

Institut-Hôpital neurologique de Montréal

Montreal Neurological Institute-Hospital

EDDU Protocols

Production of Recombinant α-Synuclein Monomers and Preformed Fibrils (PFFs)

Authors: Manecka, Destiny-Love; Luo, Wen; Krahn, Andrea; Del Cid Pellitero, Esther; Shlaifer, Irina; Beitel, Lenore K.; Rao, Trisha; Durcan, Thomas M.

Version 2.0

EDDU-006-02 April 2020

Production of Recombinant α-Synuclein Monomers and Preformed Fibrils (PFFs)

Author(s): Manecka, Destiny-Love; Luo, Wen; Krahn, Andrea; Del Cid Pellitero, Esther; Shlaifer, Irina; Beitel, Lenore K.; Rao, Trisha; Durcan, Thomas M.

Version	Authors/Updated by	Date	Signature
v1.0	Destiny-Love Manecka Wen Luo Andrea Krahn Lenore K. Beitel Esther Del Cid Pellitero Irina Shlaifer Chanshuai Han Trisha Rao	June 28, 2019	
V2.0	Destiny-Love Manecka Wen Luo Andrea Krahn Lenore K. Beitel Esther Del Cid Pellitero Irina Shlaifer Chanshuai Han Trisha Rao	April 1, 2020	

The involved functions approve the document for its intended use:

Name	Function:	Role	Date	Signature
Dr. Thomas	R&D	Associate		
Durcan		Director, MNI		
		Early Drug		
		Discovery Unit		
		(EDDU)		

Table of Contents

1 I	Introduction	1
1.1	1 Objectives	1
1.2	2 Protocol Overview	1
1.3	3 Technical and safety considerations	2
2	Materials	4
2.1	1 Labware	4
2.2	2 Reagents	5
2.3	3 Equipment	7
3 F	Protocol	9
3.1	1 Expression and purification of GST-α-synuclein and GST-3C enzyme	9
3.2	2 Cleavage of GST-α-synuclein and purification of untagged α-synuclein	15
3.3	3 Generation of α-synuclein PFFs	18
3.4	4 Fluorescent labelling of α-synuclein PFFs	19
4 4	Appendix	20
4.1	1 Human GST-α-synuclein plasmid	20
4.2	2 Mouse GST-α-synuclein plasmid	21
4.3	3 GST-3C plasmid	23
4.4	4 Preparation of LB-ampicillin agar plates	24
4.5	5 Preparation and recovery of bacterial glycerol stocks	24
4.6	6 Measurement of protein concentration using Bradford Assay Kit	25
4.7	7 Measurement of optical density	26
4.8	8 SDS-PAGE and gel staining	26
4.9 sys	9 Instructions for using UNICORN 7.0.2 software on the ÄKTA pure L protein purifi stem	
4.1 qua	10 Measurement of endotoxin concentration using LAL chromogenic endotoxin antification kit	41

1 Introduction

1.1 Objectives

This protocol describes how to:

- Produce and purify recombinant human and mouse α-synuclein in monomeric form from transformed bacteria
- Generate α-synuclein preformed fibrils (PFFs) from recombinant monomeric α-synuclein
- Fluorescently label α-synuclein PFFs

1.2 Protocol Overview

Using conventional methods for bacterial transformation and large-scale protein expression, plasmids containing glutathione S-transferase (GST)–tagged full-length recombinant human (NM_000345) or mouse (NM_001042451) α -synuclein are expressed in BL21 (DE3) *Escherichia coli* (**Figure 1**). In parallel, a plasmid containing GST-tagged recombinant 3C enzyme, which is capable of cleaving the GST tag from GST-tagged proteins, is also expressed. The GST-tagged proteins are purified from the bacterial cell lysates by affinity column chromatography.

The purified GST- α -synuclein protein is treated with GST-3C enzyme to remove the GST tag. Untagged α -synuclein protein is purified from the reaction using affinity column chromatography and then further purified using size exclusion chromatography.

The recombinant monomeric α -synuclein protein can be used for experiments directly, or for generating PFFs through aggregation. PFFs can then be fluorescently labelled if desired, depending on the experiment.

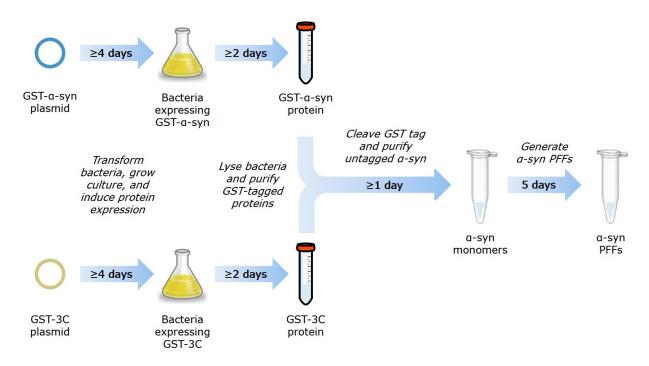


Figure 1. Protocol overview for the expression and purification of GST-tagged α -synuclein (GST- α -syn) and 3C enzyme (GST-3C), cleavage of GST tags and purification of untagged α -synuclein, and generation of α -synuclein PFFs.

Untagged α -synuclein protein (monomeric form) should be tested for bacterial endotoxin to ensure that levels are below the threshold for the endotoxic response in mice and human cells. Note that some animal species have a lower threshold for the endotoxic response and can only tolerate proteins produced in bacterial strains with a disabled endotoxin signal (e.g. ClearColi bacteria must be used to produce α -synuclein for marmosets).

