CLAM: Computational Linguistics Application
Mediator

Maarten van Gompel

20 Mei 2010

ILK Research Group ™ \ ‘ TILBURG & &

Induction of Linguistic Knowledge

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

¢ UNIVERSITY

Introduction
[]

Introduction

Introduction

There are a lot of specialised command-line NLP tools available.

@ Tools often available only locally, installation and
configuration can be tough

@ Not very user-friendly for the untrained general public or
technically-challenged researchers (aka Linguists)

© How to connect one tool to another?

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Introduction
L]
Solution

Making NLP tools available as a full-fledged webservice.

@ Services available over the web.
@ User-friendly interface built-in in the webservice
© Great for demo purposes

@ Multiple webservices can be chained in a workflow

Maarten van Gompel

CLA omputational L cs Application Mediator

Introduction
[]

Our Focus

© A universal approach: wrapping

e Turn almost any NLP tool into a webservice with minimal
effort

e NLP tool = Given input files and a custom set of parameters,
produce output files

o No need to alter the tool itself

@ Machine-parsable interface & Human-friendly interface

Maarten van Gompel

CLA omputational L cs Application Mediator

Introduction
[]

Wrapping Approach

Wrapping Approach

@ NLP application: blackbox
© Wrapper script
© CLAM Webservice

Maarten van Gompel

CLA omputational L cs Application Mediator

Technical Details

Technical Details

RESTful Webservice

RESTful Webservice (as opposed to SOAP, XML-RPC)

@ Resource-oriented: "Representations” of "resources” (projects)

@ Using HTTP verbs

© Lightweight

@ Returns human-readable, machine-parseable XML adhering to
a CLAM XML Scheme Definition

© User authentication in the form of HTTP Digest
Authentication

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Technical Details

Written entirely in Python 2.5
@ NLP tools, wrapper scripts, and clients may be in any
language
@ But: Readily available APl when writing wrapper scripts and
clients in Python.

© Built on web.py, runs standalone and out-of-the box with
built-in CherryPy webserver

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details

Built-in User Interface

User interface automatically generated from XML using XSLT (in
browser)

© Webservice directly accessible from webserver

@ Web 2.0 interface: xHTML Strict, jquery (javascript), AJAX,
CSS

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

CLAM Setup

Projects are the main resources, users start a new project for each
experiment/batch.
Three states:

e Status 0) Parameter selection and file upload
e Status 1) System in progress

e Actual NLP tool runs at this stage only
o Users may safely close browser, shut down computer, and
come back later in this stage

e Status 2) System done, view/download output files

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Providing a Service

Providing a Service

In order to make a webservice:

© Write a service configuration file (in Python, but no Python
experience required).
o General meta information about your system (name, description,
etc..)
o Definition of parameters accepted by your system/wrapper script
@ Definition of input formats and output formats
o Definition of users and authentication method

@ Write a wrapper script for your system
o Wrapper script is invoked by CLAM, and should in turn invoke
the actual system
e Acts as glue between CLAM and your NLP Application.

o Can be written in any language (python users may benefit
from the CLAM API)

e Not always necessary, NLP applications can be invoked directly
by CLAM as well.

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details

Writing a Client

Writing a Client

©@ Communicate with service over HTTP, using HTTP verbs on
projects and files to effectuate state transfers

e GET / - List all projects

GET /project/ - Get a project’s state

PUT /project/ - Create a project

POST /project/ - Start a project with POSTed data as
parameters

DELETE /project/ - Delete or abort a project

POST /project/upload/ - Upload a file

GET /project/output/ - Download all output files as archive
GET /project/output/file - Download output file

@ Parse XML responses

© Python users benefit from CLAM Client API, taking
care of all above communication and response parsing!

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Introduction Technical Details

Architecture

Architecture

Automated Cllent

{ CLAM Client API i

HTTP HTTP. T
HTTR I leTML fT:T‘rf" XML
CLAM Client AP | Workflow Interface

CLAM Webservice

End-User

in webbrowser

System wrapper script

NLP Application(s)

Service Configuration

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Maarten van Gompel

istics Application Mediator

	Introduction
	Introduction
	Solution
	Our Focus
	Wrapping Approach

	Technical Details
	Setup
	Setup
	Providing a Service
	Writing a Client
	Architecture

	End

