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Terminology

Ice sheets

— grounded ice
masses of
continental size,
area > 50,000 km?
(Antarctica,
Greenland).

Atrosphere

Lithosphere

Ice shelves

— floating ice masses,
connected to an ice
sheet (Antarctica).

Vertical exaggeration factor ~200...500
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Terminology

Ice caps
— extended grounded ice masses, area < 50,000 km?
(Austfonna, Vatnajokull, North/South Patagonian Icefields...).

Glaciers Snow ity

accumulation ice '

— small grounded ice
. . .\ Accumulation area:
masses in mountainous A N et gain Equilibrium line: |
regions, constrained by T —
. % : net loss
topographical features. ‘ t

Remark: “Glacier” is sometimes also used as an umbrella term for all grounded
ice bodies (ice sheets, ice caps and glaciers as defined above).
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Glaciers and ice caps

Can be found on every continent
(polar/sub-polar areas, mountains).

Number: ~ 200,000 (~ 70 ice caps).

Many different types:

Valley glaciers, cirque glaciers,
hanging glaciers, tidewater glaciers,
rock glaciers...

Photo credit: www.glaciers-online.net
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Inventory

Glaciers and Greenland Antarctic
ice caps ice sheet ice sheet
Area (108 km?) 0.73* 1.80 12.3
Volume (metres of 0.41* 7.36 58.3
sea level equivalent)
Turnover time ~50-1000"  ~ 5000 ~ 12000
(vol/accum, years)

Main source: Vaughan et al. (2013) [IPCC AR5 Ch. 4].
(*) Sum for all glaciers and ice caps. (**) Range of values for individual glaciers and ice caps.
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2. Mechanisms of ice flow




Stress and strain

Cauchy stress tensor T

tyy = ZLyx
«— —>
i ”
/ tyx
¢ Lxy Lax

=

(Greve and Blatter 2009)

Normal stresses (t;) and shear stresses ({;)
acting on the surface of a cube aligned with x, y, z.
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Stress and strain

Stress deviator TP

For incompressible materials like glacier ice:
Pressure p: free field.

Traceless stress deviator TP:
to be described by a material equation (flow law).

Conservation of angular momentum
— both T and TP are symmetric.
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Stress and strain

Strain-rate (stretching) tensor D

Symmetric part of the velocity gradient:

D=symgradv [D;=%(v;+v;)]

Diagonal elements D,: dilatation rates, e.g.

D, = (ds,)/ds, _ds,

Off-diagonal elements D;: 2 x shear rates, e.g.
ny - (ny)./ 2 D_
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Why does ice flow?

Two mechanisms

\Velociw profile

> Internal
deformation

Internal deformation

S Ice (shearing)
(ice = wspous i —>
fluid). 54_

» Basal sliding. Basal siding

Lithosphere
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Internal deformation

Ice |h: hexagonal crystal structure. &
Loose-packed lattice, packing factor only 34% ‘g

(close packing of spheres 74%).
Deformation along crystallographic planes ¥ %
(mainly basal, to a much lesser extent prismatic

and pyramidal)
— strong anisotropy.

C

' S gas vanmm

e AN\

| ) dl

E I~ Sna w1

Deck-of-cards model

Basal Prismatic Pyramida
(Faria et al. 2014)
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Internal deformation

Macroscopic description:
Polycrystalline ice — control volume contains an ensemble of
randomly oriented ice crystallites (a.k.a. grains).

B @%

A \© '@ Isotrqpic,

non-linear

viscous fluid.
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Isotropic, non-linear viscous fluid:
Glen’s flow law

D = EA(T) f(o) TP

J

|
= 2 x fluidity = 1/ (2 x viscosity)

Fluidity factors:

e Creep function: Power law f(o) = ™1, stress exponent n = 3.

e Rate factor: Arrhenius law A(T") = Age~@/RT",

e Enhancement factor E (equal to 1 for pure isotropic ice).
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Basal sliding

Two different processes:
sliding on hard rock vs. sliding on deformable sediment.

