from a simple audio file, from a commercial CD or from real-time
radio stream. Furthermore, rhythm browsing will be possible (symbolic repre-
sentation of a possible rhythm browser is shown in Fig. 1.2).

The research work can be divided into different steps:

• General Overview

– Study how rhythm is represented in the literature.
– Review the different techniques and algorithms that have been used

to extract this representation.
– Review the application contexts in which rhythm description is needed.

• Review of the different existing tools that can help us in our objective

– different high-level and low-level descriptors
– different statistical techniques for dealing with descriptors

• Test of the proposed rhythmical description in different applications

– Speech-Music discriminator
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– Automatic Genre Classification

– Measure of rhythmic similarity

1.5 Scope

This research work is organized as follows. In Chapter 2 a general description of
rhythm is shown. Different kinds of rhythm and different levels of the rhythm
concepts are discussed. In Chapter 3, diffenent points of view about Genre
are introduced, and some reflexions about the different taxonomies are also
presented. In chapter 4, a review of theoretical concepts and some previous
work in MIR field are commented. All these theoretical concepts will be applied
in Chapter 5, where my first contributions to the community are presented.
Finally, in Chapter 6, conclusions of our research and future work are shown.



Chapter 2

Rhythm Description

2.1 Historical Review

In the beginning, it was rhythm. Most of the musicians (composers, performers,
musicologists, sonologists . . . ) will agree with this sentence. It is well known
that rhythm is one of the most complex elements referred to the music. There
are lots of books about Harmony, Counterpoint and so on, but what’s about
rhythm? There are several courses of Harmony and Counterpoint in the conser-
vatories, but what’s about rhythm? A correct knowledge of rhythm is crucial
for composers and performers, but it is not until the 20th century that quite
detailed studies about rhythm appear [14].

In Table 2.1 some important studies about rhythm are shown. Note that
most of them have been developed in the 20th. Century [58]

Partly, this lack of studies about rhythm have been produced due to a non-
effective definition of all the concepts involved in rhythm, and it produces am-
biguities in the terminology.

But in the last few years, lots of studies about rhythm have emerged from
all the universities and research centers all over the world. Depending on the
point of view, rhythm studies can be divided into three main groups:

Theoretical analysis: They are involved in the theories about rhythmic struc-
tures of music from all the centuries and countries. Some important con-
tributions can be found in [14][58][76].

Psychological studies: They are based on the concept that rhythm does not
refer to the rigid properties of the different notation systems, but on their
perceptual aspects. Some successful works can be found in [35][25].

Computational analysis and modeling: These studies involves all the au-
tomatic rhythm identification systems (i.e. meter detection, BPM de-
tection. . . ) and such different modeling tools developed for many differ-
ent applications. Some important studies in both fields can be found in
[24][22].

Our rhythm-related work belongs to the third group commented above. In
the next sections, some definitions and structural aspects of rhythm will be
explained for a further understanding of the applied techniques.

13
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Context Author Title Year
General A. Ruckmich A Bibliography of Rhythm 1913
General T. Wiehmayer Musikalische Rhythmik und 1917

Metrik
General O. Bie Rhythm 1925
General G. Becking Der musikalische Rhythmus 1928

als Erkenntnisquelle
Antiquity & M. Ages A. Quintilianus Peri mousik ês [On music] 1983
Antiquity & M. Ages J. de Garlandia Ars rithmica, De mensurabili 1974

musica
Antiquity & M. Ages R. Westphal Griechische Rhythmik und 1867

Harmonik nebst de Geschichtr
der drei musicalischen Disziplinen

Antiquity & M. Ages R. Westphal Aristoxenos von Tarent: Melik 1883
und Rhythmik des classischen
Hellenentums

Classical & Romantic J. Riepel Anfangsgründe zur musikalischen 1752
Setzkunst

Classical & Romantic H. Koch Versuch einer Anleitung zur 1983
Composition

Classical & Romantic J.Momigny Cours complet d’harmonie et 1803
de composition

Tonal rhythm L. Klages Vom Wesen des Rhythmus 1934
Post-Tonal rhythm O. Messiaen Technique de mon langage musical 1944
Psychological W. James The Principles of Psychology 1890
Metre and Accent E. Levy Von der Synkope 1933

Table 2.1: Some important studies about rhythm

2.2 Subjective Rhythm vs. Objective Rhythm

In Chapter 1, the concept of grouping equal sounds is introduced. This process
is part of the subjective rhythm because it is an intrinsic behavior in humans[11].
On the other hand, the objective rhythm appears when this grouping process is
made by sounds, i. e. one sound in a group of four is louder, or one sound in a
group of three has a higher fundamental frequency.

In opposition to what we might think, subjective rhythm is more funda-
mental than objective rhythm. Since subjective rhythm is strongly related to
perception, different interpretations of the same rhythmic sequence can be ob-
tained from different tests. Referring to the clock example mentioned in Chap-
ter 1, a clock noise can be percieved as a tic tac sequence or as a tic tac, tec
tac sequence depending on the perception of the listener. Furthermore, the
perception of equal quarter notes played by different instruments could produce
different sensations, that is fast, slow, soft . . . These differences depend on many
biological, social and cultural environments of individuals. In this case, the ob-
jective rhythm can only focus the perceived rhythm into a specific way. This
could be the case if the clock were spoilt or if some of those quarter notes were
accentuated.
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Precieved 

Real

Figure 2.1: Human Perception of Beats

2.3 Architectural levels

The understanding of the architecture of rhythm is fundamental for a full com-
prehension of it. How is Rhythm organized?

Taking literature as an example, letters gather forming words, words gather
creating phrases, phrases gather forming paragraphs, and so on until a whole
book is written. In music, rhythm follows a similar structure: It is organized
into different levels, from the lowest level to the highest level. This does not
mean that low levels are less important than high ones. Is it possible to write a
book without a good organization of letters? Of course, it is not.

In music, this kind of structural organization is not exclusive for rhythm:
harmony and melody follow the same pattern. It is important to note how
these different levels are not independent: the individual parts at the low levels
of the structure are joined in a specific way in order to create the high levels.

Which are these rhythmical levels? As shown in Sec. 2.5, many rhythmical
concepts can be studied and classified at different structural levels. For sim-
plicity, three architectural levels structure will be defined, and most of those
concepts can be fitted into one of those three levels.

2.3.1 Beat

Beat is the at lowest level of the structure. It is also called the rhythmic primary
level. Beat is the basic unit, and it can be defined as each equivalent perceived
stimuli. As mentioned in Sec. 2.2, the perceived stimuli is the most important
one. Let us imagine a sequence of n identical beats. If a gap occurs at one of its
supposed position, human tends to perceive that silence or beat lack as another
normal beat (see Fig. 2.1).

The brain tends to follow a periodic structure although the physical stimuli
is missing[11]. In fact, composers and performers search different ways to brake
this perceived periodicity by using anticipations, delays, syncopation. . . . These
aperiodicities are opposite to the brain operation. How does the brain respond
to that confrontation?

When beats are not exactly periodic and the brain is cheated, this level of
the rhythmical architecture is divided into two different sub-layers:

lower primary layer: The non-periodic beats are not interpreted as beats.
In a limit situation, these beats can be so impredictible than they can be
interpreted as noise.

higher primary layer: The repeated aperiodicity is taken as a new beat fre-
quency with all the beat characteristics described above, that is, that they
can not build a higher structural level. More information (i.e. the accents)
is needed.
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Aperiodic pulses

Percieved pulses

Figure 2.2: Human Perception of aperiodic pulses

Simple Compound

Duple 2
4 or 4

4
6
8 or 12

8

Triple 3
4

6
8

Table 2.2: Typical architectural subdivisions of meter

A train noise or a periodic bass drum over a continuous aperiodic snare can
be good examples for this situation (See Fig. 2.2).

2.3.2 Meter

At the mid-level of the rhythmical architecture, Meter is defined. It is defined
as the measure of the pulses between musical accents. Note how these accents
are not exclusively loudness accents. There are different kinds of accents (see
Sec. 2.5 for details):

Intensity accent is the most evident for defining meter and it can be defined
as the beat that is louder than the mean.

Melodic accent is produced when a single note (or a little group of notes) is
so far than the others.

Timbre accent can be defined when new instruments appear periodically.

Most of the times, the perceived accent is a combination of all of them.
For instance, fingered bass in a Jazz piece, loudness (the intensity grows up
fastly) melodic (really low frequencies) and timbre (quite different than the
brass section) accents are combined.

At his point, the perceived beat and the perceived accent are combined to
define the meter. The basic unit in the Meter is the bar where strong and weak
beats are strictly defined. According to the standard definitions, meter can be
simple or compound, duple or triple. Then, meter can also be classified into
different sub-layers. The most common subdivision is shown in Tab. 2.2.

Simple meters imply a beat grouping by twos at the low sub-level of the
meter architectural layer, while compound meters imply a beat grouping by
threes at the same level. On the other hand, duple meters also imply a beat
grouping by twos but at the highest sub-level of the meter architectural level.
Finally, triple meters imply a beat grouping by threes at this level. For instance,
simple-triple meter 3

4 can be seen as three units (that is triple) of a (simple)
2
8 meter. In opposition of that, a compound-triple meter 6

8 can be seen as two
units (that is duple) of a (triple) 3

8 meter. Note how the length of the defined
bar is the same for both cases (3 quarter notes), but doesn’t for the accents.
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2.3.3 Rhythm

In Chapter 1, a little introduction about rhythm is presented. After some ex-
planations, a non exhaustive definition of rhythm is given as the temporal and
accentual patterning of sound, where accentual means that sound is perceptually
salient in some way (melody, harmony, intensity accent . . . ).

But rhythm is also the highest level in the architectural structure (this is
why it is not so easy to define rhythm: it can be seen from many different
points of view). Then, rhythm can be defined by grouping different bars or by
any other structure defined in any lower level.

As in the previous levels, rhythm can also be divided into different sub-layers.
At first glad, groups of bars can define rhythm. But bars can be grouped into
phrases and this phrase grouping can define rhythm, phrases can be grouped
defining a Chorus, and so on. Where is the limit? The limit is imposed by the
human memory, the short-term memory and the long-term memory: An opera
recitative can be specially boring if the long-term memory is unable to percieve
the whole concept of the composition. The same for some Jazz solos. See [63]
and [65] for details about the memory behavior.

But as shown in previous sections, accents that define the meter (and the
rhythm), are not only loudness accents. Then, why not to define different kinds
of rhythm?

Loudness Rhythm: This is the most known type of rhythm. Basically, strong
beats (sometimes, the long ones) have to be placed in strong parts of the
bar while weak beats (usually the short ones) have to be placed in the
weak parts of the bar.

Harmonic Rhythm: The harmonic rhythm is defined by the organization of
chords in one or two bars. Each chord (and its tonality function) in a
weak part of a bar must resolve to an equal or more important tonality
function in the stronger part of the bar. This kind of rhythm is really
important for composers due to the importance of tonality in most of the
popular, classical and jazz music (See [55] and [61] for details).

Melodic Rhythm: Roughly speaking, melodic rhythm is defined by the pres-
ence of non-diatonic notes in a bar (apoggiatures, tensions. . . ). Diatonic
notes have to be placed in the strong beats in a bar while the non-diatonic
ones have to be placed in the weak beats.

Of course, it is not an strict receipt. In fact, rhythm in music is just a
combination of all the imaginable exceptions of these rules.

2.4 Managing rhythm

It is clear that the basic unit at the lowest architecture level is the beat, and
the basic unit for meter is the bar. But, which one is the basic unit for rhythm?
It is not so easy to define.

Most of the studies about rhythm deals with tempo, ticks, and other rigid
features of rhythm. Many different algorithms try to find, by applying different
techniques, some of these descriptors. But from a musical point of view, all
these descriptors are not so important and at least they are not unique. Items
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Musicians View Both Technicians View
Rhythm level allegro chorus rhythmicity

walking movement periodogram
. . . . . . . . .

Meter level 3
4 , 6

8
. . .

Beat Level foot tapping metronome tic
. . . beat onset

. . . . . .

Table 2.3: Classification of some descriptors of rhythm according to different
points of view

like Allegro, slow are most commonly used by musicians for describing rhythm.
Furthermore, there are other phrasal-words for describing rhythm: “This solo
doesn’t walk” or “You have no swing”.

All these items are good for describing rhythm at any of its architectural
level. However, these descriptors only represents one specific part of rhythm
which is fitted into one specific level of the whole architecture. On the other
hand, these descriptors can be more technical (onsets...) or more musical (an-
dante...). All of them are complementary. In Tab. 2.3 some examples of classi-
fication of rhythm-related words are shown.

Finally, doesn’t the Tempo take part into these definitions? Not really:
Tempo does not affect to the structure of rhythm, only to the speed that this
structure must be performed.

2.5 Definitions

A lot of different concepts have been used in previous sections, and more con-
cepts will be introduced during the next chapters. A review about the rhythm-
related terminology and some definitions1 can be useful for the reader. Here are
the most important [30]:

Rhythm: Many things about rhythm have been discussed Sec. 2.3. Here, five
basic grouping structures are enumerated [14]:

iamb: ∪−
anapest: ∪ ∪ −
trochee: −∪
dactyl: − ∪ ∪
amphibrach: ∪ − ∪

For this definition of rhythm, the beat concept is used in a broad meaning.
Here, Rhythm is independent of meter for two reasons: it can exist without

1Thanks to Fabien Gouyon for this clever classification
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a specific meter (i.e. Gregorian Chant) and the anapest rhythm can exists
in a simple duple meter.

Accent: The accent means differentiating events and thus giving a sense of
shape or organization [58]. As discussed in Sec. 2.3.2, different kinds of
accents can be defined. The perceptual accent is a combination of them.

Pulse - Beat: Used indistinctly, it is the periodic perceived stimuli. In western
music notation, it is usually defined by the time signature. See Sec. 2.3.1
for details.

Tempo - Tactus: Tempo can refer to a musical concept, like the number of
beats per minute, as well as a psicological concept, as the perceived rate
of events. BPM (beats per minute) is the unit for tempo when it refers to
the musical concept. Otherwise, tempo can be confused with tactus, and
the used units are expressions like ”fast”, ”slow” and so on.