1.3 Technical and safety considerations

The following information should be read before starting:

- All material and reagents should be sterile or autoclaved:
 - Glass flasks should be capped with aluminum foil and autoclaved to sterilize.
 - Lysogeny broth (LB) medium should be autoclaved on the liquid cycle for 30 minutes exposure time at 121°C to sterilize. After autoclaving, cool LB medium to room temperature before using.
- Use deionized, distilled water (ddH₂O; MiliQ water) to prepare all media and buffers. Do not use distilled water (dH₂O) because it is too acidic for bacterial and protein work.
- Use sterile technique and work over a flame during procedures involving bacterial cells and cultures.
- During the first procedure of expressing and purifying the GST-tagged proteins (section 3.1), it is possible to pause prior to sonication of the bacterial culture.

- Following purification of the GST-tagged proteins (section 3.1), it is necessary to proceed directly to the cleavage reaction (section 3.2). The purified GST-tagged proteins are sensitive to degradation should not be stored to perform cleavage reaction at a later time.
- All users of the ÄKTA pure protein purification system must be trained. The Superdex 200 16/600 columns should be used with care following proper training.
- All users of the Bioruptor Plus sonication device and water cooler must be trained.
- While working with α-synuclein PFFs:
 - Wear appropriate personal protective equipment at all times, including disposable gloves, a laboratory coat, a face mask, and protective goggles.
 - Perform all procedures in a sterile Class II biosafety (BSLII) cabinet.
 - Avoid inhaling PFFs or getting aerosolized PFFs in eyes.
- After working with α-synuclein PFFs:
 - Clean area with 1% SDS to destroy fibrils, then rinse area with sterile distilled water.
 - Dispose of all tips and tubes into a large empty bottle or a 50-mL tube containing 1% SDS. Store items in 1% SDS for up to 2 hours to disassemble the PFFs.
 - Dispose of gloves and face mask in an autoclavable biohazard bag to be sterilized.
- For further information on the use of SDS to break down α-synuclein PFFs, refer to Bousset et al. 2016. *J. Parkinson Dis.* (6) 143–151.
- Store α-synuclein PFFs at -80°C and thaw at room temperature. Do not store PFFs on ice or at 4 °C, as this causes dissociation and reduces activity. Avoid repeated freeze-thaw cycles.

3

Do not vortex α-synuclein PFFs.

2 Materials

The material, reagents, and equipment listed in this document can be substituted for those supplied by other manufacturers. However, the performance of the assay may not be the same and may need to be optimized or redeveloped upon significant modifications to the materials and/or methods.

Refer to the product data sheet from the supplier for further details on storage and preparation instructions.

2.1 Labware

Item	Supplier	Catalogue #
Sterile needle, 22G 1 ¹ / ₂ "	Becton Dickinson	305156
Aluminum foil	Sigma Aldrich	Z185140
Amicon Ultra-15 Centrifugal	Millipore	UFC900324
filter unit		
Autoclave tape	Fisher Scientific	15903
Chromatography columns, 10-mL, disposable (with stopcocks)*	Thermo Scientific	29924
Chromatography columns, 20-mL, disposable (with stopcocks)*	BioRad	732-1000
Column holder	Fisher Scientific	22-036466
Cryovial	Fisher Scientific	50-873-794
Erlenmeyer flask, glass, 125- mL	Sigma Aldrich	CLS4980125
Erlenmeyer flask, glass, 2-L	Fisher Scientific	FB5002000
Glass bottle with cap, 1-L	Fisher Scientific	C13951L
GSTrap 4B	GE Healthcare Life Sciences	28401745
Mini-PROTEAN [®] Tetra cell	BioRad	1658004
Mini-PROTEAN [®] Tetra cell	BioRad	1658021
casting module	Ciava a Aldrich	D7700
Parafilm	Sigma Aldrich	P7793
Petri dish, 100 mm x 15 mm	Fisher Scientific	FB0875712
Plate, 96 deepwell	Eppendorf	0030504305
Plate, 96-well, clear	BD Falcon	351172
Polypropylene bottles, 500- mL	Beckman Coulter	361691
Polypropylene bottles, 50-mL	Beckman Coulter	361694
Slide-A-Lyzer™ MINI Dialysis	ThermoFisher Scientific	88400
Device, 3.5K MWCO, 0.5 mL	Sigma Aldrich	05416
Spectrophotometer cuvette	Sigma Aldrich	C5416
Sterile disposable filter unit,	ThermoFisher Scientific	566-0020
0.2-µm Storilo ovringo filtor, 0.2 µm	VWR	28145-501
Sterile syringe filter, 0.2-µm	Becton Dickinson	309604
Sterile syringe, 10-mL		
Sterile syringe, 1-mL	Becton Dickinson	309628

Item	Supplier	Catalogue #
Superdex 200 16/600 column	GE Healthcare Life Sciences	28-9893-35
Support stand	Fisher Scientific	22-260469
Tubes, 50-mL	Fisher Scientific	14-959-49A

^{*}Reusable chromatography columns may be used as an alternative to disposable columns (e.g. 50-mL reusable chromatography columns [Bio-Rad Laboratories #7374251]).

