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1. Introduction
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Terminology

Vertical exaggeration factor ~200…500

Ice sheets
→ grounded ice

masses of
continental size,
area > 50,000 km2

(Antarctica,
Greenland).

Ice shelves
→ floating ice masses,

connected to an ice
sheet (Antarctica).
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Terminology

Glaciers
→ small grounded ice

masses in mountainous
regions, constrained by
topographical features.

Ice caps
→ extended grounded ice masses, area < 50,000 km2

(Austfonna, Vatnajökull, North/South Patagonian Icefields...).

Credit: Christoph Mayer

Remark: “Glacier” is sometimes also used as an umbrella term for all grounded 
ice bodies (ice sheets, ice caps and glaciers as defined above).
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Ice sheets

Antarctic ice sheet 
(with ice shelves)

Greenland ice sheet
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Glaciers and ice caps

Can be found on every continent 
(polar/sub-polar areas, mountains).

Number: ~ 200,000 (~ 70 ice caps).

Many different types:
Valley glaciers, cirque glaciers, 
hanging glaciers, tidewater glaciers, 
rock glaciers…

Photo credit: www.glaciers-online.net
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Inventory

Main source: Vaughan et al. (2013) [IPCC AR5 Ch. 4].
(*) Sum for all glaciers and ice caps. (**) Range of values for individual glaciers and ice caps.

Glaciers and
ice caps

Greenland
ice sheet

Antarctic
ice sheet

Area (106 km2) 0.73* 1.80 12.3

Volume (metres of 
sea level equivalent) 0.41* 7.36 58.3

Turnover time
(vol/accum, years) ~ 50 – 1000** ~ 5000 ~ 12000



2. Mechanisms of ice flow
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Stress and strain

Cauchy stress tensor T

Normal stresses (tii) and shear stresses (tij) 
acting on the surface of a cube aligned with x, y, z.

(Greve and Blatter 2009)
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Stress and strain

Stress deviator TD

For incompressible materials like glacier ice:

T = –p I + TD [ tij = –p δij + tDij ]

Pressure p: free field.

Traceless stress deviator TD: 
to be described by a material equation (flow law).

Conservation of angular momentum
→ both T and TD are symmetric.
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Stress and strain

Strain-rate (stretching) tensor D

Symmetric part of the velocity gradient:

D = sym grad v [ Dij = ½ ( vi,j + vj,i ) ]

Diagonal elements Dii: dilatation rates, e.g.

Dxx = (dsx)• / dsx

γxy

dsx

Off-diagonal elements Dij: ½ × shear rates, e.g.

Dxy = (γxy)• / 2
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Why does ice flow?

Two mechanisms

 Internal 
deformation 
(ice = viscous 

fluid).

 Basal sliding.
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Internal deformation

Ice Ih: hexagonal crystal structure.

Deformation along crystallographic planes
(mainly basal, to a much lesser extent prismatic 
and pyramidal)
→ strong anisotropy.

Deck-of-cards model

Loose-packed lattice, packing factor only 34%
(close packing of spheres 74%).

(Faria et al. 2014)
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Internal deformation

Macroscopic description:
Polycrystalline ice → control volume contains an ensemble of 
randomly oriented ice crystallites (a.k.a. grains).

Isotropic,
non-linear
viscous fluid.
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Isotropic, non-linear viscous fluid:
Glen’s flow law

Fluidity factors:

TD

= 2 × fluidity = 1 / (2 × viscosity)
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Basal sliding

Difficult to measure, not well understood! 

Often “Weertman-type” parameterization is used:

Two different processes:
sliding on hard rock vs. sliding on deformable sediment.



3. Dynamics
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Geometry
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Grounded vs. floating ice

Plug flow,
dominated by
p, txx , tyy , tzz, txy

D D D

Shear flow,
dominated by
p, txz, tyz

Ice sheet

Ice shelf
Ice stream
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Full Stokes (FS) flow problem

→ Fr = [U]2 / (g[H]) ~ 10–15

3-d momentum balance on a flat Earth

→ Fr/Ro = 2Ω[U][L] / (g[H]) ~ 5 x 10–8 >>>  FS
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Grounded ice:
Hydrostatic and shallow ice approximations

Full Stokes → Hydrostatic approximation → SIA
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SIA force balance

Hydrostatic pressure:

Vertical shear stresses:

At the ice base (z = b):
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Floating ice:
Hydrostatic and shallow shelf approximations

Full Stokes → Hydrostatic approximation → SSA
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SSA force balance

Hydrostatic vertical normal stress:

Vertically integrated horizontal force balance:
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Shelfy stream approximation (SStA):
SSA with additional basal drag

Plug flow as for ice shelves (vx, vy independent of z), but with 
some resistance due to the basal drag!
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Computation of the velocity field
Choose appropriate force balance,

insert Glen’s flow law
+ mass balance div v = 0

→ system of PDEs for the 3-d velocity field…
(SIA: easier, just integrals over depth)

For the full sets of equations, see
Greve, R. and H. Blatter, 2009, Dynamics of Ice Sheets and Glaciers, Springer.