Beat “phase”: Beats are characterized by both period and phase. Period is
the time distance between peaks (inversely proportional to the tempo)
and phase is the temporal location of one beat.

Metric structure - Meter: Meter can be interpreted as an abstraction of the
regularity of the different musical accents in one period[13]. Different
accents can be grouped into a higher abstraction level and the Metric
Structure tries to organize it. See Sec. 2.3.2 for details.

Time signature: It is the usual way to show the meter in western music. It is
restricted to only two levels: the lower level defines the elements for beats
and the upper level defines how to group them[76]. The bar lines defines
the period where the same structure will be repeated. See Sec. 2.3.2 for
details.

Downbeat: The “downbeat” corresponds to the first beat in a measure. Any
other beat in a measure is called “offbeat”. The beat that immediately
precedes the downbeat is the “upbeat”[58].

Tick - Tatum: The term tick is proposed by Gouyon in [30] and it can be
defined as “the regular time division that most highly coincides with all
note onsets” [9]. Some other terms can be assigned to this concept: Bilmes
uses the term “tatum” in [9], Schloss uses the term “attack-point” in [3]
and Hoffman-Engl refers to the “cronota” for such a similar concept in
[34]

Quantized duration - Metrical point: The GTTM (Generative Theory of
Tonal Music) [46] propose a good structure for metrics in Western music.
Pulses of a metrical level must be equally spaced, and there must be a
pulse of the metric structure for every note. Then, all notes in a musical
excerpt will be moved and fitted into one of the pulses defined in the
structure. This operation is widely known as the quantization process.

Swing: This term originates in jazz music. It is difficult to define swing due
to the personal interpretation of the concept depending on the performer,
the musical piece and so on. Friberg and Sundtröm define this term as
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“consecutive notes that are performed as long-short patterns” in [43] and
Laroche defines it as a “slight delay of the second and fourth quarter
beats”.

Groove: This is the most difficult term to define. It can be interpreted as a
“How to play”, related to the “feeling” of the musical piece. It is de-
fined basically by rhythm modifications of the rigid structure proposed in
GTTM, but also melody, harmony and other aspects of music affect to
the groove. Swing is just a particular case of groove.

IOI (Inter-onset interval): It is defined as the time difference between two
successive onsets[6], but it can also be defined as the difference between
any two onsets [17].



Chapter 3

Genre Description

3.1 Introduction

Genre classification is one of the basic tasks when managing with recorded music.
Genre is the most important parameter and widely used by both the music
industry and the consumers. It is crucial when searching a specific CD in a store
or in internet. Furthermore, radio-stations and musical TV channels usually
focus its playlist on some specific genres. Then, Automatic Genre Classification
Systems could help the user in this amazing and difficult task.

Nowadays, with the increasing number of Web Sites for selling and sharing
music, there is a huge amount of musical data on the net. Traditional techniques,
like the typical “Ask Google”, are becoming obsolete because all this data is not
perfectly (manually) labeled. New musical browsing systems are needed and,
for usability issues, Automatic Genre Classification Systems must be included.

In this chapter, a brief explanation about genre is given, discussions about
different taxonomies are discussed, some used classifications are compared and,
finally, automatic genre classification systems are also discussed.

3.2 Definition

This section is supposed to start with a precise and exhaustive definition of the
term “Genre”. Unfortunately, such a definition does not exist yet, and different
authors differ in the attempts of defining this term. The basic reason could be
found in the emotional, personal, cultural and social aspects of music.

The term genre comes from the Latin word genus, which means kind or class.
Then, genres should be described as a musical category defined by some specific
criteria. Due to the inherent personal comprehension of music, this criteria can
not be universally established. Then, genres will be different for different people,
groups, countries, and so on.

Genres are supposed to be characterized by the instrumentation and rhyth-
mic structure, but there are many other factors that influence the classification.
The major challenge in Automatic Genre Classification System is to define and
fix as more factors as possible.

On the other hand, it is obvious that this task is not easy for humans either.
Many taxonomies from different known libraries or web sites can differ a lot.

21
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All these taxonomies are hand-made by musicologists and expert musicians from
all different genres in music. Does it means that all of them are in a mistake?
Of course, not. The only problem is that different points of view of music are
applied in all those classifications. This aspect will be discussed later in Sec.3.4.

For simplicity, we will define the term Genre as that kind of music that has
similar properties, in those aspects of music that differ from the others. What
does it means? Some music can be clearly identified by the instruments used,
i.e. the Sardana (in which the Tenora is a fundamental instrument of the Cobla),
while other genres can be identified by the rhythm, i.e. tecno. Of course, both
examples can be discussed because the instrument and the rhythm are not the
only factors that define these genres respectively. In the proposed definition,
the “those aspects of music” words refer to the possible combinations of them.

3.3 Evolution

Is not the purpose of this section to give a complete explanation from the evo-
lution of music from all over the centuries. But one can realize that in the last
twenty years, due to the technology improvements and the increasing compu-
tational power of computers, much more music is being produced. Of course,
there is not any kind of problem on that fact, but the classification issues for
all this produced music is becoming unapproachable.

But what is really important is that most of the computer music produced
differs a lot from the traditional concepts of music. Since the Gregorian Chant
up to the seventies, music can be characterized by its rhythm, harmony and
melody. But nowadays, a new concept have been introduced: textures[75].
There exist several so called chill-out or relaxation CDs which are based on tex-
tures of soft sounds, and the textures change producing the musical sensations.
There is neither melody nor harmony. How do we classify this kind of music?
All Automatic Genre Classification Systems need to take all these aspects into
account too.

3.4 Taxonomies

Depending on the application, typical taxonomies can be divided into two dif-
ferent groups[26]:

• Taxonomies of the music industry

• Internet Taxonomies

• Specific Taxonomies

Taxonomies of the music industry: These taxonomies are made by impor-
tan CD stores (i.e. Fnac, Virgin. . . ). The goal of these taxonomies is to
guide the consumer to a specific CD or track in the shop. They are usually
built with four different levels:

1. Global music categories

2. Sub-categories

3. Artists (usually in alphabetical order)
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4. Album (if available)

In Tab. 3.1 two examples of albums by using this taxonomy are shown (we
will not discuss whether they are right or not). Although this taxonomy
has shown its usability in exceed, some inconscistences can be found:

• Most of the stores have other sections with promotions, collections. . .

• Some authors have different recordings which should be classified in
another Global Category.

• Some companies manage the labels according to the copyright man-
agement.

even so, it is a good taxonomy for music retailers.

Internet Taxonomies: The main benefit of the internet databases is that mul-
tiple relationships between authors, albums. . . can be established. They
are not in a specific physical place. Then, with these multiple relation-
ships, the consumer can browse according to his more personal point of
view about genres. In Tab.3.2, two different paths for a search of the same
album are shown (www.amazon.com). Some inconsistencies are also found
here, specially from the semantic point of view:

• Hierarchical links are usually genealogical. But sometimes, more than
one father is necessary. i.e. both Pop and Soul are the “fathers” of
Disco

• In most of the taxonomies, geographical inclusions can be found. It
is really debatable if this kind of classification is correct. Some sites
propose the genre World Music (www.ebay.com) in which, if one is
strict, one should be able to find some Folk music from China, Pop
music of Youssou N’Dour and Rock music of Bruce Springsteen.

• Aggregation is commonly used to join different styles: Reggae-Ska →
Reggae and Reggae-Ska → Ska (www.ebay.com).

• Repetitions can also be found: Dance → Dance (AllMusicGuide).

• Historical Period labels may overlap, specially in classical music:
Baroque or Classical and French Impressionist may overlap.

• Specific random-like dimensions of the sub-genre can create confu-
sion.

Specific Taxonomies: Sometimes, some quite specific taxonomies are needed,
even if they are not really exhaustive or semantically correct. A good
example can be found in Ballroom taxonomies in which Tango category
can include classical titles from “Piazzolla” as well as electronic titles from
“Gotan Project”.

At this point, one could wonder which the right taxonomy is. In fact, in-
cluding my personal experience as a member of the Library Committee at the
ESMUC1, one can conclude that the perfect taxonomy does not exist. The
perfect taxonomy is the one that best helps us in our work.

1ESMUC: Escola Superior de Música de Catalunya; www.esmuc.net
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Levels Example 1 Example 2
Global category Pop Jazz
Sub-category General Live Albums
Artist Avril Lavigne Keith Jarrett
Album Under my skin Koln Concert

Table 3.1: Two examples of the industrial taxonomy

# Path
1 Styles → International → Caribbean&Cuba → Cuba → Buena Vista Social Club
2 Styles → Jazz → Latin Jazz → Buena Vista Social Club
3 Music for Travelers → Latin Music → Latin Jazz → Buena Vista Social Club

Table 3.2: Two different virtual paths for the same album, for the Internet
taxonomy

3.5 Genres and Music Information Retrieval

Over the last years, many systems for Automatic Genre Classification have
been implemented. All these systems take different techniques from other fields
like speech, statistics and musical analysis: extraction of timbre features, on-
set detection and beat tracking or Hidden Markov Models are some of them.
The structure of these systems can be divided in three different parts: feature
extraction, pattern recognition and post-processing[49]

Feature extraction: This is the most important part of the process. Depend-
ing on the extracted features, the system will classify genres according to
this description (See Sec. 3.3). If no rhythmical features are extracted,
the system will not classify Genres according to a rhythmic criteria. In
this case, a Ballroom music database could not be classified. In a general
way, timbre related descriptors (MFCC and derivates) and rhythm related
descriptors (onset detection, automatic time-signature detection and beat
tracking) are used. Some melodic and harmonic features should also be
included.

Pattern Recognition: There are several general-purposed machine-learning
and heuristic-based techniques that can be adapted to this task. Hidden
Markov Models or Neural Networks are usually used. Here, performing
a supervised training or an unsupervised training can be chosen. With
supervised training, manually labeled data is needed and it must be con-
sistent with the chosen taxonomy. The most precise data is chosen, the
better training will be performed. On the other hand, unsupervised tech-
niques allow more (unlabeled) general training data, but the output will
not be consistent with any taxonomy. Results are made only under a
mathematical approaches and they are not supposed to have any musical
meaning. Nevertheless, they can be useful for specific applications[73].

Post Processing: Once the system is trained, different data can be extracted
from the system. Genre labels can be frame-to-frame or unique for the
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Figure 3.1: An usable visualization for clustered concepts (www.allmusic.com)

whole song; a black-or-white output or a probability density function. . . .
It depends on the application. In Fig. 3.1 an example of an usable visu-
alization for clustered concepts is shown.

3.6 Previous work

Some successful works have been made in Automatic Genre Classification Sys-
tems. Most of them have been designed for genre classification with very strong
boundaries, i.e. the number of available genres, or the audio database for test-
ing.

According to [57], humans can predict musical genres on 250[ms] of audio.
This process is a real-time process, then, the conclusion is that no other higher
layers are needed for genre classification: this task could be easier than might
be thought.

From now on, one of the most important works in this field is made by Tzane-
takis in [69]. His work is divided in two parts. The first is called GenreGram and
it is developed for real time radio broadcasts and displays cylinders bouncing
up and down that represent each genre. The second work is called GenreSpace
and it is a 3-D representation of genre space. It is used for representing huge
databases. These ideas are finally presented with full implementation in [68].
In this system, timbre and rhythmical features are combined with pitch infor-
mation for classification. This system is able to distinguish between 10 different
genres with a 61% of successful classifications. This results are quite comparable
with human behavior.

Another successful approach is presented by Kosina in [41], with the in-
clusion of the MUGRAT system as a part of her thesis.This work provides an
excellent overview about genre recognition and is able to distinguish between
metal, dance and classical music with a success rate up to 82%. The WEKA
software framework is used for this purpose [74].

A most recent work is presented by Grimaldi in [31]. In it, the system uses
the discrete wavelet transform (DWT) and extracts many features in the (1)
time-domain and (2) scale-domain. In this work, the classification system is
more complicated than the Tzanetakis’ work, but results are also quite encour-
aging. Lambrou has also a classification system in [42].
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Finally, some good reviews of the state of the art in genre classification can
be found in [49] and [7]. Nevertheless, we are a little bit far for a full featured
automatic Genre classification system and, as Tzanetakis cite in [51]:

“An important contribution of this work is the comparison of the automatic
results with human genre classifications on the same dataset. The results show
that, although there is room for improvement, genre classification is inherently

subjective and therefore perfect results can not be expected neither from
automatic nor human classification.”

perhaps this effort has been done in vain.



Chapter 4

Technical Review

4.1 General Descriptors

In this section, a short overview of the most used general-purpose descriptors is
sown. This list is not exhaustive, and we suggest further readings for details.

4.1.1 Energy

The Energy is not a representative descriptor at all. The energy of the input
audio depends on many not fixed parameters of the experiment, as the mic/line-
in amplifier level while recording, or the used codification.

From a mathematical point of view, the time-domain energy of the input
signal can be defined as:

E =
N∑

n=0

x[n]2 (4.1)

where x[n] is the input time-domain data and N is the length of x[n] (in sam-
ples).

4.1.2 Zero Crossing Rate

As defined in [40][59], the Zero Crossing Rate (ZCR) of the time domain wave-
form provides a measure of the weighted average of the spectral energy distribu-
tion. This measure is similar to the spectral center of mass or Spectral Centroid
of the input signal (see Sec.4.1.3). It also can be interpreted as the “noisiness”
of the input signal.

From a mathematical point of view, it can be calculated as:

ZCR =
1
2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (4.2)

where sign function is 1 for positive arguments and 0 for negative arguments,
x[n] is the input time-domain data and N is the length of x[n] (in samples) [68].

27
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4.1.3 Spectral Centroid

As defined in [60], the Spectral Centroid is the balancing point of the spectral
power distribution. The Spectral Centroid value rises up, specially for percussive
sounds, due to the high density of harmonics in the upper bands of the spectrum.

This concept has been introduced by psychoacoustic and music cognition
fields. It can be interpreted as a measure of the average frequency, weighted by
amplitude, of a spectrum, that is, a measure related with the brightness of the
signal.

Be careful by confusing the Spectral Centroid and the Fundamental Fre-
quency: while the Spectral Centroid can be higher for a trumpet sound than
for a flute sound, both instruments can play exactly the same note.