2.2 Reagents

Item	Supplier	Catalogue	Stock	Working	Storage
		#	conc.	conc.	temp.
Acetic Acid, Glacial (Certified ACS)	Fisher Scientific	A38-450LB	100%	Various	RT
Acrylamide/ bisacrylamide (29:1), 30%	BioRad	1610156	30%	Various	4°C
Agar	BioShop	AGA001	NA	15 g/L	RT
Alexa Fluor™ 488 [*]	Molecular Probes	A20000	5 mg/mL	~161 µg/mL	Stock: –20°C
Alexa Fluor™ 568 [*]	Molecular Probes	A20003	5 mg/mL	~161 µg/mL	Stock: –20°C
Alexa Fluor [™] 633 [*]	Molecular Probes	A20005	5 mg/mL	~161 µg/mL	Stock: –20°C
Ammonium persulphate (APS)	Sigma Aldrich	A3678	10%	0.005%	RT
Ampicillin	Sigma Aldrich	A9393	100 mg/mL	100 µg/mL	Stock: –20°C Working: 4°C
Aprotinin	Sigma Aldrich	A1153	0.5 mg/mL	0.5 µg/mL	Storage: –20°C Working: 4°C
Benzamidine	Sigma Aldrich	12072	0.5 mg/mL	0.5 µg/mL	Storage: –20°C Working: 4°C
BL21(DE3) Competent <i>E.</i> <i>coli</i> cells	New England Biolabs	C2527H	NA	NA	–80°C
Bradford Assay Kit	ThermoFisher Scientific	23236	NA	NA	4°C
Bromophenol blue	Sigma Aldrich	B0126	100%	0.1%	RT
Coomassie stain, Bio- Safe™	BioRad	1610786	100%	100%	RT
Dimethyl sulfoxide (DMSO)	Sigma Aldrich	D8418	NA	NA	RT

Item	Supplier	Catalogue	Stock	Working	Storage
		#	conc.	conc.	temp.
Dithiothreitol (DTT)	Biobasic	DB0058	1 M	Various	Stock: –20°C Working: RT
Ethanol (EtOH)	Fisher Scientific	P06EAAN	100%	20% (v/v)	RT
Glutathione	Sigma Aldrich	G4251	NA	20 mM	4°C
Glutathione Sepharose bead slurry	GE Healthcare Life Sciences	17075605	NA	NA	4°C
Glycerol	Fisher Scientific	G33-1	100%	Various	RT
Glycine	Wisent Biosciences	800-045-IK	NA	192 mM	RT
GST-α- synuclein plasmid, human	NA	NA	100 ng/µL	2 ng/µL	–20°C
GST-3C plasmid	NA	NA	100 ng/µL	2 ng/µL	–20°C
GST-α- synuclein plasmid, mouse	NA	NA	100 ng/µL	2 ng/µL	–20°C
Isopropyl-β-D- thiogalactoside (IPTG)	Biobasic	IB0168	0.5 M	300 µM	Stock: –20°C
LAL chromogenic endotoxin quantification kit [†]	Thermo Scientific	88282	NA	NA	4°C
LB broth (Miller)	BioShop	LBL407	NA	25 g/L	RT
Leupeptin	Sigma Aldrich	L2884	0.5 mg/mL	0.5 µg/mL	Stock: –20°C Working: 4°C
Methanol (Certified ACS)	Fisher Scientific	A412-1	100%	40%	RT
Paraform- aldehyde (PFA)	Thermo Fisher	28908	100%	4%	RT
Phenylmethane- sulfonyl fluoride (PMSF)	Sigma Aldrich	P7626	0.5 M	5 mM	Storage: –20°C Working: 4°C
Phosphate- buffered saline (PBS)	Wisent Bioproducts	311-012	10x	1x	RT
Protein molecular weight standards	BioRad	1610373	NA	NA	–20°C
SOC medium	New England Biolabs	B9020S	NA	NA	RT or 4°C

Item	Supplier	Catalogue #	Stock conc.	Working conc.	Storage temp.
Sodium chloride (NaCl)	Wisent Bioproducts	600-08	NA	400 mM	Working: 4°C
Sodium dodecyl sulfate (SDS)	Wisent Bioproducts	800-100	10%	Various	RT
Tetramethyl- ethylene- diamine (TEMED)	BioShop	TEM001.50	100%	Various	4°C
Tris-HCl	Wisent Bioproducts	600-126	Various	Various	RT
Triton X	Sigma Aldrich	X100	20%	0.5%	Stock: RT Working: 4°C

^{*}Light-sensitive reagent. Stock and working aliquots should be covered in aluminum foil to minimize exposure to light.

⁺The LAL chromogenic endotoxin quantification kit contains components that are light-sensitive in lyophilized form (LAL and chromogenic substrate). Light-sensitive components should be covered to minimize exposure to light.

2.3 Equipment

Item	Supplier	Catalogue #
ÄKTA pure L protein purification system	GE Healthcare Life Sciences	29018224
Beckman Coulter Avanti J- 25I centrifuge (with JLA- 10.500 and JA-25.50 rotors)	Beckman Coulter	BE-J25
BioDrop DUO Spectrophotometer	BioDrop	80-3006-61
Bioruptor [®] Plus sonication device with metallic soundproof box (B01200001) and water cooler (B02010003)	Diagenode	B01020001
CPXH Series Ultrasonic Cleaning Bath	Fisher Scientific	15-336-126
Digital heating shaking	ThermoFisher Scientific	88880027
drybath or thermomixer	Eppendorf	2231000574
Ecotron Incubation Shaker (with cooling)	INFORS HT	Ecotron
Fisherbrand Model 120 Sonic Dismembrator with sound enclosure box	Fisher Scientific	NA
Getinge Castle Vacuum Gravity Steam Sterilizer (autoclave)	Getinge	700HC-E SERIES
Heating block	Eppendorf	5383000027