Difficult to measure, not well understood!

Often “Weertman-type” parameterization is used:

P
-
b
Up X 59
T
v, — basal sliding velocity
T, ~— basal shear stress
P, — basal pressure
(p.q) = (3,0), (3,1) or (3,2) for hard rock sliding
PO @0 for sediment sliding
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Geometry

Atmosphere
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Grounded vs. floating ice

Shear flow, Plug flow,
dominated by dominated by
P, txz’ tyz P, txl:))w tyl:y)/’ tzDz’ txy
T
Ice sheet

lce stream
Ice shelf

~ ~ __ Ocean

Grounding line ~

o

Lithosphere

fod ey e

X
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Full Stokes (FS) flow problem

3-d momentum balance on a flat Earth

— Fr=[UP/ (glH]) ~ 10"
— Fr/Ro = 2Q[U]IL]/ (g[H]) ~ 5 x 108 >>> FS

Otys  Otsy  Olus

D= = PR
8x+8y+8z P

Otyy Oty Oty

DOl = P
ox i oy i 0z P
Otz N Oty ., N Oty, I /
ox oy gz " Y - F '
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Grounded ice:
Hydrostatic and shallow ice approximations

Full Stokes  — Hydrostatic approximation  — SIA

Ox 0z
(—=p)

% oy 8tyz _ 0
oy oz

(=p)
%*%* 9

pg -
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SIA force balance

Hydrostatic pressure:

p = pg(h — z)
Vertical shear stresses:
t = —pg(h—2z) Oh
e Pg ox
oh
ty. = —pglh—2z)—
At the ice base (z = b):
—Tdrag T driving

= Tdriving T Tdrag = 0
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Floating ice:
Hydrostatic and shallow shelf approximations

Full Stokes  — Hydrostatic approximation  — SSA
atmx atmy z
= 0
ox i Oy i %é ’
Otzy Oty =
o + Ay + %é = 0,
%é %% 5. P
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SSA force balance

Hydrostatic vertical normal stress:
t.. = —pg(h — z)

Vertically integrated horizontal force balance:

ON. ON. ON. oh
2—— Yy Y = pgH—
Ox T Ox T dy PI oz
ON. ON. ON. oh
oy + dy T Ox Pd oy

\ . J l_v_l
T membrane — T driving

= Tdriving + Tmembrane = 0
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Shelfy stream approximation (SStA):
SSA with additional basal drag

T driving + Tmembrane =0

+Tdrag

= Tdriving + Tmembrane + Tdrag = 0

Plug flow as for ice shelves (v,, v, independent of z), but with
some resistance due to the basal drag!
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Computation of the velocity field

Choose appropriate force balance,
insert Glen’s flow law
+ mass balance divv =0
— system of PDEs for the 3-d velocity field...
(SIA: easier, just integrals over depth)

No evolution equation!

Boundary conditions: Stress-free condition at the surface,
basal sliding parameterization,
pressure (air/ocean) at the sides.

For the full sets of equations, see
Greve, R. and H. Blatter, 2009, Dynamics of Ice Sheets and Glaciers, Springer.
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Ice flow depends strongly on temperature

Viscosity of .
y o Basal sliding
polycrystalline ice
10" 1 - -
— Binary switch
A Exponential sub-melt-sliding
W1 16| o 0.8} Linear ramp
g’ s
— ~° 0.6}
> 10" 2
= o 04
S =
@ 10"} c—wu
> & 0.2
1013 (Greve and Blatter 2009) o 0 — . . . ]
0 20 40 60 80 100 -5 -4 -3 -2 -1 0
Effective stress G, [kPa] Basal temperature T’b [°C]
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Thermodynamic material equations

Fourier’s law of heat conduction:

q=—kr(T)grad T

Caloric equation of state:

u(T) = /TC(T’)dT’
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Coexistence of cold and temperate ice
(“polythermal’)

Temperate ice can contain
small amounts of water
— reduces ice viscosity.