From a mathematical point of view, the Spectral Centroid can be calculated
as:

SC =
∑
fiai∑
ai

(4.3)

where fi is the frequency value of each bin of the FFT and ai is its amplitude.
In many applications, it is averaged over time. This S̄C value can be aver-

aged into different time-domain frames as shown in next equation:

S̄C =
1
N

∑
SCi (4.4)

where N is the number of frames and SCi is the Spectral Centroid value for
each frame.

Finally, the spectral centroid is sometimes normalized with the fundamental
frequency, making this value adimensional:

SC =
∑
fiai

f1
∑
ai

(4.5)

4.1.4 Spectral Flatness

The Spectral Flatness can be defined, according to Ozgur Izmirli in [52], as
the ratio of the geometric mean to the arithmetic mean of the power spectral
density components in each critical band for the input signal.

The process is reccomended to follow next steps: the signal should be sam-
pled at fs = 22050[Hz] and the 2048-points FFT should be performed after the
Hanning windowing. The windows should be 30% overlapped. A Pre-emphasis
filter should be applied in order to compensate the behavior of the human ear.
The bark-band filter output should be calculated from the FFT and the power
spectral density should be computed for each critical bands. All these values
are used to compute the arithmetical and geometrical means.

SFM =
Gm

Am
(4.6)

where Gm and Am are the arithmetical and geometrical means of the spectral
power density function respectively.

Sometimes, the Spectral Flatness Measure is converted to decibels as follows
[39]:

SFMdB = 10log10
Gm

Am
(4.7)
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and, furthermore, it can be used to generate a coefficient of tonality α as
follows:

α = min

(
SFMdB

SFMdBmax

, 1
)

(4.8)

i.e.., an SFM of SFMdBmax
= −60dB is used to estimate that the signal is

entirely tonelike, and an SFM of 0dB to indicate a signal that is completely
noiselike.

4.1.5 4Hz Modulation

The 4Hz Modulation Energy Peak is a characteristic feature of speech signals
due to a near 4Hz syllabic rate. It is calculated by decomposing the original
waveform into 20 [64] or 40 [60] (depends on accuracy) mel-frequency bands.
The energy of each band is extracted and a second band pass filter centered at
4 Hz is applied to each one of the bands.

Of course, this 4Hz value depends on the language. It is well known that in
Catalan or Spanish languages, this value is near the 6[Hz] instead of the 4[Hz]
value for English.

4.1.6 Mel-Cepstrum

The Cepstrum of an input signal is defined as the Inverse Fourier Transform of
the logarithm of the spectrum of the signal [54]:

c[n] =
1
N

N−1∑

k=0

log10 |X[k]|j 2π
N kn

, 0 < n < N − 1 (4.9)

where X[k] is the spectrum of the input signal x[n] and N is the length of x[n]
(in samples).

The process is an Homomorphic Deconvolution because it is able to separate
the excitation part of the input signal for further manipulations.

But for the Mel-Cepstrum calculations, some little modifications have to be
done. The mel scale tries to map the perceived frequency of a tone onto a linear
scale, as shown in Eq. 4.10:

mel frequency = 2595 · log1 0
[
1 +

f

700

]
(4.10)

The mel scale can be interpreted as an approximation of the perceptual fre-
quency scale (referred as critical bands or barks)[77]:

bark = 13 · arctan
(

0.76 · f
1000

)
+ 3.5 · arctan

(
f2

75002

)
(4.11)

4.1.7 Delta descriptors

For some specific cases, the descriptor we use has not the whole information we
need. This case is specially critical when this data is supposed to be the input
of a Hidden Markov Model system. Then, the first-order or the second-order
differentiation of the original parameter is used. The first order differentiation
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can be calculated in many different ways, but we use the Causal FIR filter
implementation, as shown in Eq. 4.12 [5]:

ṗ[n] =
∂p[n]
∂t

=
m=N∑
m=n

p[n−m] (4.12)

where N is the depth of the differentiation. The descriptor we get by applying
differentiation is denoted as delta descriptor (∇). Finally, if we have to apply the
second-order differentiation, we will compute the Eq. 4.12 recursively. Then,
we have the delta-delta descriptor (∇2).

4.2 Rhythm-related Descriptors

This section will show a short review of the most used descriptors and techniques
for managing with rhythm.

4.2.1 Inter Onset Interval

As defined in 2.5, the Inter Onset Interval (IOI) is the time difference between
two successive onsets[6], but it can also be defined as the difference between
any two onsets [18]. Many algorithms can be found for IOI computations, but
only one of them will be explained here. According to Gouyon in [30], the IOI
histogram can be computed as:

1. Onset detection: First of all, the energy of each non-overlapping frames
is calculated. The onset will be detected when the energy of the current
frame is superior to a specific percentage (i.e. 200%) of a fixed number
(i.e. 8) of the previous frame energy average. It is assumed that there is
a gap of 60[ms] between onsets, and a weighting factor is applied to each
onset according to the number of consecutive onsets whose energy satisfies
the threshold condition mentioned above.

2. IOI computations: In this algorithm proposed by Gouyon, the time differ-
ences between any two onsets is taken. Each IOI has an associated weight
according to the smallest weight among the two onsets used for this IOI
computation

3. IOI histogram computation: With all these computed IOI, a histogram
is created. This histogram is smoothed by the convolution of a Gaussian
function. The parameters of this Gaussian function are fixed empirically.

At this point, the histogram of IOI is available. This data can be used for
tick induction computations, rhythm classification, automatic BPM detection,
and so on.

4.2.2 Beat Tracking

The main goal for Beat Tracking Systems (BTS) is to construct an algorithm
for “beat” or “pulse” symbolic representation of rhythm. But some difficulties
can be found in this process. They can be resumed as[48]:

• Commercial music has usually many different instruments. Then, the
onsets become difficult to detect.
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• The classical technique of peak-finding is not useful due to the high content
of peaks in the audio signal that are not directly related with rhythm.

• As mentioned in Sec. 2.2, beats, pulses and accents are not directly related
with a change in the audio signal due all of them are perceptual concepts.

• In MIDI data, it is difficult to determine which note-value a beat corre-
sponds to, and whether a beat is a strong beat or a weak beat.

Taking into account all these challenges, some important works have been
done:

Beat Tracking System proposed by Scheirer

According to Scheirer in [22], pulses can be described by its frequency and phase
components. As mentioned in Sec. 2.5, the frequency determines the BPM of
the rhythm while the phase determines where the downbeat is located. The
process for Beat Tracking can be divided in different steps:

1. The input signal is decomposed into six bands.

2. The envelope and the derivative of the envelope is calculated for each one
of these six bands.

3. Each of the envelope derivatives is filtered with a set of tuned resonators.

4. One of the resonators is selected to be the reference for phase computa-
tions.

5. The output of each resonator is analyzed in order to fix periodicities (a
phase-locked behavior). This information is saved for each of the sub-
bands

6. All this data is mixed for the tempo estimation (BPM), and phase-locked
resonators determines the phase of the rhythm (structure).

In Fig. 4.1 a screenshot of the block diagram for this beat tracking system
is shown.

Beat Tracking System proposed by Goto

Goto proposes a BTS that examines multiple possibilities of positions of beats in
parallel[48]. Linear prediction techniques are also used for to predict when the
new onset should be located. Fig. 4.2 shows a screenshot of the block diagram
for this beat tracking system. It can be resumed as:

1. Frequency Analysis: This block searches the notes’ onsets from the A/D
converted signal. It also detects the Bass drums (BD) and the Snare drums
(SD) onsets, related with strong and weak beats respectively.

2. Beat Prediction: Multiple agents interpret the onsets times previously
found and construct parallel hypotheses: each agent calculates the IBI(inter-
beat-interval), predicts the next beat time, proposes which kind of beat it
should be, and evaluates its reliability.
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Figure 4.1: Screenshot of the block diagram for Beat Tracking calculations
proposed by Eric Scheirer

3. BI Generation: This part manage with all the hypotheses and selects the
most reliable one.

4. BI Transmission: Transmits the beat-information (BI) to other applica-
tions

Just a comment about this system: Due to the predictions that have to be
done for successful results when real input analog data is entered to the system
(the system is basically tested with popular music), it does not work on real
time.

4.2.3 Beat Histogram

The Beat Histogram concept was proposed by Tzanetakis in [69]. It is a part of
his Automatic Genre Classification system. Some techniques like the Wavelet
Transform are used[71, 16]. After applying toe Multi-resolution Analysis tech-
niques, the Wavelet decomposition of a signal can be interpreted as a successive
high-pass and low-pass filtering of the time domain signal. This decomposition
is defined by:

yhigh[k] =
∑

n

x[n]g[2k − n] (4.13)

ylow[k] =
∑

n

x[n]h[2k − n]
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Figure 4.2: Screenshot of the block diagram for Beat Tracking calculations
proposed by Masataka Goto.

where yhigh[k] and ylow[k] are the output of high-pass and low-pass filters
respectively, and g[n] and h[n] are the filter coefficients for the high-pass and
low-pass filters associated to the scalar and wavelet functions for 4th. order
Daubechies Wavelets. The main advantage by using the Wavelet Transform
deals with the similarity of the decomposed signal to a 1/1 octave filter bank in
a similar way than the human ear does.

When the signal is decomposed, some additional signal processing (in parallel
for each band) is needed:

1. Full Wave Rectification (FRW):

z[n] = abs(y[n]) (4.14)

where y[n] is the output of the Wavelet decomposition at that specific
scale (or octave)

2. Low-pass filtering (LPF): One pole filter with α = 0.99:

a[n] = (1− α)z[n]− α · a[n] (4.15)

3. Downsampling(↓) by k=16:

b[n] = a[kn] (4.16)
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Figure 4.3: Screenshot of the block diagram for Beat Histogram calculations
proposed by Tzanetakis

4. Normalization (Noise removal NR):

c[n] = b[n]− E [b[n]] (4.17)

5. Autocorrelation (AR):

d[n] =
1
N

∑
n

c[n]c[n+ k] (4.18)

This autocorrelation is computed by using the FFT for efficiency.

In Fig. 4.3 a screenshot of the block diagram for beat histogram calculations
proposed by Tzanetakis is shown.

At this point, the first five peaks of the autocorrelation function are detected
and their corresponding periodicities in beats per minute(BPM) are calculated
and added to the beat histogram.

Finally, when the beat histogram is computed, some features can be used:

1. Period0: Periodicity in BPM of the first peak

2. Amplitude0: Relative amplitude of the first peak

3. Ratio Period1: Ratio of the periodicity of the second peak to the first one

4. Amplitude1: Relative amplitude of the second peak

5. Ratio Period2, Amplitude2. . .

Other authors use the number of peaks, their distribution, max and min
operations over the peaks. . . of the beat histogram as input features to their
classification system[31].
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4.2.4 Beat Spectrum

The concept of Beat Spectrum was introduced by Foote et. al. in [23]. It is
a measure if the acoustic self-similarity as a function of time lag. The goal of
this method is that it not depends on fixed thresholds. Hence, it can be applied
to any kind of music and Genre, and furthermore, it can distinguish between
different rhythms at the same tempo. The Beat Spectrogram concept is also
introduced in this work as the time evolution of the rhythm representation. It
can be computed by the following steps:

1. Audio parameterization: The FFT of the windowed input data is com-
puted. Then, by using any known filtering technique (i.e MFCC), the
vector of the log energy for each band is obtained.

2. Calculating frame similarity: Data derived from previous parameterization
is embedded in a 2D representation. A dis-similarity measure between two
vectors i and j is computed as:

DC(i, j) =
vi · vj

‖vi‖‖vj‖ (4.19)

3. Distance Matrix Embedding: The similarity matrix S contains all the
measures for all the i and j as shown in Eq. 4.19. In this matrix, audio
similarities can easily be observed.

4. The Beat spectrum: Periodicities and rhythmic structure can be derived
from this similarity matrix. An estimation of the Beat Spectrum can be
found by summing S along the diagonal as follows:

B(l) =
∑

k⊂R

S(k, k + l) (4.20)

where B(0) is the sum for all the elements of the main diagonal over
some continuous range R, B(1) is the sum of all the elements along the
first super-diagonal, and so on. A more robust estimation of the Beat
Spectrum can be computed as:

B(k, l) =
∑

i,j

S(i+ k, j + l) (4.21)

where the autocorrelation of S is computed. Some applications like onset
detections can be computed by using this Beat Histogram.

4.2.5 Swing Ratio

As mentioned in Sec. 2.5, Friberg and Sundtröm define swing as “consecutive
notes that are performed as long-short patterns” in [27], and Laroche defines it
as a “slight delay of the second and fourth quarter beats” in [43].

The swing ratio can be computed, from a mathematical point of view, as
the relationship between the duration of the first eighth-note and the second
eighth-note:

Swing Ratio =
t1rst. eighth note

t2nd. eight note
(4.22)

The Swing Ratio coefficient is adimensional.
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4.3 Statistics

4.3.1 Mean

The mean or expected value of a discrete random variable X, can be computed
as [50]:

µ = E(X) =
∑

x

xf(f) (4.23)

where x are the obtained values of the experiment and f(x) is the weight
of each for these values. In a typical coin experiment, f(x) = 0.5 for all of the
cases.

4.3.2 Variance

The variance of X is a measure of the dispersion of the samples around the
mean value, and it can be computed as [50]:

σ2 = V (X) = E(X − µ)2 =
∑

x

(x− µ)2f(x) =
∑

x

x2f(x)− µ2 (4.24)

or, by using in MATLAB nomenclature 1 [67]:

σ2 =
1

n− 1

n∑

i=1

(xi − x̄)2 (4.25)

Finally, the Standard Deviation of X can be computed as:

σ = [V (X)]
1
2 =

( 1
n− 1

n∑

i=1

(xi − x̄)2
) 1

2 (4.26)

4.3.3 Skewness

The skewness of a distribution is defined as [67]:

y =
E(x− µ)3

σ3
(4.27)

where µ is the mean of x, σ is the standard deviation of x and E(t) is the
expected value of t.

Skewness is a measure of the asymmetry of the data around the sample
mean. If skewness is negative, the data are spread out more to the left of the
mean than to the right. If skewness is positive, the data are spread out more to
the right. The skewness of the normal distribution (or any perfectly symmetric
distribution) is zero.