Item	Supplier	Catalogue #
Infinite [®] 200 PRO series plate reader	Tecan	INF-MPLEX
Low-speed orbital shaker	Corning LSE	6780-FP
New Brunswick Innova 42 incubator shaker	Eppendorf	M1335-0010
Nutating Mixer	VWR	8207-202
PowerPac Universal Power	BioRad	1645070
Supply		
Reciprocal shaking bath	Precision™	NA (discontinued)
Stirrer plate	VWR	97042-706
Temperature-controlled orbital shaker	Barnstead	MaxQ
Thermo Scientific Heraeus Megafuge 40R Refrigerated Centrifuge	Fisher Scientific	75004518
UNICORN [™] 7.0.2 software	GE Healthcare Life Sciences	29115456
Vortex mixer	Corning LSE	6776

3 Protocol

3.1 Expression and purification of GST-α-synuclein and GST-3C enzyme

Materials:

- BL21 (DE3) competent E. coli cells
- Plasmid(s):
 - Human GST-α-synuclein expression plasmid (100 ng/μL)
 - Mouse GST-α-synuclein expression plasmid (100 ng/μL)
 - GST-3C enzyme expression plasmid (100 ng/µL)
- SOC medium
- Ampicillin (100 mg/mL)
- 125-mL Erlenmeyer flasks
- 2-L Erlenmeyer flasks
- 500-mL capped polypropylene bottles
- 50-mL capped polypropylene bottles
- 50-mL tubes
- 0.2-µm sterile syringe filter and 22G 1¹/₂" sterile needle
- 10- or 20-mL disposable chromatography columns
- Support stand and column holder
- Amicon Ultra-15 Centrifugal Filter Unit
- Parafilm
- IPTG (0.5 M)
- 1x PBS
- 20% EtOH in ddH₂O
- Glutathione sepharose bead slurry

• Solutions:

Solution	Components
LB medium (autoclaved)	 1 L ddH₂O 25 g LB broth
Resuspension buffer (80 mL; prepare fresh and chill on ice before use)	 ddH₂O 25 mM Tris, pH 8 400 mM NaCl 5% glycerol 0.5% Triton X 5 mM PMSF 0.5 mg/mL benzamidine 0.5 µg/mL leupeptin 0.5 µg/mL aprotinin 1 mM DTT
Wash buffer (500 mL; chill on ice)	 ddH₂O 50 mM Tris, pH 8 400 mM NaCI 5% glycerol 1 mM DTT (add fresh before use)
Elution buffer (20 mL; prepare fresh and chill on ice before use)	 Wash buffer 20 mM glutathione (once dissolved adjust pH to 8)

- LB agar plates containing 100 µg/mL ampicillin (see Appendix 4.4 for procedure)
- SDS-PAGE and gel staining materials (see Appendix 4.8 for procedure)
- Bradford Assay kit and materials (see Appendix 4.6 for procedure)
- 42°C water bath
- Temperature-controlled orbital shaker
- 37°C bacterial incubator
- Beckman Coulter Avanti J-25I centrifuge with JLA-10.500 and JA-25.50 rotors

- Spectrophotometer and cuvettes
- Fisherbrand Model 120 sonic dismembrator
- Bioruptor Plus sonicator
- Thermo Scientific Heraeus Megafuge 40R Refrigerated Centrifuge
- Nutating mixer

Procedure (for each plasmid):

- 1. Thaw vial of BL21 cells on ice for 10 minutes.
- 2. Add 1 μ L (100 ng) of plasmid to the cells and gently flick the tube 4 to 5 times to mix. Incubate cells on ice for 30 minutes.
 - Do not vortex cells to mix.
- 3. Place cells in a 42°C water bath for 10 seconds. Transfer cells to ice and incubate for 5 minutes.
- 4. Add 950 μ L of SOC medium to the cells. Shake cells at 200 rpm at 37°C for 1 hour.
 - During the incubation, warm LB-ampicillin agar plates to 37°C.
- 5. Spread 20 μL of cells onto warm LB-ampicillin agar plates and incubate plates at 37°C overnight.
- 6. Add 20 mL of LB medium to a 125-mL Erlenmeyer flask. Add ampicillin to the medium to a final concentration of 100 μ g/mL.
- Use a sterile 20 μL pipette tip to pick a single, isolated colony from the plate and eject it into the flask containing the LB medium. Shake culture at 200 rpm at 37°C overnight.
 - Plates with colonies can be stored at 4°C for up to 1 month. For long-term storage of transformed bacteria, prepare a glycerol stock (see Appendix 4.5 for procedure).
- 8. Add 500 mL of LB medium to each of four 2-L Erlenmeyer flasks. Add ampicillin to the medium in each flask to a final concentration of 100 μg/mL.
 - Larger flasks may be used if available as long as the volume of medium is appropriate for the flask size (e.g. 2 L of LB medium in one 8-L flask).
- Transfer 5 mL of overnight culture to each of the 2-L flasks containing the LB medium. Shake at 200 rpm at 37°C and 200 rpm. Monitor the optical density at 600 nm (OD₆₀₀) until it reaches 0.6 (see Appendix 4.7 for procedure).
 - It usually takes 3 to 5 hours or longer for the OD₆₀₀ to reach 0.6.
- 10. Add IPTG to the culture to a final concentration of 300 μM to induce protein expression. Reduce shaker temperature to 16°C and shake culture at 200 rpm at 16°C for 18 hours (overnight).