Boundary conditions: Stress-free condition at the surface, 
basal sliding parameterization, 
pressure (air/ocean) at the sides.

No evolution equation!



4. Thermodynamics
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Ice flow depends strongly on temperature

Viscosity of
polycrystalline ice

(Greve and Blatter 2009)

Basal sliding
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Thermodynamic material equations

Fourier’s law of heat conduction:

Caloric equation of state:
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Coexistence of cold and temperate ice 
(“polythermal”)

Temperate ice can contain 
small amounts of water
→ reduces ice viscosity.

Cold-temperate 
transition surface CTS
→ (1) melting conditions

(2) freezing conditions

(Aschwanden et al. 2012)
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Cold-ice method

Temperature equation:

Secondary condition:

Water content:
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Polythermal method
Temperature equation as before, but only solved in cold ice.

Water-content equation in temperate ice:

Transition conditions at the CTS:

(1) melting conditions (am
┴ > 0)

(2) freezing conditions (am
┴ < 0)
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Polythermal method

Geometry Melting
conditions,
am

┴ = +0.2 m/a

Freezing
conditions,
am

┴ = –0.2 m/a

Analytical solution for the parallel-sided slab
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Enthalpy method

One common thermodynamic field
Enthalpy h = fct(temperature T, water content W)

for cold and temperate ice: (Aschwanden et al. 2012)

Enthalpy equation for cold and temperate ice:



5. Ice thickness equation
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Ice thickness equation
Geometry, processes:
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Ice thickness equation
Volume balance (due to incompressibility):



6. Sketch of the coupled
initial–boundary value problem
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Sketch of the coupled initial–boundary value 
problem

Rectangular boxes:
prognostic model components.
Ovals: model input.



7. Analytical solutions
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h(x)

Vialov profile
Only for highly simplified problems, e.g., the Vialov profile:

2-d ice sheet (only x–z, no y), SIA.

Flat, rigid bed: b = 0, ∂b/∂t = 0.

Extent between
x = –L and x = +L

(L = 750 km),
zero thickness at the margins.

Surface mass balance as = const > 0.

No basal melting: ab = 0, no basal sliding.

Constant rate factor: A = const → no dependence on T.

Steady-state surface (= thickness) profile h(x).
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Vialov profile
Profile h(x)

L = 750 km, n = 3, as = 0.3 m a−1, A = 10−16 a−1 Pa−3

(~ Greenland west-east transect)

L
h0

(Vialov 1958)
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Vialov profile
Aspect ratio (shallowness parameter)

Sensitivity to surface mass balance (snowfall rate)

Large ice bodies are shallower than small ones!

Very weak sensitivity!
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Parallel-sided slab
2-d glacier (only x–z, no y), FS.

Flat, rigid bed: 
b = 0, ∂b/∂t = 0.

Constant thickness H
and inclination angle α.

Uniformity in x-direction.

No surface mass balance: as = 0.

No basal melting: ab = 0, no basal sliding.

Constant rate factor: A = const → no dependence on T.

Constant heat conductivity: κ = const.

Steady-state velocity vx(z) and temperature T(z).
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Parallel-sided slab
Velocity profile vx(z)

Temperature profile T(z) (cold glacier assumed)

Quartic function of z for n = 3.

Linear contribution due to heat conduction, 
nonlinear contribution due to viscous dissipation (strain heating).
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Parallel-sided slab

H = 100 m, α = 10°, Ts = –10°C, qgeo = 50 mW m–2,
n = 3, A = 10−16 a−1 Pa−3



8. Numerical solutions and models
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Numerical solutions

 Finite difference methods (FDM).

 Finite elements methods (FEM).

 Finite volume methods (FVM).

 Others...

Non-linear, 
thermo-mechanically coupled, 

free-surface flow problem

→ in general, numerical solution techniques are required:
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Model SICOPOLIS
“SImulation

COde
for

POLythermal
Ice

Sheets”

 Open-source model,
mainly delevoped at ILTS

(www.sicopolis.net).
 Coded in Fortran.
 Shallow ice + shallow shelf 

approximations.
 Finite difference method.
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SICOPOLIS – Sigma transformation

Vertical ice columns mapped on [0,1] intervals.