1MATLAB calculates the variance with 1
n−1

instead of 1
n
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4.3.4 Kurtosis

The kurtosis of a distribution is defined as [67]:

k =
E(x− µ)4

σ4
(4.28)

where µ is the mean of x, σ is the standard deviation of x and E(t) is the
expected value of t.

Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis
of the normal distribution is 3. Distributions that are more outlier-prone than
the normal distribution have kurtosis greater than 3; distributions that are less
outlier-prone have kurtosis less than 3.

4.4 Periodogram

In this section, we will present an overview of the Periodogram concept and com-
putations which will be used in next chapters. The Periodogran was introduced
by Schuster in 1898 to study periodicity of sunspots. As shown in Sec. 4.3, the
sample mean and the sample variance are unbiased and asymptotically unbiased
estimators respectively. Furthermore, they are both consistent estimators[5].

Sometimes, in digital signal processing field, the estimation of the power den-
sity spectrum Pss(Ω) of a continuous stationary random signal sc(t) is needed.
After the anti-aliasing filtering, another discrete-time stationary random signal
x[n] will be created, and its power density spectrum Pxx(ω) will be proportional
to Pss(Ω) over the whole new bandwidth of x[n]:

Pxx(ω) =
1
T
Pss

(
Ω
T

)
|ω| < π (4.29)

where T is the sampling period. Then, a good estimation of Pxx(ω) will
provide a reasonable estimation of Pss(Ω).

Let v[n] be the windowed input signal:

v[n] = x[n] · w[n] (4.30)

where w[n] is the windowing function. Then, the Fourier Transform of v[n]
can be computed as:

V (ejω) =
L−1∑
n=0

w[n]x[n]e−jωn (4.31)

where L is the length (in samples) of the windowing function.
Now, let I(ω) be the estimation of the power density spectrum:

I(ω) =
1
LU

|V (ejω)|2 (4.32)

where U is the normalization factor for removing the bias in the spectral
estimate. Depending on the windowing function, this estimator can be:

• If w[n] is the rectangular window → I(ω) is the periodogram
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• If w[n] is NOT the rectangular window → I(ω) is the modified peri-
odogram

Furthermore, note that the periodogram can also be computed as:

I(ω) =
1
LU

L−1∑

m=−(L−1)

cvv[m]e−jωm (4.33)

where

cvv[m] =
L−1∑
n=0

x[n]w[n]x[n+m]w[n+m] (4.34)

As cvv[m] is the aperiodic correlation sequence for the finite-length sequence
v[n], the periodogram can be interpreted as the Fourier Transform of the ape-
riodic correlation of the windowed input data.

Finally, as we are in discrete domain, the periodogram can only be obtained
at discrete frequencies. Then, discrete periodigram can be computed as:

I(ωk) =
1
LU

|V [k]|2 (4.35)

where V [k] is the N-point DFT of w[n]x[n].

4.5 Linear Discriminant Analysis

4.5.1 Introduction

One of the goals in Music Information Retrieval systems is data classification.
This classification is usually made under some specific conditions according to
the final purpose of our system. Content-based processing is needed for this
task, and many different descriptors extracted from the original signal (audio,
MIDI, XML files. . . ) are also needed.

This is the context where the LDA (Linear Discriminant Analysis) becomes
imprescindible to get the objectives. LDA is a set of statistical techniques used
for analyze high dimensional sets of data. By using LDA, all the parameterized
input data is divided into different sub-spaces. Then, the classifier (implemented
in a HMM system, Neural Networks. . . ) is not so complicated and, furthermore,
results are improved.

Another classification technique commonly used is PCA (Principal Compo-
nent Analysis). The main difference between PCA and LDA that one can found
is on the previous assumptions about the distribution of the new spaces: PCA
does not assume anything about these new spaces while LDA does. In Fig. 4.4
there are two sets of data that perfectly define two different classes: class 1 and
class 2.

Each one of the ellipses represents a different class. If PCA analysis is applied
in this specific situation, we get that the maximum variation of data is along the
x axe. Otherwise, if LDA analysis is applied, we get that the best discrimination
is made by the projection of data to the y axe.

Some important properties about LDA are:

• Capacity for dimensionality reduction
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Figure 4.4: Graphical interpretation of LDA

• Decorrelation between new coefficients

• High discrimination power between classes

4.5.2 Different approaches in LDA

Data sets can be transformed and test vectors can be classified in the trans-
formed space by two different approaches[28]:

Class-dependent transformation: This type of approach involves maximiz-
ing the ratio of between class variance to within class variance.

Class-independent transformation: This approach involves maximizing the
ratio of overall variance to within class variance.

The first approach maximizes the ratio so that adequate class separability
is obtained. The second approach uses only one criterion to transform the data
sets and hence all data points irrespective for their class identity are transformed
using this transform. That means that all classes are considered separate classes
against the other ones.

4.5.3 Calculations

From a mathematical point of view, LDA is just a linear transform:

o = A′v (4.36)

where v is the input vector of the parameterization block, A′ is the trans-
formation matrix (that’s what exactly we are looking for) and o is the new set
of parameters.

At this point, the study will be shown, for simplicity, for only two different
classes. It will be easy to expand the results to a higher dimensional set of data.

Let the data be:
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v1 =




a11 a12

a21 a22

a31 a32

. . . . . .
am1 am2




v2 =




b11 b12
b21 b22
b31 b32
. . . . . .
bm1 bm2




(4.37)

where, in aij , i is the index of the parameter and j is the index of the
measure.

First of all, it is necessary to define a kind of distance between classes. This
distance can be calculated as the distance of the means of each class. The mean
value for each class can be defined as:

µi =
1
ni

∑
v∈νi

v i = 1, 2 (4.38)

and the mean of each class after applying the transformation shown in Eq.
4.36 can be defined as:

µ̃i =
1
ni

∑

o∈Oi

o =
1
ni

∑
v∈νi

A′v = A′µi (4.39)

The distance between the two classes, after the projection, is:

d = |µ̃1 − µ̃2| = |A′(µ1 − µ2)| (4.40)

Note that this distance can be as high as one wants by applying a scale
factor to the matrix A′. The chosen scale factor is the within-class scatter:

S0 =
∑

o∈O1

(o− µ̃1) (o− µ̃1)
′ +

∑

o∈O2

(o− µ̃2) (o− µ̃2)
′ (4.41)

Then, the new defined distance is:

J (A) =
|µ̃1 − µ̃2|

S0
(4.42)

The Fisher Linear Discriminant is defined as the linear projection o = A′v′

in such a way that the distance criterion J(A) is maximized [56]. Then the Eq.
4.41 can be written as:

S0 = A′SvA (4.43)

where Sv is the between-class scatter matrix, represented by SW . For a
general application with K different classes, SW is defined as:

SW =
K∑

k=1

Sk =
K∑

k=1

∑
v∈νk

(v − µk) (v − µk)′ (4.44)

Furthermore, the concept of scatter matrix can be expanded to a general
scatter matrix ST defined as:
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ST =
K∑

k=1

∑
v∈νk

(v − µ) (v − µ)′ (4.45)

where µ is the mean for all de data in the original space:

µ =
1∑K

k=1 nk

K∑

k=1

∑
v∈νk

v (4.46)

The Eq. 4.45 can be recalculated:

ST =
∑K

k=1

∑
v∈νk

(v − µ) (v − µ)′

=
∑K

k=1

∑
v∈νk

(v − µk + µk − µ) (v − µk + µk − µ)′

=
∑K

k=1

∑
v∈νk

(v − µk) (v − µk)′ +
∑K

k=1

∑
v∈νk

(µk − µ) (µk − µ)′

=
∑K

k=1

∑
v∈νk

(v − µk) (v − µk)′ +
∑K

k=1 nk (µk − µ) (µk − µ)′

= SW + SB

(4.47)

where SB is the general between-classes scatter matrix:

SB =
K∑

k=1

nk (µk − µ) (µk − µ)′ (4.48)

At this point, the Eq. 4.42 can be recalculated as:

J (A) =
|A′SBA|
|A′SWA| (4.49)

and the A matrix that maximizes this expression is generated by the eigen-
vectors of:

S−1
W SBai = λiai (4.50)

4.5.4 Dimensionality reduction

About the capacity for dimensionality reduction, in Fig. 4.5 the percentage of
the global variance for all the data set is represented as a function of the number
of the chosen coefficients. That means that, if the system has originally 60
coefficients, this number can be reduced to 50 with few looses in his classification
powerful, about 2.5%. This allows to reduce the complexity and the number of
computations to the next blocks of the system.

4.5.5 Conclusions

The LDA has been presented here as a classification technique, and some com-
parisons between LDA and PCA have been made. Throughout most of the
explanation has been focused to a 2-class problem, generalization to a more
dimensional space has been shown. Two different approaches to LDA (class-
independent and class-dependent) have been shown too: If the LDA implemen-
tation is focused on a generalization problem, independent transformation is
preferred. Otherwise, if the LDA implementation is focused on discrimination,
dependent transformation will be used.
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Figure 4.5: % of the global variance of the projected data as a function of the
number of parameters

4.6 Hidden Markov Models

4.6.1 Introduction

Hidden Markov Models (HMM) have shown to be a powerful statistical tool in
speech processing. The theoretical aspects about HMM are quite old but it is
not until the sixties (when new parameter estimation techniques appear [8]) that
they become really important in mathematical developments. The inclusion of
HMM in speech is not until the seventies. Nowadays, HMM are included in
many different research areas, and they have shown his robustness and elegance
in exceed[45].

4.6.2 Main Idea

The idea of HMM is quite simple. Nature is full of processes that are still
unknown for humans. The unique knowledge one has about these processes is
via observation. Observation is the way for discover the real behavior of the
system. At this point, one can choose between a deterministic or statistical
description of the system. Deterministic descriptions are based on a perfectly
knowledge of the behavior of the system, i.e. a sine generator. In the other hand,
statistical descriptions are used when this behavior is not fully controlled and
only statistical estimations can be done. This would be the case for Gaussian
models, Markov Models and Hidden Markov Models.

Hidden Markov Markov models are an extension of the Markov Models.
The Markov Models are useful when each observation corresponds to a physical
event, but this case is too restrictive to many problems of interest. Hidden
Markov Models are used when the observations are also probabilistic functions.
Sometimes, Hidden Markov Models are referred as a double embedded stochastic
process with an underlying stochastic process that is not observable (hidden) but
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can only be observed through another set of stochastic processes that produce
the sequence of observations[45].

4.6.3 Elements of a HMM

Each nature fenomena can be represented as a sequence of vectors or observa-
tions O, defined as[66]:

O = o1, o1 . . . oT (4.51)

where ot is the vector observed at time t. Then, the phenomena recognition
problem can be resumed, from a mathematical point of view, as:

argmaxi {P (wi|O)} (4.52)

where wi is the ith. model previously defined in our vocabulary. Now, by
using the Bayes’ Rule, we get:

P (wi|O) =
P (O|wi)P (wi)

P (O)
(4.53)

Given a set of prior probabilities P (wi), the most probable model (previously
defined in our vocabulary) depends only on the likelihood P (O|wi).

Now, the unique problem is the estimation of the observations. Due to
the high dimensionality of observation vectors, this process can’t be done in a
deterministic way. We will use a Markov model for that purpose.

Markov Model

A Markov model is a finite-state machine which changes state once every time
unit. Each time t, the machine enters to a new state j and an observation
vector ot is generated by its probability density function bj(ot). The transition
between the previous state i and the actual state j is defined by the discrete
probability value aij .

Fig 4.6 shows a 6 state Markov model example. Here, the state sequence
X = X1, X2 . . . X8 moves through the Markov model in order to generate the
observation vector O = o1, o2, o3, o4, o5, o6, o7, o8. The joint probability that O
is generated by this specific model is:

P (O,X|M) = a12b2(o1)a22b2(o2)a23b3(o3) . . . (4.54)

Hidden Markov Models

Note that, in fact, the underlying X sequence is unknown. That is what it is
called Hidden Markov Models.

The full HMM system is a set of Markov models (like shown in Fig. 4.6),
and the purpose of Eq. 4.52 is try to find the model which best generates (that
is, with the major probability) the observed sequence:

P (O|M) =
∑

X

ax(0)x(1)

T∏
t=1

bx(t) (ot) ax(t)x(t+1) (4.55)
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Figure 4.6: Markov Generation Model

where x(0) is the model entry state and x(t + 1) is the model exit state.
Here, M is the set of Markov models (M = M1,M2 . . .), in the same sense that
in Eq. 4.52, wi pas presented as an specific model in our vocabulary.

It is obvious that Eq. 4.55 can not be computed directly. Some recursive
techniques are needed. But whatever the recursive technique is, it supposes that
{aij} and {bj(ot)} are known. We need some kind of training process for that.

4.6.4 Training Process

Given a set of examples for each model, all these parameters ({aij} and {bj(ot)})
can be automatically estimated by using some re-estimation techniques. Then,
the global system can be summarized as follows:

• Each model is trained with a sufficient number of examples of that specific
model.

• When a new unknown input sequence has to be recognized, the likelihood
of each model generating that input sequence is calculated.

• The recognized sequence belongs to the model that best generates the
input sequence.

Gaussian Mixtures

Before entering in detail with the re-estimation process, note that, sometimes,
the output probabilities bj(ot) are represented as an addition of S independent
data streams. Gaussian Mixture Densities are commonly used for that purpose.

From a mathematical point of view, let bj(ot) be:

bj(ot) =
S∏

s=1

[
Ms∑

m=1

cjsmN(ost;µjsm,Σjsm)

]γs

(4.56)
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Figure 4.7: Decomposition of Gaussian Mixtures

where Ms is the number of mixture components in the stream s, cjsm is the
weight of the m’th. component, γs is the stream weight (it is usually a manual
setting) and N(·;µ,Σ) is a multivariate Gaussian with mean µ and covariance
matrix Σ:

N(·;µ,Σ) =
1√

(2π)n|Σ|e
− 1

2 (o−µ)′Σ−1(o−µ) (4.57)

where n is the dimensionality of o.

4.6.5 Baum-Welch Re-Estimation

In the training process, a good estimation for each model parameters is re-
quired. The Baum-Welch Re-Estimation algorithm improves these estimations
providing more accurate results in our HMM system.