- 11. Divide the culture among six 500-mL polypropylene bottles, ensuring that all filled bottles are of equal weight. Close bottles with caps and centrifuge at 5000 G at 4°C for 30 minutes using a JLA-10.500 rotor.
 - Place each bottle into a canister, and then place each canister into a cavity in the JLA-10.500 rotor.
 - Place the rotor lid on top of the rotor and fasten the round knob securely into the centrifuge.
- 12. Remove the supernatant and resuspend each pellet with 20 mL of cold resuspension buffer. Combine the culture and divide into four 50-mL capped polypropylene bottles, ensuring that both filled bottles are of equal weight (approximately 30 mL per bottle).
 - If necessary, the supernatant may be stored at -80°C until ready to sonicate. Once the frozen supernatant has been thawed, proceed immediately to the next step.
- 13. Sonicate the cells on an ice bath using the sonic dismembrator on the following settings: 5 cycles; 30 seconds ON/30 seconds OFF, 60% power.
- 14. Close bottles with caps and centrifuge at 18,000 rpm at 4°C for 30 minutes using the JA-25.50 rotor.
- 15. After the lysates have been cleared by centrifugation, transfer the supernatant from each bottle into 50-mL tubes.
- 16. To check the expression level of GST-α-synuclein, run 100 μL of the supernatant (cleared lysate) on a 14% polyacrylamide SDS-PAGE gel (see Appendix 4.8 for procedure).
 - Recombinant GST-α-synuclein will run at approximately 40 kDa on a 14% polyacrylamide SDS-PAGE gel (**Figure 2**).

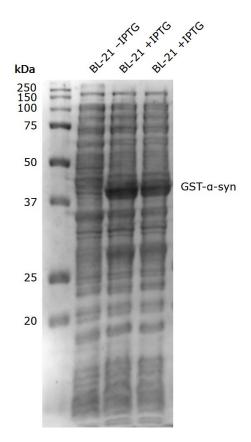


Figure 2. 14% polyacrylamide SDS-PAGE gel of recombinant GST-α-synuclein (GST-α-syn) in BL-21 cell lysate control (BL-21 –IPTG) and in BL-21 cell lysates induced with IPTG (BL-21 +IPTG).

- 17. Add 5 mL of glutathione sepharose bead slurry to two clean 50-mL tubes. Wash the beads by adding 30 mL of ddH₂O to each tube, centrifuge at 3000 rpm at 4°C for 3 minutes and remove liquid.
- 18. Wash the beads by adding 30 mL of cold wash buffer to each tube, centrifuge at 4°C at 3000 rpm for 3 minutes and remove liquid. Repeat this step two more times.
- 19. Pass the cleared lysates (from step 16) through a 0.2-µm sterile syringe filter into the 2 tubes containing the washed glutathione sepharose beads. Cap the tubes, seal with Parafilm, and incubate on a nutating mixer at 4°C for at least 24 hours.

EDDU-006-02

April 2020

- 20. Set up ten 10-mL or five 20-mL disposable chromatography columns in the column holders on the support stand. Place a vessel (e.g. beaker) under each column to collect flowthrough. Transfer the lysate-bead mixtures to the columns. With the column stopcocks open, wash beads five times with 15 mL of cold wash buffer.
 - The beads will be retained in the column, while the liquid will flow through the columns.
- 21. Close the column stopcocks and place 50-mL tubes under the column to collect eluents.
- 22. Add 3 mL of cold elution buffer to each column and incubate for 10 minutes. Slightly open the column stopcocks and allow the eluents to drip into the 50-mL tubes. Repeat this step three more times.
 - The beads can be re-used to purify the same protein. Wash the columns containing the beads three times with 5 mL wash buffer then rinse three times with 5 mL ddH₂O. Add 20% EtOH to the column so that the beads are covered, and then transfer the bead solution to a clean 50-mL tube. Beads can be stored at 4°C until the expiry date on product label.
- 23. Combine the eluents and transfer to a single Amicon Ultra-15 Centrifugal Filter Unit. Centrifuge at 3000 rpm at 4°C for 30 minutes.
- 24. Add 10 mL of PBS and centrifuge at 3000 rpm at 4°C for 30 minutes. Repeat this step three times to concentrate the eluent to ≤4 mL.
- 25. Determine the protein concentration (see Appendix 4.6 for procedure).
- 26. Proceed immediately to Section 3.2 to remove the GST tag from the GST-α-synuclein protein. Reserve 100 µL of GST-α-synuclein protein to analyze by SDS-PAGE (see Section 3.2, step 9).
 - **IMPORTANT:** Do not store purified protein overnight; proceed directly to cleavage reaction. The purified protein is sensitive to degradation and should not be stored to perform cleavage reaction at a later time.

3.2 Cleavage of GST-α-synuclein and purification of untagged α-synuclein

Materials:

- Recombinant GST-α-synuclein protein
- Recombinant GST-3C enzyme
- 1.5-mL microcentrifuge tubes
- 96 deepwell plate
- Amicon Ultra-15 Centrifugal Filter Unit
- Superdex 200 16/600 column
- GSTrap 4B column
- Support stand and column holder
- SDS-PAGE and gel staining materials (see Appendix 4.8 for procedure)
- 1x PBS
- 20% EtOH in ddH₂O
- Solutions:

Solution	Components
Wash buffer (500 mL; chill on ice)	 ddH₂O 50 mM Tris, pH 8 400 mM NaCI 1 mM DTT (add fresh before use)
Elution buffer (20 mL; prepare fresh and chill on ice before use)	 Wash buffer 20 mM glutathione (once dissolved adjust pH to 8)

- Bradford Assay kit and materials (see Appendix 4.6 for procedure)
- Thermo Scientific Heraeus Megafuge 40R Refrigerated Centrifuge
- Ultrasonic cleaning bath
- ÄKTA pure L protein purification system with UNICORN 7.0.2 software
- LAL chromogenic endotoxin quantification kit and materials (see Appendix 4.10 for procedure)

Procedure:

- 1. Add GST-3C enzyme to GST- α -synuclein at a 1:50 mass-to-mass ratio. Incubate reaction at 4°C overnight.
 - For example, add 0.3 mg of GST-3C enzyme (150 μL of 2 mg/mL stock solution) to 15 mg of GST-α-synuclein protein (3 mL of 5 mg/mL stock solution).