Canadian-type

Scandinavian-

type Cold-temperate

transition surface CTS
— (1) melting conditions
(2) freezing conditions

[ 1 cold ice
[ temperate ice

(Aschwanden et al. 2012)
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Cold-ice method

Temperature equation:

dT1’ 1 P
R A7) + —
T~ e div (kgrad T') + "

Secondary condition:

T <Tn (whereTy, =Ty—[p)

Water content:
W =0
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Polythermal method

Temperature equation as before, but only solved in cold ice.

Water-content equation in temperate ice:

% = %div(ygradW) + %
Transition conditions at the CTS:
(1) melting conditions (a,,~ > 0) Cold ice (+
N _
aain B 8@% | W= =0 ——_ﬁi—Tempjrate ice ()

(2) freezing conditions (a,™ < 0)
oT+ 0T~

_ == —q~ +:
h:(an 811) LpW " a;; , |44 0
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Polythermal method

Analytical solution for the parallel-sided slab

Melting Freezing
Geometry N -
conditions, conditions,
1 4
Atmosphers J,g z=H a, =+0.2m/a a, =-0.2m/a
. I Temperature T [°C] Temperature T [°C]
e 3 -2 - 0 -10 -5 0
Temperate . 180} . 180
Ice
— 160} : — 160
| E E,
Lithosphere ~ 140 N 140
o] Q
o @ 120} ® 120
L O
9 100 ® 100
3 hS
H = 200m ® 80 8 80
0% 4° S 6o} S 60 ----- CIs__ .
K const T 40 . T 40
C = const | Crs _____| 20
b %3 1 2 3 03 25 5
Water content W [%] Water content W [%]
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Enthalpy method

One common thermodynamic field

Enthalpy h = fct(temperature T, water content W)
for cold and temperate ice: (Aschwanden et al. 2012)

T
WT, W) = / AT AT + LW
To

Enthalpy equation for cold and temperate ice:

i)
dh _ div (kgrad h) + —
dt p for cold ice

with k£ = {
for temperate ice

DI R =

\
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Ice thickness equation

as (x,),1)
Geometry, processes: l
H : ice thickness ‘
/ 0, (x1)
as : surface mass balance
: ZE3%)
a, : basal melting rate
0, (1) ¥ 0, (xy+du)

h
Q—f v dz : volume flux
b

I
I
I
I
I
I
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I
I
I
I
|
|
|
|
|
I
I
I
I
I
I
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I
I
I
I
I
I
I
|
|
I
|
I
I
|
I
I
L

vh : horizontal velocity
. O (x+dx,y1)
h  : ice surface
b : ice base | ------ VA
dy lab(x,y,t)
H(%y,t) = h(ﬂ?,y,t) —b(;{:?yjt) J—'y

X
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Ice thickness equation

Volume balance (due to incompressibility):

d
E(Volume of ice column)

= —Volume fluxes (outflow positive)

| /0,

| Hey)
+Volume supplies }
Qy (x..1) i ¥ Qy(x,erdy,t)
Volume of ice column = H dz dy o T
0, (xrdvyn) |
8H . z ’,/ L 4 dx
B vQE e C O
y

X
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6. Sketch of the coupled
initial-boundary value problem




Sketch of the coupled initial-boundary value
problem

Atmosphere:
* Precip., evap., runoff
» Temperature

i

Ocean:
» Temperature
« Sea level

lce sheet (w/shelves):
« Extent and thickness

« Velocity

« Temperature

« Water content

/

el lce physics:
* Flow law
I * Heat conductivity
Lithosphere:

* Isostatic displacement
* Temperature

Physics of the

lithosphere:
» Deformation law
* Heat conductivity

/

T

Lithosphere:
« Geothermal heat flux
Rectangular boxes:
prognostic model components.
Ovals: model input.
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Vialov profile
Only for highly simplified problems, e.g., the Vialov profile:
2-d ice sheet (only x—z, no y), SIA.