As seen in in Sec. 4.6.4, the output probabilities are usually represented as
an addition of S mixture Gaussian components. For the study of the Baum-
Welch Re-Estimation algorithm, only the case for one single Gaussian stream
is considered. Note how multiple Gaussian mixtures can be interpreted as sub-
states in each state in which the transition probabilities are exactly the mixture
weights Cjsm. See Fig. 4.7 for details.

Then, the problem can be reduced to a mean and variance estimation of the
output probabilities of a single-Gaussian HMM system:

bj(ot) =
1√

(2π)n|Σj |
e−

1
2 (ot−µj)

′Σ−1
j

(ot−µj) (4.58)

In the case of a single state HMM, the computation of these parameters is
quite easy:

µ̂j =
1
T

T∑
t=1

ot (4.59)

and

Σ̂j =
1
T

T∑
t=1

(ot − µj)(ot − µj)′ (4.60)
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But in real case, the HMM is not usually single state and, furthermore, it is
not possible to assign each observation sequence to a specific state. Then, the
expressions 4.59 and 4.59 can be interpreted only as a non-random initialization,
but they have to be redefined.

In order to solve this problem, let each sequence be assigned to each of the
states in proportion to the probability of the model being in a state when the
vector was observed. Then:

µ̂j =
∑T

t=1 Lj(t)ot∑T
t=1 Lj(t)

(4.61)

and

Σ̂j =
∑T

t=1(ot − µj)(ot − µj)′∑T
t=1 Lj(t)

(4.62)

where Lj(t) is the probability of being in state j at time t and the denomi-
nators in both expressions represent the normalization factors.

At this point, the also called probability of state occupation Lj(t) must be
computed, and the so called forward-backward algorithm will be used for this
task.

Forward-Backward algorithm

Let αj(t) be the forward probability:

αj(t) = P (o1, . . . , ot, x(t) = j|M) (4.63)

where M is one of the models and N is the number of states for that model.
The meaning of this forward probability is the joint probability of observing

the first t vectors and being at state j at time t. From a mathematical point of
view, it can be calculated recursively as:

αj(t) =

[
N−1∑

i=2

αi(t− 1)αij

]
bj(ot) (4.64)

Note that states 1 andN are non-emitting states, that is, no output probabil-
ity can be calculated from them. They are useful for state-transition problems.

The initial conditions for recursion are:

α1(1) = 1 (4.65)

and

αj(1) = a1jbj(ot) 1 > j > N (4.66)

and the final condition is:

αN (T ) =
N−1∑
n=2

αi(T )αiN (4.67)

Then,
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P (O|M) = αN (T ) (4.68)

In a similar way, let βj(t) be the backward probability:

βj(t) = P (ot+1, . . . , ot|x(t) = j,M) (4.69)

This probability can be calculated as:

βi(t) =
N−1∑

j=2

aijbj(ot+1)βj(t+ 1) (4.70)

The initial condition is:

βi(T ) = aiN 1 < i < N (4.71)

and the final condition is:

β1(1) =
N−1∑

j=2

aijbj(o1)βj(1) (4.72)

Then, we get the state occupation probability by multiplying the forward
probability (joint probability) and the backward probability (conditional prob-
ability):

αj(t)βj(t) = P (O, x(t) = j|M) (4.73)

Finally,

Lj(t) = P (x(t) = j|O,M)
= P (O,x(t)=j|M)

P (O|M)

= 1
P αj(t)βj(t)

(4.74)

where P = P (O|M). Note that these operations involves probability multi-
plications, and resolution can affects the final results. Hence, these values are
usually computed in log arithmetic.

4.6.6 Viterbi Decoding

In Sec. 4.6.5, an efficient method for computing the forward probability is
shown. When new data comes to the system and the observation vectors are
extracted, the same algorithm could be applied successfully for recognition, that
is, find the model which yields the maximum value of likelihood P (O|Mi). But
this method has a disadvantage: if one transition’s probability is zero (ai,j = 0),
it is possible that the most probable state in a given time unit t belongs to an
unexisting path.

This problem can be solved by computing the algorithm but calculating the
maximum likelihood state sequence instead of the maximum probability state
sequence. It is computed by using the same algorithm, but the summation is
replaced by a maximum operation.

Let φj(t) be the maximum likelihood of observing vectors o1 to ot, and being
at state j at time t. It can be computed, in a similar way than Eq. 4.64 does,
as:



CHAPTER 4. TECHNICAL REVIEW 48

3 4 Observation
(time)

5 6 7 81 2

4

3

2

1

5

6

State
a35 b3(o5)

Figure 4.8: Viterbi Algorithm

φj(t) = max
i
{φi(t− 1)aij} bj(ot) (4.75)

The initial conditions are:

φ1(1) = 1 (4.76)

and:

φj(1) = a1jbj(o1) i < j < N (4.77)

The final condition is:

φN (T ) = max
i
{φi(T )aiN} (4.78)

Then, the maximum likelihood is:

P̂ (O|M) = φN (T ) (4.79)

As for the Baum-Welch algorithm, these calculations leads to underflow. Log
arithmetics are also used in this case:

ψj(t) = max
i
{ψi(t− 1) + log(aij)}+ log(bj(ot)) (4.80)

In Fig. 4.8 the Graphical interpretation of the Viterbi algorithm is shown.

4.7 Mathematical Morphology

4.7.1 Introduction

Mathematical Morphology is a set of non-linear signal processing techniques
proposed by Serra in [62]. They are based on the maximum and minimum
operations.
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Morphology has several advantages over other techniques especially when
applied to image processing. Here are some of them:

• Preserves edge information

• Works by using shape-based processing

• Can be designed to be idempotent

• Computationally efficient

Morphology has been used in a wide range of applications. Some possible
applications are:

• Image enhancement

• Image restoration (i.e. removing scratches from digital film)

• Edge detection

• Texture analysis

• Noise reduction

Although Mathematical morphology techniques are specially designed for
image processing, they can also be applied to audio processing. In the next
sections, a brief description of Mathematical Morphology is shown.

4.7.2 Basic Structures

The basic structure is the complete reticulum. The complete reticulum are those
sets P that:

A ≥ A, A ∈ P (4.81)

(A > B)
⋃

(B > A) =⇒ A = B

(A > B)
⋃

(B > C) =⇒ A > C

Then,

1. There exists a partial relationship between the elements

2. For all the sets of elements {Xi} ∈ P there exists a Supremum and a
Infimum defined as:

(a) Supremum: ∨{Xi}
(b) Infimum: ∧{Xi}
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Figure 4.9: Comparison between an original signal and the dilated signal

Figure 4.10: Comparison between an original signal and the erosioned signal

4.7.3 Dilation and Erosion

Two basic operations can be defined over the Supremum and Infimum laws:

1. Dilation: Operation over the supremum:

ϕ (∨{Xi}) = ∨{ϕ (X − i)} (4.82)

The resulting effect of this operation is shown in Fig. 4.9.

2. Erosion: Operation over the Infimum:

ϕ (∧{Xi}) = ∧{ϕ (X − i)} (4.83)

The resulting effect of this operation is shown in Fig. 4.10.

4.7.4 Opening and Closing

Opening and Closing operations are defined by the successive application of the
dilation and erosion operations defined above:

1. Opening: Successive application of the erosion and dilation operations.

(a) Removes all the positive peaks of the original signal that are smaller
than the structural element.



CHAPTER 4. TECHNICAL REVIEW 51

Figure 4.11: Comparison between an original signal and the opened signal

Figure 4.12: Comparison between an original signal and the closed signal

(b) The resulting function is always below the original one.

The effect of this operation is shown in Fig. 4.11.

2. Closing: Successive application of the dilation and erosion operations.

(a) Removes all the negative peaks of the original signal that are smaller
than the structural element.

(b) The resulting function is always above the original one.

The effect of this operation is shown in Fig. 4.12.

It is obvious that both process are in opposition. This characteristic will be
used in the Speech-Music discrimination system described in Sec. 5.3



Chapter 5

First Contributions

In this chapter, firsts contributions to the Music Information Retrieval field
are shown. The chapter is divided in five sections. In the first section, the
context for all this work and the used framework will be reviewed. In the second
section, some new descriptors are introduced. The third section deals with the
Speech-Music discrimination system based on the descriptors just described.
This Speech-Music discrimination system is presented as the first step to build
up a more complex Automatic Genre Classification System that will be shown
in the fourth section. Finally, a new Rhythm Similarity System is also presented
in the fifth section.

5.1 Environment

Most of this research has been made in the context of the AIDA project1, and
some little applications have been tested in the MTG-DB system, described by
Cano et. al. in [10]

5.1.1 AIDA Project

The major goal for the AIDA project is the automatic recognition of broad-
cast audio. This process may appear quite simple but it becomes more and
more complicated when huge audio databases are managed. Some techniques
are applied for reducing the large amount of data although they increase the
complexity of the system [53].

Hidden Markov Model techniques are used for this purpose. By using HMM,
the system is not a TRUE/FALSE identification process, but a non-linear sim-
ilarity measure. In this context, we find the identified song as the most similar
song. When this most similar song is found under some other constrains, it
is considered as the identified song. This technique is quite useful for other
similarity applications such as rhythmical similarity.

In this framework, the Similarity or Identification process will depend on
the used descriptors. If only timbrical descriptors are used, the identification
process will be performed from a timbrical point of view. Then, it is a good

1The AIDA project has been founded by the Sociedad Digital de Autores y Editores -
SDAE

52



CHAPTER 5. FIRST CONTRIBUTIONS 53

idea to include many different kinds of descriptors: identification or similarity
process will be more accurate and robust.

Concerning the robustness, the system must be robust to multiple distortions
from the input signal as well. Is widely known that almost all the radio-stations
apply different distortions to the audio signal in order to increase the listener’s
attention. The most common radio distortions are Compressor/Limiter, Stereo
Base-width, Exciter/Enhancer and Pitching. Furthermore, the system must
also be robust to GSM codification. This problem is difficult to solve and a lot
of considerations must be taken into account.

On the other hand, the system must be source-independent. Different sam-
pling frequencies, bit depth or codification must not affect the robustness of the
system. Signals from cellular phones must be identified as well as MP3 files or
direct real-time streaming.

5.1.2 AMADEUS technology

All this work have been implemented using the AMADEUS technology. AMADEUS
is a set of C++ classes that provides all the needed functions for real-time in-
put data, parameterization, and HMM operations. AMADEUS has been imple-
mented at the Music Technology Group (MTG) and it is available on the web.
See [20] for a more detailed explanation about the possibilities of AMADEUS.

5.2 New descriptors

5.2.1 Voice2White descriptor

It is well known that speech data has a limited frequency band, from 300[Hz] to
4000[Hz] approximately. The Voice2White descriptor is a measure of the energy
inside this limited frequency band in relation to the whole audible margin. This
will give us an idea about how speechy is the input audio data (See Fig. 5.1).

From a mathematical point of view, it is a measure of the energy of the audio
inside the typical speech frequency band (300Hz..4KHz) respect the energy of
the whole audible margin (in case of sr = 44100Hz) or the global band (in case
of sr < 44100Hz). The process is similar to the Spectral Flatness described in
Sec. 4.1.4, but the final calculations are slightly different:

v2w = 10log10

∑4000
fi=300Bfi∑

iBi
(5.1)

where Bi is the energy value of the corresponding critical band, and fi is
the critical band containing that frequency value.

5.2.2 The rhythmical transformation

Many rhythmical descriptors from input audio data can be computed. As shown
in Sec. 4.2, most of them depend on some manually fixed parameters or exper-
imental thresholds and they only give a partial point of view about the whole
rhythm, as explained in Chapter 2. The so called Rhythm Transform pretends
to be the solution to all these problems: a complete rhythmical representation
of the input signal without using thresholds based on experimental values.
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Figure 5.1: Frequency and Loudness limits for speech

Note that we call rhythm transform from a conceptual point of view. It is not
a real transform from a mathematical point of view since the inverse transform
can not be defined. But the obtained data could be interpreted as data in the
so called rhythm domain.

Rhythm transform

Most of the beat tracking systems compute the frequency analysis of the input
signal and search for the common energy periodicities through different (linear
o mel-frequency based) sub-bands. The energy’s periodicity search is usually
implemented as a bank of resonators and represented as a Beat Spectrum or as a
Beat Histogram. The Rhythm Transform is slightly different: the periodogram
is calculated for the energy derivative of each sub-band of the input data and,
finally, a weighted sum is implemented for a global rhythm representation:

Frequency decomposition: The input data x(t) is filtered with the anti-alias
filtering and sampled with fs = 22050[Hz]. The length of the frames is
l = 300[ms] according to perceptual behavior of the ear[44], the hop-size
is h = 30[ms] and Hamming windowing is applied. Digital windowed data
xw[n] is decomposed into different sub-bands with a 1/3 octave filter bank
according to perceptual behavior of the human ear. At this point, different
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digital signals are obtained:

xfc=20[Hz][n] = 1
N1

∑f=22.4[Hz]
f=17.8[Hz] |xw[n]|

xfc=25[Hz][n] = 1
N2

∑f=28.2[Hz]
f=22.4[Hz] |xw[n]|

. . .

xfc=10000[Hz][n] = 1
N28

∑f=11220[Hz]
f=8913[Hz] |xw[n]|

(5.2)

where Ni is the number of points of the FFT inside each 1/3 octave band.

Energy Extraction: The log of the energy is obtained for each band:

efc=20[Hz][n] = log10
(
xfc=20[Hz][n]

)
efc=25[Hz][n] = log10

(
xfc=25[Hz][n]

)
. . .

efc=10000[Hz][n] = log10
(
xfc=10000[Hz][n]

)
(5.3)

Derivative of the Energy: The derivative of the energy is computed:

di,fc=20[Hz][n] = ei,fc=20[Hz][n]− ei−1,fc=20[Hz][n]
di,fc=25[Hz][n] = ei,fc=25[Hz][n]− ei−1,fc=25[Hz][n]

. . .
di,fc=10000[Hz][n] = ei,fc=10000[Hz][n]− ei−1,fc=10000[Hz][n]

(5.4)

and all these values have a length of L = 6[s], which is the worst case for
a full 4/4 bar at 40 BPM.