15

April 2020

- 2. Start equilibration of the Superdex 200 16/600 column on the ÄKTA pure L system. The equilibration takes approximately 11 hours and should be run overnight so that the system is ready for the samples the next day. See Appendix 4.9 for instructions to set up and run the equilibration using the UNICORN software.
- 3. Set up a GSTrap 4B column in the support stand. Place a vessel (e.g. beaker) under the column to collect flow-through. Wash column with 20 mL of ddH₂O to remove EtOH, and then wash with 20 mL of cold wash buffer.
- 4. Reserve 100 μL of reaction to analyze by SDS-PAGE. Inject the remaining reaction into the GSTrap 4B column and collect the eluent in a 50-mL tube.
 - The column can be re-used to purify the same protein. Wash the column with 10 mL of cold elution buffer, then 10 mL of ddH₂O, and then 10 mL of 20% EtOH. Store at 4°C until the expiry date on the product label.
- 5. Transfer eluents to an Amicon Ultra-15 Centrifugal Filter Unit. Centrifuge at 3000 rpm at 4°C for 30 to 45 minutes to concentrate the eluent to ≤4 mL.
- Prepare filtered, sonicated PBS for the ÄKTA pure L system by passing 500 mL of PBS through a 0.2-µm sterile disposable filter unit and then sonicating for 3 minutes using an ultrasonic cleaning bath.
- 7. Purify the concentrated eluent with the Superdex 200 16/600 column on the ÄKTA pure L system. Run a sample method to fractionate the sample into a 96 deepwell plate, and then run a cleaning method to clean the column. See Appendix 4.9 for instructions to set up and run the sample and cleaning methods using the UNICORN software.
 - The sample method takes approximately 2 hours to run.
 - **IMPORTANT:** The column must be cleaned immediately after running the sample. The cleaning method takes approximately 15 hours to run.
- 8. Transfer the combined desired sample fractions to an Amicon Ultra-15 Centrifugal Filter Unit. Centrifuge at 3000 rpm at 4°C for 10 to 15 minutes.

- To check the purity of the untagged α-synuclein, run 20 µL of protein on a 14% polyacrylamide SDS-PAGE gel alongside the 3C cleavage reaction (from step 3) and GSTα-synuclein (from Section 3.1; see Appendix 4.8 for procedure).
 - Recombinant untagged α-synuclein will run at approximately 15 kDa on a 14% polyacrylamide SDS-PAGE gel (Figure 3). The calculated molecular weight of α-synuclein is 14.87 kDa based on its amino acid sequence.

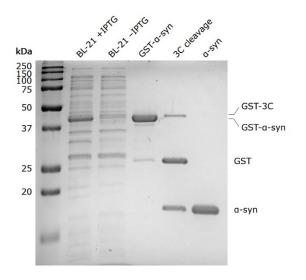


Figure 3. 14% polyacrylamide SDS-PAGE gel of GST-tagged α -synuclein (GST- α -syn), 3C protease cleavage of the GST tag (3C cleavage), and purified untagged α -synuclein (α -syn).

- Determine the protein concentration and adjust to 5 mg/mL with sterile PBS (see Appendix 4.6 for procedure). Prepare 500 µL aliquots in 1.5-mL autoclaved microtubes and store at 80°C. Reserve 1 aliquot determine endotoxin levels (next step).
 - Depending on the downstream application, other aliquot volumes may be preferred (e.g. 20 $\mu L,$ 50 $\mu L).$
 - Aliquots should be labelled with the batch number, name of protein, protein concentration, and date.
- 11. Determine the endotoxin concentration of reserved aliquot (see Appendix 4.10 for procedure).
 - When using this protocol, the endotoxin concentration is typically 100 to 1000 EU/mg of protein when α-synuclein is produced in BL-21 cells, or <100 EU/mg of protein when αsynuclein is produced in ClearColi cells.

3.3 Generation of α-synuclein PFFs

Materials:

- Recombinant monomeric α-synuclein (500-µL aliquot; 5 mg/mL)
- Parafilm
- 37°C digital heating shaking drybath or thermomixer
- Bioruptor Plus sonicator

Procedure:

- 1. Seal the 500- μ L aliquot of monomeric α -synuclein with Parafilm. Incubate in a 37°C digital heating shaking drybath or thermomixer at 1000 rpm for 5 days.
- 2. Sonicate the PFFs on the following settings: 10 cycles, 30 seconds ON/30 seconds OFF, high power, 10°C water circulation.
 - Ensure that the tube holder is balanced with tubes containing equal volumes.
- 3. Depending on the downstream application, prepare 20- to 100-µL aliquots of PFFs in 1.5-mL tubes and store at −80°C.