Flat, rigid bed: b = 0, db/dt = 0. TR asi '
3 L
Extent between £, \
x=—-L and x = +L N 1 hix)
(L =750 km), , | , . .
zero thickness at the margins. %750 500 250 0 250 500 750

X [km]
Surface mass balance a, = const > 0.

No basal melting: a, = 0, no basal sliding.

Constant rate factor: A = const — no dependence on T.

b Steady-state surface (= thickness) profile h(x).
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Vialov profile

Profile h(x)

| .
h=nh 1— | — (Vialov 1958)
1/(2n+2) .
with  hg :275/(2?14—2) as L1/2 A — 2}1(,09)
Ay ’ n+ 2
4
200
o 100
2 [

0

h [km]

hq

-100

Q [1000 m*2/a]

1 L

) S > 200 E-

-750 -500 -250 0 250 500 750 750 -500 250 O 250 500 750
x [km] x [km]

L=750km,n=3,a,=0.3ma"',A=10"%a"Pa3
(~ Greenland west-east transect)
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Vialov profile

Aspect ratio (shallowness parameter)

1

€

Large ice bodies are shallower than small ones!

Sensitivity to surface mass balance (snowfall rate)

ho ~ al/®  (for n = 3)

s

Very weak sensitivity!
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Parallel-sided slab

2-d glacier (only x—z, no y), FS.

Flat, rigid bed:

b =0, oblot = 0. lg

Constant thickness H //\
% ‘Z' 5

and inclination angle a. H
o
Uniformity in x-direction. 7777\777ﬁ

No surface mass balance: a, = 0.

No basal melting: a, = 0, no basal sliding.
Constant rate factor: A = const — no dependence on T.

Constant heat conductivity: k = const.

Q Steady-state velocity v,(z) and temperature T(z).
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Parallel-sided slab
Velocity profile v,(z)

~ 2A(pgsina)”
B n—+1

o

[Hﬂ—kl . (H . Z)n—l—l}
Quartic function of z for n = 3.

Temperature profile T(z) (cold glacier assumed)

T = T, + &2 -2
K
N 2AH"3(pgsina)™t! N 1 H—2z\""
k(n + 2) H n+3 H

Linear contribution due to heat conduction,
nonlinear contribution due to viscous dissipation (strain heating).
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Parallel-sided slab

100 v v v 100
a0r 90t
__ 80 _ 80
E £,
~ 70} < 70}
B &
O e
¢ s5op Q 50t
O O
O O
© 40t © 40f
5 5
S 30t S 30}
T T
20¢ . 20}
10 . 10}
O L L L 0 L L \ L L L
0 5 10 15 20 -10-9 -8 -7 -6 -5 -4
Velocity v, [m/a] Temperature T [°C]

H=100m, a=10° T, =-10°C, g, = 50 MW m=2,
n=3, A=10"1 g1 Pa3
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| 8. Numerical solutions and models

3 T T g S AR




Numerical solutions

Non-linear,
thermo-mechanically coupled,
free-surface flow problem

— In general, numerical solution techniques are required:

» Finite difference methods (FDM).
» Finite elements methods (FEM).
» Finite volume methods (FVM).

» Others...
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Model SICOPOLIS

“SImulation
o
-
[aa % for
) Skl
N o
A0
%
S 27
W «53?3’g 2 O oI
I ol erma
& X @ o (3 O A of e
i é)@@\ ¢ o e ko*;‘k@}c O@Q& o
P A
P
Bt 5 i G
W tf»"\;@ “"Qia@*%*&@ 5 % ICe
& F G
< 0@“" R .
,@‘ x
A x®§ o 5 T\)\_\ I S h t L)
K =] s o
o eets
£

> Open-source model,
B mainly delevoped at ILTS

5 &
CgFe
(o3l " B,
¥ O S

(www.sicopolis.net).
» Coded in Fortran.