Periodogram calculations: The periodogram is computed for each buffer, as
explained in Sec. 4.4. Then,

Ifc=20[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=20[Hz][m]e−jωm

Ifc=25[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=25[Hz][m]e−jωm

. . .

Ifc=10000[Hz][ω] = 1
LU

∑L−1
m=−(L−1) cvv,fc=10000[Hz][m]e−jωm

(5.5)

where cvv,fi is the aperiodic correlation sequence of each dfi sequence.

Weighted sum: Finally, the weighted sum for all the periodograms for each
band is computed. The weighting vector is:

r[1..nBands] =
{

1
nBands

,
1

nBands
, . . .

}
(5.6)

but it can be manually modified in order to emphasize some frequency
bands. For general pop music, where the rhythm is basically played by
Bass and Bass drums, it can be any descendent sequence, i.e.:

r[1..nBands] =
{

1
1
,
1
2
, . . .

}
(5.7)

and for some kind of Latin music, where some high-frequency instruments
are usually played, the weighting vector could be:

r[1..nBands] =
{

1
1
,
1
2
, . . . ,

1
9
,

1
10
,
1
9
, . . . ,

1
2
,
1
2

}
(5.8)
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Figure 5.2: Block diagram for Rhythm Transform calculation
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Figure 5.3: Periodicities of a musical signal

But in a general way, the weighting vector described in Eq. 5.6 is good
enough.

By performing the weighted sum of the squared values of all the peri-
odograms, data in the rhythm domain is obtained:

T (ω) =
nBands∑

j=1

r(j)Ifj [ω] (5.9)

In Fig. 5.2 the global block diagram for Rhythm Transform computations
is shown.

Interpretation of data in Rhythm Domain

Which information is available from data in the Rhythm Domain? The BPM
information can be found as the greatest common divisor for all the represen-
tative peaks since the beat can be defined as the common periodicity of the
energy peaks for all the instruments in a song. For BPM detection, any peak
detection algorithm across data in rhythm domain data can be used.

But the major advantage of this representation is that it gives some time
domain information too. Let’s see this duality from a conceptual point of view:
It is well known that music is structured in bars, in a given meter. It is well
known that the strongest beat in a bar is usually the first one. This means that
this strongest beat in a bar appears less frequently: it has the minor periodicity.
On the other hand, a weak beat will appear more frequently since it has a higher
periodicity (see Fig. 5.3)

In rhythm domain, weak beats appear at higher BPM than strong beats.
Furthermore, in time domain, weak beats appear later than strong beats too.
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This correspondence allows to interpret data in rhythm domain as data in time
domain. This is what we call duality of data in rhythm domain and time domain.

Assuming this duality, the time signature from audio data can easily be
deduced. Data between two higher peaks can be seen as the distribution of the
beats in a bar. If data between two maximum peaks is divided by twos, a simple
meter is assumed as it is shown in Fig.5.4(a) and Fig. 5.4(b). If data between
two maximum peaks is divided by threes, a compound meter is assumed as it is
shown in Fig. 5.4(c) and Fig. 5.4(d). On the other hand, if data in a simple or
compound bar is sub-divided by twos, a duple meter is assumed as it is shown
in Fig. 5.4(a) and 5.4(c), and if this data is sub-divided by threes, a triple meter
is assumed as it is shown in Fig. 5.4(b) and 5.4(d). Finally, in Fig. 5.4(e) if
a simple duple meter is sub-divided by twos, the presence of swing is assumed
(Let the swing structure as a dotted quarter-note and a eight-note).

All these examples (available in http://www.iua.upf.es/~eguaus ) are
based on polyphonic MIDI generated audio data, except for the last example
which is directly extracted from the CD.

In conclusion, the main advantage of this method is that we have much more
information than the information available at the output of a set of resonators
tuned at the different BPM typical values and a unique frequency value is related
to a unique BPM value. The BPM resolution is higher than other methods, and
furthermore, we have not only the BPMs, but all the existing periodicities as
well according to different human aspects of music. Different rhythms with the
same meter and structure, but played with different feeling can be distinguished
by using this Rhythm Transform.

Limitations

Sometimes, tempo is only defined by pitch variations. This descriptor fails for
those cases with non-attack instruments. Strings, choirs, synthetic pads, etc.
are not good friends of the Rhythm Transform.

Furthermore, the Rhythm Transform is limited by FFT resolution. For low
BPM values, the periodicity is low, then the subdivisions by twos or threes will
be much closer than the distance between two bins.

5.2.3 Beatedness descriptor

The beatedness calculation is an application on the use of data in Rhythm do-
main. This concept was introduced by Foote et al in [24] and evaluated by
Tzanetakis et al in [70]. The Beatedness is a measure of how strong are the
beats in a musical piece. The beatedness is computed as the Spectral Flatness
of the sequence but in the rhythm domain. Spectral Flatness is a measure of
the tonality components in a given spectrum, and it is defined as:

SFdB = 10 · log
Gm

Am
(5.10)

where Gm and Am are the geometric an arithmetic mean values from all
the bins of the Fourier Transform of the signal, respectively. In the case of the
Beatedness computation, Gm and Am are the geometric an arithmetic mean
values from all the bins of data in rhythm domain.
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Genre BPMmean BPMvar Beatedness
Dance 140 0.49 3.92
Pop 108 0.71 5.23
Soul 96 0.43 3.48
Jazz 132 1.26 3.54
Classic 90 32 0.95
Voice 66 46.9 0.36

Table 5.1: BPM and Beatedness for different musical genres

High beatedness values are due to very rhythmic compositions, this is Dance,
Pop . . . Low beatedness values are due to non rhythmical compositions, this is
some Jazz Solo, classical music, speech . . .

Some BPM & Beatedness measures for different musical genres are shown
in Table 5.1. All these measures belong to one frame of “No Gravity” by DJ
Session One for Dance music, “Whenever,Wherever” by Shakira for Pop music,
“Falling” by Alicia Keys for Soul music, “Summertime” by Gershwin for Jazz
music, “Canon” by Pachelbel for Classic music and one minute of radio recording
for voice. Note that in Dance, Pop and Soul music, the the system shows us a
quite low BPMvar. That means that the BPM measure is successful. Not the
same for Classic and Voice, but it’s not an error: Do some excerpts of classic
music or speech have any tempo?

Numerically, high values are due to rhythmic music and low values are due
to Classic music or Voice.

5.3 Speech-Music discrimination

5.3.1 Introduction

The Speech-Music discrimination problem is not new, and some of the developed
systems have been quite successful. But all these systems are designed under
some rigid constrains (see Sec. 5.3.2). This is the main goal of this system:
our environment has not any kind of constrains. Broadcast audio signals (from
radio stations, TV, GSM or Internet) are the input of our system and, as one
can imagine, the content of this data is out of control. Mainly, we have two
different kind of problems:

Channel distortions: Since the sources of audio can be very different, the sys-
tem is not focused on clean audio files. The used descriptors are strategi-
cally chosen to be, for instance, independent of the spectrum of the input
signal. Then, MP3 or GSM codifications of audio input will not produce
a failure to the system

Audio content Since the content of the system is unknown, the system has
to discriminate between speech and music in many different situations:
interviews, films, commercials, sports. . .

How do we design this system? The main idea is to create a genre classification
system in which the musical genres are conceptually different with regard to
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the typical ones. For instance, a “cellular male voice” could be a genre for our
system. Furthermore, the representative features of the input signals are not
only based on the spectrum of the signal, but on the rhythm.

5.3.2 State of the art

The Speech-Music discrimination problem has become quite important for last
years due to the automatic indexing or classification problem. Multimedia data
identification and indexation has become more and more important due to the
fast growth of electronic databases through Internet. Large amount of data
must be automatically analyzed, and speech-music discrimination is only one
step for the whole process.

Main characteristics

A lot of studies have been done in Speech-Music Discrimination. The previous
work can be summarized in three different categories:

• Time domain based systems, such as zero-crossing or energy-evolution.

• Frequency domain based systems, such as cepstral coefficients.

• Mixed time-frequency domain based systems, such as 4Hz Modulation or
harmonic coefficients.

This classification can be done just taking into account which kind of pa-
rameters are extracted from the input signal. But one could think in other
classification scheme just taking into account the signal processing method per-
formed to that data. Then, the Speech-Music discrimination systems can be
divided in:

• Decision trees

• Neural Networks

• Gaussian Mixture Models

• Hidden Markov Models

All of the systems we will talk about in the next section should be enclosed
into one of the categories of the first classification scheme as well as into one of
the categories of the second classification scheme, independently.

Related work

The first successful approach on the speech-music discrimination was made by
John Saunders in 1996 [59]. In this study, Saunders compare different features
like the Tonality, bandwidth, excitation patterns, tonal duration and energy se-
quences. The Zero-crossing rate is introduced as a significant parameter in the
speech-music discrimination, and some experiments and results are presented.

Another important approach was made by Eric Sheirer and Malcom Slaney
in [60]. This work presents a study of thirteen different features, derived from
8 original ones (4HzModulation, Spectral Centroid, Cepstrum, Pulse Metric,
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style description main group
mal Male voice speech
fem Female voice speech
cma Cellular male voice speech
cfe Cellular female voice speech
cla Classical music music
cop Copla & Author music music
ele Electronic soft music music
jaz Jazz music music
pop Pop music music
roc Hard rock music music
tec Tecno & Dance music music
sil Silence speech

Table 5.2: Definition of different styles for Speech-Music discrimination

etc.). Each one of them is supposed to be a good discriminator at once. Different
sets of features have been trained and tested by using Single Gaussian Mixture
Models, but the results are not spectacular. The conclusion of this work deals
with more research: no significant good results are found.

At this point, the basic features and procedures for discrimination are pre-
sented, and future works will only introduce new features or little deviations of
these main ideas. Wu Chow and Liang Gu present us a set of features derived
from Harmonic Coefficient and its 4Hz Modulation in [12]. This approach is
based on a two-level processing structure, one for singing/non singing musical
signals detection and the other for the typical speech-music discrimination. Af-
ter a rule-based post-filtering smoothing algorithm, significant enhancements
are obtained for complex audio streams. Karnebäck presents an exhaustive
study on Low Frequency Modulations in [64], and Berenzweig and Ellis present
some new statistical features (defined in [29]) embedded in a simple HMM for
distinguishing between singing and instrumental music in [4].

Some comparisons on the methods mentioned above have been made. M. J.
Carey [47] has tested most of those different features. The cepstral coefficients
and delta cepstral coefficients seem to be the most successful parameters, while
the zero-crossing and the energy (mean and variance values across the time) are
not so important. Cepstra and delta cepstra can give us an equal error rate of
about 1.2%, slightly far of the 6% of equal error rate by using the zero-crossing
coefficients.

Finally, a study of the State of the Art has been made by the Audio Research
Group in Tampere University of Technology.

5.3.3 Description

In few words, the systems is designed as a rough musical genre classification.
But the genres have not any special musical meaning. A genre is, from our
point of view, a group of audio signals with some common (spectral, timbrical
or rhythmical) features. The selected genres are grouped into two main groups,
Speech or Music, as shown in Table 5.2.
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Why do we need so many different styles? As we will discuss later, the
system is based on different features. It is obvious that these features are quite
different between Hard Rock and Classical music. Then, we apply the “divide
and conquer” principle. Different models will be defined for different music
styles, so the models will hold more accurate descriptions of the music. The
speech-music discrimination system is, in fact, a genre classification system in
which only two of the genres are interesting: mal and fem.

The developing process is clearly divided in five steps:

• Data acquisition

• Parameterization of both training and test audio data.

• Training Process

• Real-time Recognition and post-processing.

• Graphical user interface.

The training process is made by using the HTK software and the whole
process is oriented to the HTK philosophy. The Wavesurfer software is also
used for creating labels.

Data Acquisition

The system works on real-time. The AMADEUS technology described in Sec.
5.1 is used for this purpose.

But a lot of audio data must be recorded and manually labeled for a success-
ful training process. As the system will work in a broadcast audio environment
(from many different radio stations), many excerpts of radio broadcast audio
have been recorded. Finally, this data have been edited and many different
audio files have been produced. All these audio files are 1 minute long with
fs = 22050Hz, 16 bits and mono. But the main characteristic of these audio
files is that they belong into one specific musical genre, that is, each file belongs
exclusively to an specific genre from the beginning to the end. Finally, Different
HMM models will be defined for different genres, so the models will hold more
accurate descriptions of the music.

Parameterization

From now on, we have a lot of audio files, and each one of them can be associated
with a specific musical genre. The parameterization process should transform
all these audio files into a set of description files. Table 5.3 shows us the available
descriptors we can use, and we describe the right selection in Sec. 5.3.4.

The parameterization is made by an AMADEUS application which generates
an HTK-format file *.htk for each audio file.

At this point, all this parameterizated data have to be labeled according to
the styles defined in Table 5.2. For each one of the *.wav files there will exist,
a part of the *.htk file mentioned above, a *.lab in which the style is specified
to the system. The *.lab file follows the next structure:

0︸︷︷︸
begin

135007423︸ ︷︷ ︸
end

pop︸︷︷︸
style
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Descriptor L Value ∇ ∇2

MFCC 12 * * *
Energy 1 * * *
4Hz Modulation 1 * * *
Zero Crossing Rate 1 * * *
Spectral Centroid 1 * * *
Spectral Flatness 1 * * *
Voice2White 1 * * *

Table 5.3: List of available descriptors for Speech-Music Discrimination

where begin and end are the beginning and the end positions where the label
is valid, the whole file in our case. These values are written in a sample units:

1323000 = 60[sec] ∗ 22050
[samp]
[sec]

(5.11)

These files are hand-made by using the WaveSurfer software.

Training Process

From now on, we have a set of *.wav, *.htk and *.lab for each file (audio,
parameterization and labels respectively). After some experimental tests, the
best results are obtained by using models as follows:

Number of means and variances per state: This value is fixed by the de-
scriptors’ selection.

Number of States: Our system will have 3 states, that is, only one state plus
the input state plus the output state.

Number of Gaussian Mixtures: The model will be created, initially, with
only 1 Gaussian mixture. After the initialization, we will increase the
number of Gaussian Mixtures up to 16.

Left to right model: The Transition matrix will not allow backward paths.

Finally, the training process is started and the trained models are saved for
a future use in our real-time application.