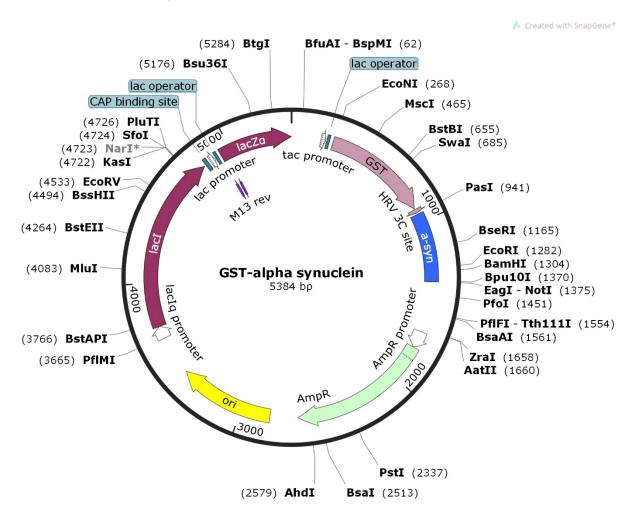
3.4 Fluorescent labelling of α-synuclein PFFs

Materials:

- α-synuclein PFFs
- 1.5-mL tubes
- Aluminum foil
- Slide-A-Lyzer dialysis device and 50-mL conical tube
- Alexa-488, Alex-568, and/or Alexa-633 fluorescent dye (5 mg/mL in DMSO)
- 1x PBS
- Bradford Assay Kit and materials (see Appendix 4.6 for procedure)
- Orbital shaker at 4°C

Procedure:

- 1. Add 5 μ L of a fluorescent dye to 150 μ L of α -synuclein PFFs and mix gently. Cover samples with aluminum foil to protect from light and incubate at room temperature for 20 minutes.
 - IMPORTANT: Do not vortex PFFs.
 - Incubation time may vary depending on the dye. Refer to the incubation time recommended by the manufacturer.
- 2. Add 1 mL of PBS to a dialysis device placed in the 50-mL conical tube. Let sit for 5 minutes to ensure the membrane does not leak (replace the dialysis device if leaking). Empty the dialysis device and remove from the tube.
- 3. Add 45 mL of PBS to the tube. Add the dye-PFFs mixture to the dialysis device and place the dialysis device in the tube. Cap the tube, place on the orbital shaker at 4°C, and shake at 150 rpm for at least 2 hours.
 - Ensure the membrane of the dialysis device is submerged in the PBS.
- 4. Remove the dialysis device from the tube to discard the PBS. Add 45 mL of fresh PBS to the tube and replace the dialysis device. Cap the tube, place on the orbital shaker at 4°C, and shake at 150 rpm for at least 2 hours.
- 5. Collect the labeled PFFs from the dialysis device. Prepare 20- to 50-μL aliquots in tube and store at –80°C. Reserve an aliquot of labelled PFFs to determine the protein concentration.
 - **IMPORTANT:** Store all aliquots of labelled PFFs at -80°C before determining protein concentration of reserved aliquot. Do not store PFFs on ice or at 4 °C, as this causes dissociation and reduces activity.



4 Appendix

4.1 Human GST-α-synuclein plasmid

The plasmid used to express human GST-α-synuclein is pGEX-6-alpha synuclein (backbone plasmid: pGEX6P1) and was originally purchased from the University of Dundee MRC Protein Phosphorylation and Ubiquitination Unit (#DU30005).

Map of pGEX-6-alpha synuclein:

Sequence of insert:

Properties of recombinant human α-synuclein (untagged):

Amino acid sequence	GPLGSMDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKE GVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVT AVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDM PVDPDNEAYEMPSEEGYQDYEPEA*
Molecular weight	14,871.61 DA
Theoretical pl	4.67
Extinction coefficient	5960 M ⁻¹ cm ⁻¹ , at 280 nm measured in water

4.2 Mouse GST-α-synuclein plasmid

The plasmid used to express mouse GST- α -synuclein was created in the laboratory of Dr. Edward Fon (Montreal Neurological Institute, McGill University) by cloning the complete coding sequence for mouse α -synuclein into the pGEX6P1 backbone plasmid. The insert was generated by GeneArt[®] Life Technologies (construct #15AB4CPC).

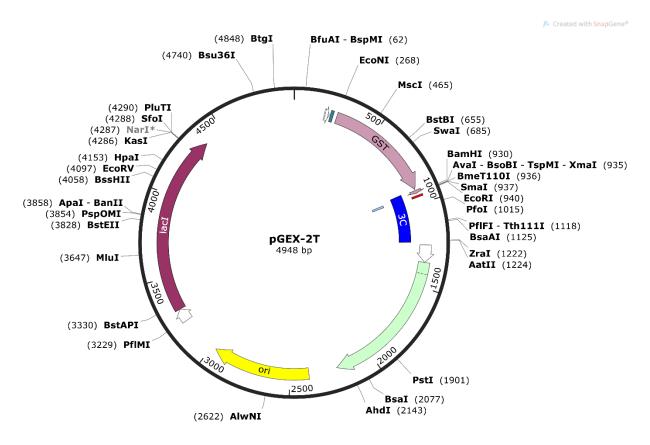
Please refer to the plasmid map in **Appendix 4.1** for details on the pGEX6P1 backbone plasmid.