2" > Shallow ice + shallow shelf
E approximations.

> Finite difference method.
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SICOPOLIS - Sigma transformation

Vertical ice columns mapped on [0,1] intervals.

Separate mappings for cold-ice layer,
temperate-ice layer [polythermal method only],
lithosphere (rock) layer

— vertical coordinates C_, (, (.

. _ - Lo = 1
Cold-ice layer: e 2= heayd -
Densification of grid points 1
close to the base < > 1

i sigma transformation
— parameter a. 1 T
~~ z=z,(xy.b 1 =0
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SICOPOLIS — Numerical solution technique

Finite difference method.

Staggered grid (Arakawa-C grid):

= Ax =
Ay/‘P %) ¥ K+
e }{ /@/ — Velocities (v,, v,, v,) and
L ©® i volume fluxes (Q,, Q,) are
© € ke defined in between grid
A © ® points.
e Q ¥l « — Other field quantities (V)
}g/ %@/ j+1 are defined on grid points.
Y [y @ v gz
i i+ i+1 d
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SICOPOLIS — Numerical solution technique

2nd-order central differences for diffusive terms.
1st-order upstreaming for advective terms.

Time-stepping (ice thickness equation):

— Time-step At (same for velocity and isostasy).
— Over-implicit in the linear part, explicit in the non-linear part.

Time-stepping (temperature, water content and age):

— Time-step At (integer multiple of Af).

— Implicit in the vertical, explicit in the horizontal derivatives.
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Model Elmerl/ice

elmerice.elmerfem.org

» Add-on package to EImer (multi-physics FEM suite mainly
developed by CSC — IT Center for Science, Espoo, Finland).

» Open-source model.
» Solves the full Stokes (FS) equations.

» Applicable to ice sheets, ice shelves, ice caps and glaciers.
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Application of SICOPOLIS to the Austfonna ice
Cap! Svalbard (Dunse et al. 2011)

Svalbard

Austfonna

Objective:
To reproduce the observed surge-recovery cycles of several
drainage basins of Austfonna.
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Simulated surface velocity field over 1000 years of
present-day climate conditions

Animation
— supplementary material
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SeaRISE

= Sea-level Response to Ice Sheet Evolution

International multi-ice-sheet model community effort.

Objective:
To predict the likely range of contributions of the Greenland and

Antarctic ice sheets to sea level rise over the next 100’s of
years under global warming conditions.
. Intergovernmental Panel on
Climate Change (IPCC 2013)

Input for the Fifth Assessment
Report (ARS) of the




Paleoclimatic spin-up for Greenland (with SICOPOLIS)

Grid spacing: Ax =35, 10, 20 km.

Model time: = -125 ka ... 0 ka (one glacial cycle).
Fixed topography (except last 100 a).

Surface temperature anomaly from GRIP &80 record:

10

o
T T
1

AT [deg C]

(Dansgaard et aI 1993 Johnsen et aI 1997)

—120 110 100 —90 —80 —70 —60 —50 —40 —30 —20 —10 0
Time [ka]
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Paleoclimatic spin-up, results for Ax =5 km

Surface velocity Obs. (Joughin et al. 2010)
m/a
1000
-800 S s
300
-1200 |t
% 48 4N
- 100
-1600
. £ o0 30
=
& -2000
> 10
GE':N 63\\\
-2400
3
-2800 oA oaN
]
3200 SON 60N
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Ice stream patterns depend strongly on resolution

Jakobshavn ice stream

Jak (obs): v, [m/a] Jak (5 km): vg [m/a]