Real-time recognition and post-processing

As we have discussed before, the use of HMM does not give us a digital output,
that is, a Speech or Music label. Then, some post-processing techniques are
needed. After some tests and discussions, Mathematical Morphology techniques
are used. Mathematical Morphology[62] is a set of non-linear techniques based
on maximum and minimum operators (See Sec. 4.7 for details).

In Fig. 5.5 there is a comparison between the opening and closing operations
applied to an input signal. Low values are assigned to Speech and high values
are assigned to Music. In the context of the AIDA project, we have to assume
that not false positive values are allowed. Let’s define a “false positive hit”
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when the label Speech is the output of the system for a musical signal at the
input. On the other hand, as we can see in Fig. 5.5, the opening operation gives
results below the original points, while the closing operation gives results above
the original points. Then, the input signal can be cataloged as Speech under
two conditions:

1. The result of the opening operation is exactly 0%.

2. The result of the closing operation is under a threshold, manually selected
(5% in our case).

Graphical User Interface

The system is implemented by using the AMADEUS technology. Some graph-
ical results can be shown (see Fig. 5.6). This monitoring tool is a real-time
implementation in a Pentium IV, 2.5MHz, 512Mb RAM and Red-Hat 9 oper-
ating system.

5.3.4 Results

First approach

The first tests we made were based on all the descriptors shown in Table 5.3.
This is a really large amount of data and, of course, the process could not
be executed in real-time. Then, some tests were made in order to select only
the representative descriptors and get an optimized version. The parameters
used in each test are shown in Table 5.4, and the results of the tests for all the
configurations and all the audio files are shown in Table 5.5. The tests are made
against a set of 11 real audio recordings. Each audio file is 10 minutes long and
manually labeled for this purpose.

All these preliminary tests (except for the last one) have been made with
the next properties: fs = 22050[Hz], Frame = 200[ms], hopsize = 50[ms], 3
state model (1 state + input state + output state) and 16 mixture models.

The best results are obtained with the AB descriptors combination, getting
an accuracy of 83.0% (The AC set of descriptors combination has been discarded
for computational problems).

These are not really good results. Some short-time false positive hits makes
the accuracy to fall down. This problem will be arranged with the post-
processing techniques.

Inclusion Rhythm Transform

The inclusion of the rhythm transform descriptor in our experiment is to make
both the system robust against frequency manipulations and increase the accu-
racy for Classical Music. Previous audio test files have no excerpts of Classical
Music. In fact, the system labels as Speech the classical music files. The test is
configured with the descriptors shown in Table. 5.6.

The used files are the same than those defined for previous experiments, but
with some excerpts of classical music included. Then, the length of the files is
now about 15 minutes. Results are shown in Table 5.7.
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#Id Parameters used
A MFCC
B Energy
C ∆ Energy
D ∆2 Energy
E 4Hz Modulation
F ∆4Hz Modulation
G ∆24Hz Modulation
H Spectral Centroid
I ∆Spectral Centroid
J ∆2Spectral Centroid
K Spectral Flatness
L ∆Spectral Flatness
M ∆2Spectral Flatness
N Zero Crossing
O ∆Zero Crossing
P ∆2Zero Crossing
Q Voice to White
R ∆Voice to White
S ∆2Voice to White
T A+B + C + . . .+ S

U A,E,H,K,N,Q,∆MFCC,∆2MFCC
V N +O
W U +O
X H + I
Y K + L
Z Q+R
AA E + F
AB U + C + F + I + L+O +R
AC AB with frame = 1000[ms]

Table 5.4: Descriptors used for initial tests in the Speech-Music discrimination
system

Although results are less impressive than the previous ones, classical mu-
sic can be included in our system. On the other hand, the error is basically
introduced for the short-time false positive hits.

Inclusion of Mathematical Morphology

As mentioned before, non-linear mathematical morphology techniques are ap-
plied in the post-processing part of the system. With the inclusion of these
techniques, we can avoid the system fails for short-time false positive hits. The
“short-time” period is selected according to the length of the structural ele-
ment for the opening and closing operators. Furthermore, with mathematical
morphology techniques applied, we can exactly define the point in which the
system labels the input audio as Speech. We won’t consider as an error all those
very little audio excerpts with speech, music or both speech and music (news,
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#Id 1 2 3 4 5 6 7 8 9 10 11 x̄ τ
A 72.3 68.5 69.1 81.6 65.7 66.5 60.3 71.9 70.7 74.6 76.4 70.69 5.46
B 46.8 54.2 55.2 51.0 60.6 53.6 63.8 53.0 54.3 65.0 54.8 55.66 5.17
C 40.7 49.0 52.2 45.7 51.9 44.7 58.3 50.5 50.3 60.7 48.7 50.06 5.17
D 40.7 49.0 52.2 45.7 51.9 44.7 58.3 50.5 50.3 60.7 48.7 50.20 5.38
E 40.7 48.9 50.7 45.7 51.9 44.7 58.1 50.5 50.3 60.7 48.6 50.08 5.39
F 40.8 49.1 52.2 45.8 52.0 44.8 58.2 50.6 50.1 60.6 48.6 50.20 5.39
G 42.3 48.7 49.5 47.5 49.5 45.7 54.8 47.9 49.4 56.2 48.4 49.08 3.64
H 50.3 55.2 74.7 58.2 72.2 57.8 65.0 65.1 51.7 75.5 66.3 62.90 8.51
I 40.7 49.0 49.1 45.7 51.7 44.7 58.3 50.5 50.3 60.7 48.7 49.94 5.42
J 40.7 49.0 44.8 45.7 45.7 44.7 58.3 50.5 49.1 60.7 48.7 48.90 5.66
K 63.7 50.8 66.3 83.3 67.4 67.7 70.4 77.5 55.9 80.8 76.9 69.10 9.67
L 53.2 49.2 52.1 52.9 51.7 52.0 48.5 49.3 51.5 52.4 52.3 51.37 1.53
M 44.7 50.5 52.0 49.1 51.8 50.8 57.4 54.2 54.0 56.8 52.7 52.18 3.39
N 60.4 56.0 63.4 52.6 66.6 43.3 68.9 66.9 51.9 76.9 61.6 60.77 8.93
O 56.4 60.4 54.0 61.9 56.2 57.7 63.8 54.5 62.3 59.9 57.8 58.62 3.10
P 41.3 49.0 52.1 46.2 51.9 44.8 58.3 50.9 50.3 60.7 48.7 50.38 5.31
Q 67.4 42.7 56.5 52.6 56.0 56.0 53.6 67.9 43.8 63.1 61.4 56.45 7.93
R 54.6 42.9 56.2 50.7 47.9 42.5 50.3 48.0 53.1 55.0 47.0 49.80 4.45
S 43.0 50.9 52.9 46.3 52.6 45.3 59.6 49.3 50.1 59.4 48.2 50.68 5.04
T 89.0 82.5 83.9 94.6 75.5 74.3 79.7 88.3 88.2 93.2 91.4 84.63 6.80
U 87.7 80.4 82.5 94.3 72.4 71.4 71.1 83.5 78.6 89.3 92.6 82.16 7.91
V 73.3 71.0 76.0 66.6 81.6 45.6 79.2 74.6 66.9 81.7 69.9 71.49 9.61
W 89.4 81.6 81.4 94.8 73.0 71.3 72.9 84.9 78.0 89.9 92.7 82.70 7.93
X 57.7 61.0 77.4 61.0 74.9 61.2 69.0 67.2 50.5 81.7 68.5 66.37 8.80
Y 63.8 50.8 66.3 83.6 67.4 70.4 77.6 55.9 80.8 76.9 69.1 69.10 9.60
Z 67.6 42.5 55.9 52.6 53.7 56.2 44.0 68.3 48.9 62.8 61.6 55.82 8.29
AA 40.7 48.8 50.7 45.7 51.9 44.7 58.1 50.5 50.3 60.7 48.7 50.07 5.39
AB 87.1 81.6 82.0 93.7 75.2 70.5 76.9 84.3 78.0 91.8 92.0 83.00 7.22
AC 86.9 86.3 83.2 93.2 84.3 74.3 81.4 91.0 78.1 95.1 88.9 85.69 6.03

Table 5.5: Evaluation results for all the combinations of parameters for the
Speech-Music discriminator system

commercials, films, etc.) labeled as Music.
Taking into account all these considerations, the accuracy of the system,

with post-processing techniques applied, can be up to 94.3%.

Tests for GSM data

Finally, some GSM audio files have been tested in our system. It is really difficult
to give an exact number for the accuracy in this case. As the input audio files
are obtained just recording audio with a cellular phone near a loudspeaker, the
quality of the GSM codification is unknown. We have seen that better results
are obtained when we use the Rhythm Transform descriptors: the accuracy is
near 85%. Results are right, but more efforts have to be made in that sense.
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Descriptor L Value ∇ ∇2

4Hz Modulation 1 * *
Spectral Centroid 1 * *
Spectral Flatness 1 * *
Zero Crossing 1 * *
Voice to White 1 * *
MFCC 12 * * *
Rhythm Transform 12 *

Table 5.6: Descriptors used for rhythm tests in the Speech-Music discrimination
system

#Id 1 2 3 4 5 6 7 8 9 10 11 x̄ τ
A 82.7 75.9 81.3 86.4 80.1 71.2 81.6 82.9 78.1 87.9 81.9 80.9 4.43

Table 5.7: Evaluation results for rhythm tests in the Speech-Music discrimina-
tion system

5.4 Genre Classification System

5.4.1 Overview

The Genre Classification system has been designed as an extension of the
Speech-Music Discrimination system. It is still in a very preliminary phase,
but the main characteristics will be discussed here.

As commented in Sec. 3.4, the selection of the right taxonomy is crucial
for this kind of systems. In our case, due to the system has to be used with
broadcast radio audio files, the next taxonomy will be used:

• Classic: Mozart, Bartok, Back, Savall...

• Dance: Orbital, Dj Jean, Eiffel 65, Moby...

• Pop: David Bisbal, Madonna, Dido...

• Rap Hip-Hop: Eminem, Digital Underground, Lauren Hill...

• Rock: Blur, Sound Garden, Metallica...

• Soul: Alicia Keys, Aretha Franklin, Natalie Cole...

• Speech: interviews, magazines, news...

The system is trained with about 50 different representative songs for each
one of these predefined genres. After some tests, the parameterization used is
composed by next list of descriptors:

• MFCC (Mel Frequency Cepstrum Coefficients)

• Spectral Flatness

• Spectral Centroid



CHAPTER 5. FIRST CONTRIBUTIONS 67

• Zero Crossing Rate

• Voice 2 White

• Beatedness

• Spectral Centroid (of the Rhythmical description)

• MFCC (Mel Frequency Cepstrum Coefficients of the Rhythmical descrip-
tion)

The number of descriptors is 30 (12+1+1+1+1+1+1+12 respectively). The
first sixteen descriptors deals with the spectrum (or timbre) and the other ones
deal with rhythm. Note how the system will classify according to both aspects
of music.

The length of the frames is 300[ms], the hop-size is 10[ms] and the ham-
ming window is used. The Markov models are single-state with eiight Gaussian
mixtures per model.

But the new feature of this system is the inclusion of the LDA analysis in
order to reduce the number of descriptors(See Sec. 4.5). Furthermore, LDA
performs a pre-classification of the input signal, improving the discrimination
power of the traditional HMM system located behind the LDA analysis.

5.4.2 Results

From now on, results are not much spectacular, as shown in Table. 5.8.
In Table 5.8, the first four rows belong to four song examples of classic music,

the second group of four rows belong to four examples of dance music, and so
on. The output of the automatic classification is computed for each frame, and
shown (in percentage) for each one of the examples. Note how results are quite
successful for classical and speech (the first and the last group of rows), where
the maximum percentages are given for the right genre. Nevertheless, results
for Soul music are really bad. Of course, more efforts have to be made in this
system.

Finally, a real-time Graphical user interface has also been developed for this
Automatic Genre Classification System (See Fig. 5.7)

5.5 Rhythm Similarity System

5.5.1 Overview

As mentioned in Sec. 5.1.1, AIDA is a system for Automatic Recognition of
audio. AIDA is the base of this similarity system because any identified song can
be interpreted as “the most similar song”. Furthermore, if the used descriptors
are a representation of the rhythm of the input audio, AIDA is transformed to
a Rhythmic Similarity System.

To identify an unknown piece of audio, we use the property of a Hidden
Markov Model from what an HMM can be seen as a double stochastic process.
Therefore, HMM could be used to generate observations and it is possible to
calculate the probability that some observations are generated by a given HMM.
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Song Classic Dance Pop Rap Hip-Hop Rock Soul Speech
# 1 91.9 8.1 0.0 0.0 0.0 0.0 0.0
# 2 94.4 4.0 0.0 0.0 1.6 0.0 0.0
# 3 96.2 3.3 0.0 0.0 0.5 0.0 0.0
# 4 60.5 31.9 0.0 1.2 6.5 0.0 0.0
# 1 0.0 53.6 5.4 0.0 0.0 0.0 41.0
# 2 0.0 82.9 0.4 9.3 1.3 0.0 6.0
# 3 0.5 29.2 9.1 34.7 1.1 0.0 22.6
# 4 0.0 38.6 9.0 31.3 0.1 0.0 21.0
# 1 2.1 51.4 16.6 24.5 0.6 0.1 4.7
# 2 6.6 3.9 59.9 15.3 8.4 0.0 5.9
# 3 2.9 36.5 14.8 11.1 11.9 0.0 22.8
# 4 2.3 23.9 2.6 12.1 38.1 3.2 17.8
# 1 0.0 0.2 12.4 58.1 1.4 0.0 27.8
# 2 1.6 6.5 3.4 78.6 0.5 0.0 9.4
# 3 9.5 0.7 0.0 0.4 0.0 0.0 89.3
# 4 0.7 2.4 3.3 86.5 0.6 0.0 6.6
# 1 1.4 35.2 1.3 33.5 27.5 0.0 1.2
# 2 0.0 66.4 2.0 4.9 3.6 0.0 23.0
# 3 4.1 89.5 0.0 0.2 4.7 0.0 1.4
# 4 0.0 14.9 7.3 6.3 57.2 0.0 14.3
# 1 2.2 0.79 0.0 1.4 0.3 1.4 93.8
# 2 0.7 6.17 7.22 35.4 4.1 0.0 46.3
# 3 24.3 3.13 0.3 7.5 5.2 1.9 57.6
# 4 0.0 0.37 0.0 11.4 1.1 0.0 87.1
# 1 0.59 0.0 0.0 0.0 0.0 0.0 99.4
# 2 0.0 0.0 0.0 0.0 0.0 0.0 100
# 3 0.0 0.0 0.0 0.0 0.0 0.0 100
# 4 0.0 0.0 0.0 0.0 0.0 0.0 100

Table 5.8: Results of the Automatic Genre Classification System

Figure 5.8 represents a sequence of HMM that models a song. Each HMM is
a part of the temporal structure belonging to music. Since music can be seen as
a sequence of events sorted in time, this music can be modeled with a sequence
of HMMs. The evolution in time of the song is represented with the jumps from
one state to the next one.

