
CLAM
Bringing your NLP command-line tools to the web!



Introduction

Observation: NLP tools are often command-line programs . . . for good
reason.



Command line tools: pros

Command-line tools are a good thing!
“This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together.” (Doug McIlroy)
• Flexibility & Extensibility: Integrate tools into pipelines, the

output of one tool is the input to another
• Performance: Little overhead
• Modularity: Separate the interface from the actual program



Command line tools: pros

Command-line tools are a good thing!
“This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together.” (Doug McIlroy)
• Flexibility & Extensibility: Integrate tools into pipelines, the

output of one tool is the input to another
• Performance: Little overhead
• Modularity: Separate the interface from the actual program



Command line tools: cons

But..
• The command-line is challenging and intimidating for non-technical

end-users

• Installation may be complex and depend on other software
• Web-connectivity has to be explicitly built-in in your program (not

trivial)



Command line tools: cons

But..
• The command-line is challenging and intimidating for non-technical

end-users

• Installation may be complex and depend on other software
• Web-connectivity has to be explicitly built-in in your program (not

trivial)



CLAM as a solution

What is CLAM?
CLAM is software that wraps itself around your command-line NLP-tool
and:
• Offers an automatically generated web-based user-interface for

human end-users to interact with your tool
• Offers an automatically generated RESTful webservice interface for

automated clients to interact with your tool
How to use CLAM?
You can wrap your application with minimal effort:

1. .. write a service configuration specifying what kind of input your
program expects and what output it produces. The interfaces can be
generated on the basis of this.

2. .. write a wrapper script that acts as the glue between CLAM and
your tool





Typical workflow

1. User (or automated client) creates a project
2. User uploads input files
3. User sets parameters for the run
4. User presses the “START” button
5. The tool runs for a certain time (may be long), progress status is

reported back to the user
6. When doen, the output files are presented
7. User may select output files for viewing or download



Notable Features

• Optimised for batch processing and dealing with large files, your
tool may run for hours or days if necessary

• Storage model: files are uploaded and downloaded, they stay on
server in “projects” until explicitly removed.

• Extensive user-authentication support (including OAuth2).
• Extensive support for metadata and provenance data
• Suitable for use in external workflow management systems.
• Support for quick real-time “actions”; tie scripts to URLs.
• Support for viewers and convertors
• Python API for Python users (clients & service providers)
• Used by various projects in CLARIN-NL and others (CLAM is

funded through CLARIN-NL)



Demo

• CLAM website: http://proycon.github.io/clam
• Numerous webservices from our department are hosted here:

http://webservices-lst.science.ru.nl
• (register for a free account if you have none yet)

http://proycon.github.io/clam
http://webservices-lst.science.ru.nl