-2200 . . 3160 2200/ R D EEEETEEE T 3160
1000 SEREEREY B 4 R 1000
—_ 36 e o : 1 R 318
E . 100 E bR S - R 100
= 2250} - —1| se 22500 . SEEHEEH EEY
> 10 > e 4 SSSEREEEE 10
* 3.16 g e oERERRRRERE R 3.16
230 : ) 4 ) 1 _oapgLid T LT . i il
=500 -450 -400 -350 -300 -250 -500 -450 -400 -350 -300 -250
x (km) x (km)
Jak (10 km): v, [m/a] Jak (20 km): v [m/a]
—2200 —p . : 3160 2200 . . 3160
1000 Fammh === s 1000
. 36 316
= R 100 E B 100
< -2250r - 3e = 2250 ‘ B | Wats
> 10 - 10
535 & e 5
_230 Il Il 'l 'l 1 . L A L L
=500 -450 -400 -350 -300 -250 239 00 -450 -400 -350 -300 -250
x (km) x (km)

(Greve and Herzfeld 2013)
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SeaRISE experiment R8, mimics IPCC’s RCP8.5
“business as usual” scenario

Simulated volume change of the GrlS (all models):
Time (years) [0 = 2004 CE]

0 100 200 300 400 500

Py 0

L_IIJ w— | C|ES

o -0.5 c— | $ SV
é 1 e 5| COPOLIS
o e UMISM
o))

c _15 ) s AlF 12

© NN

6 '*-\11“ ~|*° sElmer/ICE
p —2 .ess UMISM
c (Bindschadler et al. -

S 25 2013) | verage
O

= 3

Average loss after 100 a: 0.22 m SLE
200 a: 0.53 m SLE
500 a: 2.02 m SLE
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SeaRISE experiment R8 for Antarctica

Simulated volume change of the AIS (all models):

Time (years) [0 = 2004 CE]

0 100 200 300 400 500
A 0.5 """"
O I IR .
""""" s A\| F
n 0
- — e PennState30D
\q; -0.5 s Polsdam
S S| COPOLIS
= —1
& ssse |SSM
S
- eeee UMISM
& 1S TN, A
g 2 (Bindschadler et al. s verage
O 2013)
>
-2.5

Average loss after 100 a: 0.08 m SLE
200 a: 0.27 m SLE
500 a: 1.51 m SLE
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Application of Elmer/ice to Bowdom GIaC|er

Greenland
Bowdoin Glacier: o
Marine-terminating ol 3 LY o 4

outlet glacier located
in NW Greenland.

b 72W 70W 68W 66W 64W

Field surveys

8626
(2013-2016), B
satellite data %
analysis.
=
8610. V s
) ;RO A= lefield Bredﬂi;\g 508 510 512
(Sugiyama et al. 2015)  ss00 7 =55 e a— UTM-Easting (km)

UTM-Easting (km)
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Control run — Set-up

Diagnostic simulation,
resolution ~ 70 m.

Temperature field:
Steady state w/o basal sliding.

Control inverse method:
Minimize cost function
Jiot = Jo + AJ

reg

(Jo: misfit between modelled and
observed surface velocities,
¥

Jreg: regularization) I

— distribution of the basal drag 3 15 km

Observed surface velocities:
Sugiyama et al. (2015)
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Control run — Results

y (km)

y (km)

Observed surface velocity a1

— 400
162} . 300
200

-1164 .
100
-1166 | . 50
20

-1168 .
5
-666 -664 7 -6%2 -GIGO -6;58 -656 0

X (km)

Basal drag coefficient KPam™a
— 1.4
1162 i 1.2
1.0

-1164 k
0.8
-1166 | i 06
0.4

-1168 h
0.2
-666 -6 -6|62 -660 -6“58 -656 0.0

X (km)

y (km)

y (km)

Simulated surface velocity .-
. 400
-1162 300
200
-1164 |
100
-1166 50
20
-1168

5
= | | | 0

666 -664 -662 -660 -658  -656

X (km)
Slip ratio

‘ 1.0
-1162 ] 0.9
0.8

-1164 |
0.7
-1166 , 0.6
0.4

-1168 » .
" 0.2
= - ! ! ! 0.0

666 -664 662 -660 -658  -656

X (km)

Seddik et al. (in preparation)
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