Let’s suppose we have an unknown fragment of audio, where O are all the
vectors of parameters (i.e. Mel-cepstrum, rhythm features, harmonic structure
description, etc.). If a known song in our database is modeled using an HMM λ,
the probability that the generation of this song was the same than the generation
of the unknown fragment is [45]:

P (O |λ) =
∑

q1,q2,...,qT

πq1bq1 (o1) aq1q2bq2 (o2)

· · · aqT−1qT bqT (oT ) (5.12)

With this equation in mind, the identification process can be seen in the fol-
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lowing way. We have a database of HMMs sequences that model our repository.
When we are given an unknown audio fragment from which we have derived
some observations (melody parameters, mel-cepstrum, etc.), Eq. 5.12 answers
the question whether the HMMs of a song λ in the repository would be able
to generate that unknown music. This approach has several advantages over a
more classical matching approach. The first advantage is that it is more robust
to noise because two songs can be modeled in a very different way because one
is noisy and the other one is clean, and however the identification process will
give the right result. Another advantage is that the same process can be used
to retrieve audio similarity as explained in [19].

The identification algorithm matches an input streaming audio against all
the fingerprints to determine whenever a song section has been detected. The
Viterbi algorithm is used again with the purpose of exploiting the observation
capabilities of the HMM models contained in the fingerprint sequences. Never-
theless, this time the model is not a complete graph but the HMM ring shown
in Fig. 5.9. In this structure, each HMM only has two links, one to itself and
one toward its immediate neighbor. The identification algorithm scales linearly
with the number of songs in the database because no backtracking is required
for single path models.

5.5.2 Features

The used features are obviously related with the rhythm. In our case, the
first 150 bins of data in rhythm domain (See Sec. 5.2.2) are used. This is an
experimental value, but after some tests we found that, inside these 150 bins,
there is enough information for a successful rhythmic parameterization. The
Beatedness information is not used at this moment.

5.5.3 Training of the system

The biggest problem that arises with a music recognition scheme based on
HMMs is how to find the more suitable HMM set that will lead to a good
recognition even in bad noisy environments. The training of a speech recogni-
tion system has still some issues but it is a well studied problem. In speech, the
target for each HMM is a phoneme (or other phonetic related characteristic),
but in music there are not such “phonemes”. In [19], the author presents a way
to define some properties for the units that can suit the music identification
problem as well as music similarity.

To automatically derive some good units to represent the music, we follow
an iterative approach based on the EM algorithm [15].

The algorithm is composed by several steps:

1. Number of different HMM: The first decision has to be taken and it is the
number of different HMM that will be used. In other identification tasks,
this decision is easy and usually an HMM for each phoneme is used. In the
music identification problem, since there are no “phonemes”, the number
of HMM has to be carefully chosen. The higher the number of HMMs
used, the higher the accuracy of the models for each song, but this would
mean also more complexity for both the training and identification. If the
numbers of HMM is very low, the accuracy of the representation will be
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Type Author Song
Original Song Alicia Keys A woman’s worth
Similarity #1 Alicia Keys A woman’s worth
Similarity #2 Enigma Morphing Thru Time
Similarity #3 Staind Epiphany
Original Song Albert Pla Joaquin el Necio
Similarity #1 Albert Pla Joaquin el Necio
Similarity #2 Argelis Amiga mia
Similarity #3 M. McCain Nana

Table 5.9: Results of the Rhythmical Similarity System

very poor and the system will need a longer fragment of unknown audio
to identify it. In our case the number of HMM is set to 1024.

2. Initialization: Originally the bootstrap models we used were pure random
and all the means and variances were chose at random and the transi-
tion probabilities were set to 0.5 for both stay and jump. Unfortunately,
this methods lead often to a local maximum that is not good enough for
identification because the discrimination capacity for each HMM was very
poor. A second method of k-means to create the bootstrap parameters
shows a very good performance.

3. Realignment With the current parameters, the system calculates a new
sequence of HMM in order to increase the observation probability. This
is done with the Viterbi algorithm [72].

4. Update: With the alignment calculated in the previous step, we use the
Baum-Welch algorithm to update the means, variances and transition
probabilities.

5. Loop: Steps 3 and 5 are repeated until the global probability of generation
is not growing from one iteration to the next one.

5.5.4 Results

Few experiments have been made. The problem of analyzing results with this
system is that, with a database of about 5800 songs, how possible is to confirm
that the found excerpts of audio are really the most similar ones to the original,
from a rhythmical point of view? Similarity is an ambiguous concept. Then,
numerical results are also ambiguous. Nevertheless, some results are shown in
Table 5.9.
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Figure 5.4: Examples of data in Rhythm Domain for different cases
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Figure 5.5: opening and closing operations on the Speech-Music discrimination
system

Figure 5.6: Graphical User Interface for the Speech-Music discrimination system

Figure 5.7: Graphical User Interface for the Automatic Genre Classification
system
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Chapter 6

Conclusions and future
work

6.1 Summary

Some initial works have been presented in Chapter 5. These works are basically
focused on the design of new (both high level and low level) descriptors or tools
and on the application of these descriptors in the Music Information Retrieval
field. The goals of all this preliminary research are not the tools or applications
themselves, but they are the basis for future research (See Sec. 6.2). The initial
works can be summarized as:

Voice2White: This descriptor has been specially developed for the Speech-
Music discriminator. It is well known that speech data has a limited fre-
quency band, from 300[Hz] to 4000[Hz] approximately. The Voice2White
descriptor is a measure of the energy inside this limited frequency band
respect to the whole audible margin. It will give an idea about how speechy
is the input audio data.

Rhythm Transform: This tool has been developed for rhythmical representa-
tion of audio data. The main goal of Rhythm Transform is that the input
data can be transformed to the so called rhythm domain. The Rhythm
Transform provides information in the rhythm domain in the same sense
that the Fourier Transform provides information in the frequency domain.
Therefore, many descriptors can be extracted from data in the rhythm
domain and some other rhythmical properties of the input signal can be
obtained (BPM, time-signature. . . )

Beatedness: The Beatedness is a measure of the rhythmicity of the input data.
It is based on the rhythm transform and it is computed as the Spectral
Flatness of data in the rhythm domain. As the Spectral Flatness is a
measure of the brightness of data in spectral domain, the Beatedness is
a measure of the brightness of data in the rhythm domain, that is, the
rhythmicity. The Beatedness is a good example of how data in rhythm
domain can be used.
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Speech-Music Discrimination: This is the first global system we have de-
veloped. By using the new descriptors mentioned above and using Hidden
Markov Models for classification, a real time Speech-Music discriminator
has been developed. Some post-processing techniques like mathematical
morphology have been used in order to adapt it to the requirements of the
AIDA system. Results for this system are quite successful (94.5%). The
errors are biased to classic music: the system tends to recognize classic
music as speech.

Automatic Genre Classification: This system is a generalization of the Speech-
Music discrimination system. Similar descriptors (including those de-
scriptors that can be obtained from data in rhythm domain) and Hidden
Markov Models are also used here. The main difference can be found in
the number of predefined models: instead of only two models (speech -
music), eight different models are used in the classification process (classic
- dance - electronic - pop - rap - rock - soul - speech). Since the classifica-
tion is more complicated, Linear Discriminant Analysis has been included.
Although results are quite good, more efforts have to be done in this sense.

Rhythmical Similarity: In the context of the AIDA system (Automatic Iden-
tification of Audio), the identification process can be seen as a similarity
process. When similarities are found under some specific constrains, the
similar song is labeled as the identified song. The similarity system can
be implemented with the help of the Rhythm Transform and the Hidden
Markov Models. The main idea is slightly different from classical ap-
proaches: instead of the identified song, an ordered list of all the (rhyth-
mically) similar songs is shown. The obtained results are quite satisfactory,
but it is really difficult to quantify them because the similarity concept is
intrinsically confusing.

6.2 Future Work

6.2.1 Main Idea

The common objective for all the contributions described above is to study au-
tomatic genre classification but including the musicological point of view. Most
of the people in Music Information Retrieval community are great enthusiast of
music. The problem arises when music meets computers. Sometimes, the work
made by MIR community has been done without taking into account the point
of view of the musicians. Why not to ask them for their impressions? In this
context, new ways for music description have to be found, and musicians must
understand them.

The research should be be focused in both musical genre definition and its
computational description. Successful results will appear when the computa-
tional description of a genre will be able to (musically speaking) identify it.
This description has to be human comprehensible.

For this purpose, musical and technological studies have to be done and some
tools will be used, as shown in the next section.
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Planning

The future work will be organized as follows:

Musicological studies: Lots of musicological studies about genre have been
done, but the main problem is that some genres are fully documented
while others are not. Musicians and music enthusiasts have to be asked
for the specific features that can define a Genre. This information has
to be collected and a general (but complete) overview for all the selected
genres has to be carried out. The selection of the right taxonomy will be
another important task.

Recordings: In order to study the detailed characteristics for all the proposed
genres, a complete audio database is needed. This database can be divided
into two main groups, depending on the specific genre description features:

• Common recordings for those cases in which the specific features are
a general property of the music, that is, a musical form or a how to
play.

• Specific recordings for those cases in which a concrete feature of music
is crucial for genre description, that is, a particular rhythm pattern
or the sound of a specific instrument.

Descriptors: All this audio data have to be analyzed. The first step in the
analysis process is the audio description. There are several available audio
descriptors but some of them are really far to provide a musical meaning.
These descriptors have to be combined and reinterpreted for providing
them this musical meaning. The descriptors that will be used for this
purpose are divided as shown:

• Perfectly known descriptors: Some descriptors like MFCC or Spec-
tral Centroid will be used. All of them are widely used in the MIR
community.

• Adapted descriptors: Some descriptors can be adapted to emphasize
a specific feature of a specific genre, according to the conclusions
of the musicological studies to be obtained by the first step of this
research.. For instance, song tonality descriptors can be adapted, if
they are short enough, to an harmonic descriptor based on two chords
in a bar [32][33].

• New descriptors: With the same purpose than the adapted descrip-
tors, some new and very specific descriptors may be implemented.
For instance, a syncopation description could be useful to detect
dance music.

Building models: With the right selection of descriptors, a different model for
each specific genre has to be built. This model must show all the musical
aspects that contribute to define a genre, and must be able to be directly
compared with other models. Since fusion is a general characteristic of
music and most of the composers search for new formulas in their compo-
sitions, they are never perfectly located in a specific style but in a distance
between two or three.
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Interpretation: Each genre should be perfectly defined by these meaningful
models. It is obvious that an objective description of music has to be
included in this research, but the interpretation of the resulting models is
much more important. If they prove to be good enough, this interpretation
can be associated to the musical cognition process, and a first approxima-
tion of this will be available. Then, several musicological, psychological
and technological studies can be derived from that.

Note that we have not defined how the models are supposed to be. They
will be defined according to the results of the musicological studies, and created
according to the results of different tests performed during the research.

Tools

Some of the descriptors commented in Chapter 4 are low-level descriptors while
the used descriptors to generate the models should be high-level descriptors.
Note that this system does not need low-level descriptors like score detection,
BPM detection or instrument detection algorithms. This is because the scores,
BPM, etc. are representations of a little part of the music. For our purpose, we
need high-level descriptors: it is more important to know whether the rhythm
of a song is walking, whether a melody is happy or whether a timbre is bril-
liant. These descriptors will be computed and tested by using the AMADEUS
technology.

On the other hand, the models will be generated by using Hidden Markov
Models (HMM). Since HMM can be seen as a double embedded stochastic pro-
cess, they can be understood as a set of generators that describe a specific
property of each specific genre. Gaussian Mixtures will help for that purpose.
Distances between models can be inferred because HMM are statistical tools,
but different strategies will be taken into account..

Some other tools like Linear Discriminant Analysis or Mathematical Mor-
phology will be used in some specific parts of the whole process. Finally, Neural
Networks or other classification techniques will also be considered.
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[64] Stefan Karnebäck. Discrimination between Speech and Music based on a
Low Frequency Modulation feature. In Proceedings of Eurospeech, 2001.

[65] Stephen Handel. Listening: An Introduction to the Perception of Auditory
Events. The MIT Press, 2 edition, 1991.

[66] Steve Young et. al. The HTK Book (for HTK Version 3), July 2000.

[67] The MathWorks, inc. Statistics Toolbox, 1994 - 2001.

[68] G. Tzanetakis and P. Cook. Musical Genre Classification of Audio Signals.
IEEE Transactions on Speech and Audio Processing, 10(5):293–302, July
2002.

[69] G. Tzanetakis; G. Essl and P. Cook. Automatic Musical Genre Classifica-
tion of Audio Signals. In Proceedings ISMIR, 2001.

[70] G. Tzanetakis; G. Essl and P. Cook. Human perception and computer
extraction of musical beat strength. In Proc. DAFx-02, September 2002.

[71] Brani Vidakovic and Peter Müller. Wavelets for Kids: a Tutorial Introduc-
tion. Duke university.

[72] A. J. Viterbi. Speaker Recognition: A Tutorial. In IEEE Transactions on
Information Theory, volume 13, 1967.

[73] P. Cano; M. Koppenberger; P. Herrera; O. Celma; V.Tarasov. Sound effect
taxonomy management in production environments. In Proceedings of 25th
International AES Conference London, UK, 2004.

[74] www.cs.waikato.ac.nz/ ml/weka/index.html.

[75] Javier Blanquez y Omar Morera, editor. Loops, una historia de la música
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