
CLAM
From NLP command-line tools to webservices: current state of
affairs



Introduction

Observation: NLP tools are often command-line programs . . . for good
reason.



Command line tools: pros

Command-line tools are a good thing!
“This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together.” (Doug McIlroy)

• Flexibility & Extensibility: Integrate tools into pipelines, the
output of one tool is the input to another

• Performance & Simplicity: Little overhead
• Modularity: Separate the interface (GUI, web) from the actual

program



Command line tools: cons

But. . .
• The command-line is challenging and intimidating for non-technical

end-users

• Installation: Installation may complex and depend on other software
• Connectivity: Web-connectivity/networking has to be explicitly

built-in into your program (not trivial)



Web-connectivity through CLAM

Objectives
• Quickly transform existing command-line tools into fully-fledged

webservices
– No need to alter the tool itself

I No requirements on programming language or technology, as long as it
runs on Linux/BSD and can be invoked from the command line

– Maintain flexibility and modularity
– Simply describe the tool in terms of input, output and

parameters using CLAM
• Offer a generic RESTFUL interface for machines
• Offer a generic Web-based User Interface for human end-users
• Deal with batch processing and large data: NLP tasks may typically

run for a long time on large corpora



Architecture



Architecture



Architecture



Providing a Service (1/2)
In order to wrap a tool and make a webservice:
1. Write a service configuration file
• General meta information about your system (name, description, etc. . . )
• Definition of global parameters accepted by your system
• The program to invoke (i.e. the wrapper script around your NLP tool)
• Definition of profiles

– A profile defines in detail what output files a system produces
given certain input files.



Providing a Service (2/2)
In order to wrap a tool and make a webservice:
2. Write a wrapper script for your system
• Wrapper script is invoked by CLAM, and should in turn invoke the

actual system
• Acts as glue between CLAM and your NLP Application.
• Can be written in any language (python users may benefit from the

CLAM API)
• Not always necessary, simpler command-line applications can be

invoked directly by CLAM as well.
Development
CLAM has a built-in webserver so it can be tested quickly in development.



Profiles
• What output files are produced given which input files?
• What format are the input files in? (CLAM needs not be able to

parse it itself)
• What parameters (metadata) are required or possible on input files?
• How is metadata propagated from input files to output files?
• What viewers are associated with output files?
• Which converters can act upon input/output files?



Resources

Resources
• Projects: Stored on server, owned by a user, each corresponds to a

single run of the tool
– Global parameters: Parameters for the run
– Input files: Upload files or choose from preset collections on the

server
I Local parameters (i.e. metadata)

– Output files: Can be downloaded as-is, visualised using a viewer
or external webservice.



Workflow

Typical Workflow

1. Authentication
2. Create a new project
3. Upload files (and set per-file parameters if applicable)
4. Set global parameters
5. Start the project
6. Wait for completion
7. Download/view output files
8. Delete project





Projects vs Actions

Projects: Batch processing
• CLAM is optimised for batch processing, your tool may run for

hours or days if necessary
• The user can always close his browser and come back later
• Data stored and held on server until explicitly deleted
• Different from real-time request-response cycles
Actions: Real-time response
• Define a command line application or Python function to run for a

specific webservice URL
• Independent of projects
• Extensive parameter specification (but no file upload!)
• Command/function is expected to return a result in a short time

interval
• Output of command/function is returned by CLAM to the user/client



Authentication

Authentication
• Projects are user-specific
• Authentication support through:

1. HTTP Digest Authentication
I Explicit user specification in configuration
I or database-backed (MySQL)

2. Pre-authentication by webserver (usable with for instance
Shibboleth)

3. OAuth2



Future work

Future work
• Port of underlying framework from web.py to Flask
• Python 3 support
• Testing in CLARIN authentication infrastructure



Demo

• CLAM website: http://proycon.github.io/clam
• Numerous webservices from our department are hosted here:

http://webservices-lst.science.ru.nl
• (register for a free account if you have none yet)

http://proycon.github.io/clam
http://webservices-lst.science.ru.nl

	Providing a Service
	Providing a Service