Separate mappings for cold-ice layer,
temperate-ice layer [polythermal method only], 
lithosphere (rock) layer

→ vertical coordinates ζc, ζt, ζr.

Cold-ice layer:
Densification of grid points 
close to the base

→ parameter a.
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SICOPOLIS – Numerical solution technique

Finite difference method.

Staggered grid (Arakawa-C grid):

– Velocities (vx, vy, vz) and 
volume fluxes (Qx, Qy) are 
defined in between grid 
points.

– Other field quantities (Ψ)
are defined on grid points.
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SICOPOLIS – Numerical solution technique

2nd-order central differences for diffusive terms.

1st-order upstreaming for advective terms.

Time-stepping (ice thickness equation):
– Time-step Δt (same for velocity and isostasy).
– Over-implicit in the linear part, explicit in the non-linear part.

Time-stepping (temperature, water content and age):
– Time-step Δt (integer multiple of Δt).
– Implicit in the vertical, explicit in the horizontal derivatives.

~
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Model Elmer/Ice

elmerice.elmerfem.org

 Add-on package to Elmer (multi-physics FEM suite mainly 
developed by CSC – IT Center for Science, Espoo, Finland).

 Open-source model.

 Solves the full Stokes (FS) equations.

 Applicable to ice sheets, ice shelves, ice caps and glaciers.



9. Selected applications
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Application of SICOPOLIS to the Austfonna ice 
cap, Svalbard

Objective:
To reproduce the observed surge-recovery cycles of several 
drainage basins of Austfonna.

Austfonna

(Dunse et al. 2011)
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Simulated surface velocity field over 1000 years of 
present-day climate conditions

Animation 
→ supplementary material
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SeaRISE

= Sea-level Response to Ice Sheet Evolution

International multi-ice-sheet model community effort.

Objective:
To predict the likely range of contributions of the Greenland and 
Antarctic ice sheets to sea level rise over the next 100’s of 
years under global warming conditions.

Input for the Fifth Assessment 
Report (AR5) of the 
Intergovernmental Panel on 
Climate Change (IPCC 2013)
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Paleoclimatic spin-up for Greenland (with SICOPOLIS)

Grid spacing: ∆x = 5, 10, 20 km.

Model time: t = –125 ka ... 0 ka (one glacial cycle).

Fixed topography (except last 100 a).

Surface temperature anomaly from GRIP δ18O record:

(Dansgaard et al. 1993, Johnsen et al. 1997)
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Paleoclimatic spin-up, results for ∆x = 5 km

Surface velocity Obs. (Joughin et al. 2010)
m/a
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Ice stream patterns depend strongly on resolution

Jakobshavn ice stream

(Greve and Herzfeld 2013)
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SeaRISE experiment R8, mimics IPCC’s RCP8.5 
“business as usual” scenario

Time (years) [0 = 2004 CE]
Vo

lu
m

e 
ch

an
ge

 (m
 S

LE
)

(Bindschadler et al. 
2013)

0

–0.5

–1

–1.5

–2

–2.5

–3

Average loss after 100 a: 0.22 m SLE
200 a: 0.53 m SLE
500 a: 2.02 m SLE

Simulated volume change of the GrIS (all models):
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SeaRISE experiment R8 for Antarctica

Time (years) [0 = 2004 CE]
Vo
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m
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an
ge

 (m
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LE
)

(Bindschadler et al. 
2013)
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–0.5
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–1.5

–2

–2.5

Average loss after 100 a: 0.08 m SLE
200 a: 0.27 m SLE
500 a: 1.51 m SLE

Simulated volume change of the AIS (all models):
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Application of Elmer/Ice to Bowdoin Glacier, 
Greenland

Bowdoin Glacier:
Marine-terminating 
outlet glacier located 
in  NW Greenland.

Field surveys 
(2013–2016), 
satellite data 
analysis.

(Sugiyama et al. 2015)
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Control run – Set-up

Diagnostic simulation, 
resolution ~ 70 m.

Temperature field: 
Steady state w/o basal sliding.

Control inverse method: 
Minimize cost function 

Jtot = J0 + λJreg

(J0: misfit between modelled and
observed surface velocities, 

Jreg: regularization) 

→ distribution of the basal drag β

(simplified sliding law τb = βvb)
Observed surface velocities:

Sugiyama et al. (2015)
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Control run – Results
Simulated surface velocityObserved surface velocity

Slip ratioBasal drag coefficient

Seddik et al. (in preparation)
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