Sequence of insert:

GACCAGCAGGTGTTCCCCCTGCCCTGCCTGCCCTTGCCTCTTTCATTGAAATTAGATTGG GGAAAACAGGAAGAATCGGAGTTCTTCAGAAGCCTAGGGAGCCGTGTGGAGCAAAAATAC GCTGCTGAGAAAACCAAGCAGGGTGTGGCAGAGGCAGCTGGAAAGACAAAAGAGGGAGT CCTCTATGTAGGTTCCAAAACTAAGGAAGGAGTGGTTCATGGAGTGACAACAGTGGCTGA GAAGACCAAAGAGCAAGTGACAAATGTTGGAGGAGCAGTGGTGACTGGTGTGACAGCAGT CGCTCAGAAGACAGTGGAGGGAGCTGGGAATATAGCTGCTGCCACTGGCTTTGTCAAGAA CTGTGGATCCTGGCAGTGAGGCTTATGAAATGCCTTCAGAGGAAGGCTACCAAGACTATG AGCCTGAAGCCTAAGAATGTCATTGCACCCAATCTCCTAAGATCTGCCGGCTGCTCTTCCA TGGCGTACAAGTGCTCAGTTCCAATGTGCCCAGTCATGACCTTTTCTCAAAGCTGTACAGT GTGTTTCAAAGTCTTCCATCAGCAGTGATCGGCGTCCTGTACCTGCCCCTCAGCATCCCGG TGCTCCCCTCTCACTACAGTGAAAACCTGGTAGCAGGGTCTTGTGTGCTGTGGATATTGTT GTGGCTTCACACTTAAATTGTTAGAAGAAACTTAAAACACCTAAGTGACTACCACTTATTTCT AAATCTTCATCGTTTTCTTTTGTTGCTGTTCTTAAGAAGTTGTGATTTGCTCCAAGAGTTTT TTAAAATTATGTGAGCATGAGACTATGCACCTATAAATATTAATTTATGAATTTTACAGTTTT GTGATGTGTTTTATTAACTTGTGTTTGTATATAAATGGTGGAAAATAAAATAAAATATATCC ΑΤΤGCAAAATCAAAAAAAAAAAAAAAAAAAA

Properties of recombinant mouse α-synuclein (untagged):

Amino acid sequence	MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYV GSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQK TVEGAGNIAAATGFVKKDQMGKGEEGYPQEGILEDMPVDP GSEAYEMPSEEGYQDYEPEA
Molecular weight	14,485.22 Da
Theoretical pl	4.74
Extinction coefficient	7450 M ⁻¹ cm ⁻¹ , at 280 nm measured in water



4.3 GST-3C plasmid

The plasmid used to express GST-3C protease was created by cloning the coding sequence for human rhinovirus (HRV) 3C protease into the pGEX-2T backbone plasmid.

Map of pGEX-2T-3C:

April 2020

Properties of recombinant HRV 3C protease (untagged):

Amino acid sequence	AFRPCNVNTKIGNAKCCPFVCGKAVTFKDRSTCSTYNLSSS LHHILEEDKRRRQVVDVMSAIFQGPISLDAPPPPAIADLLQSV RTPRVIKYCQIIMGHPAECQVERDLNIANSIIAIIANIISIAGIIFVI	
	YKLFCSLQGPYSGEPKPKTKVPERRVVAQGPEEEFGRSILK NNTCVITTGNGKFTGLGIHDRILIIPTHADPGREVQVNGVHTK	
	VLDSYDLYNRDGVKLEITVIQLDRNEKFRDIRKYIPETEDDYP ECNLALSANQDEPTIIKVGDVVSYGNILLSGNQTARMLKYNY PTKSGYCGGVLYKIGQILGIHVGGNGRDGFSAMLLRSYFTG	
	QIKVNKHATECGLPDIQTIHTPSKTKLQPSVFYDVFPGSKEPA VLTDNDPRLEVNFKEA	
Molecular weight	44351.97	
Theoretical pl	8.50	
Extinction coefficient	23100 M ⁻¹ cm ⁻¹ , at 280 nm measured in water (assuming all pairs of Cys residues form cystines)	

4.4 Preparation of LB-ampicillin agar plates

Materials:

- 1-L glass bottle with cap
- Petri dishes
- LB broth
- Agar
- Ampicillin (100 mg/mL)

Procedure:

- 1. Add 12.5 g LB broth and 7.5 g agar to the 1-L glass bottle. Add ddH_2O to the bottle to make a total volume of 500 mL and autoclave on the liquid cycle.
- 2. After the autoclave cycle is complete, allow the LB agar medium to cool to approximately 42°C. Add 500 μ L of ampicillin (final concentration of 100 μ g/mL) and mix well.
- 3. Immediately pour the LB-ampicillin agar medium into the petri dishes (approximately 20 mL per dish). Let the plates sit undisturbed at room temperature for 30 minutes to allow the medium to solidify.
- 4. Transfer the plates into a sealed bag and store at 4°.

4.5 Preparation and recovery of bacterial glycerol stocks

Materials:

- Overnight bacterial culture
- 50% glycerol in ddH₂O
- LB agar selection plate (containing appropriate antibiotic)
- 37°C bacterial incubator

Procedure:

- 1. Add 500 μL of bacterial culture to 500 μL of 50% glycerol in a cryovial. Mix gently. Store at 80°C.
- To recover bacteria from the stock, use a 200 µL tip to scrape the surface of the frozen solution and streak onto a warm LB agar selection plate. Store the remaining stock at – 80°C. Incubate plate at 37°C overnight.
 - Do not allow the glycerol stock to thaw during handling.
- 3. Colonies on plate may be used to grow a bacterial culture.

4.6 Measurement of protein concentration using Bradford Assay Kit

Materials:

- Bradford Assay kit
- Albumin Standard (BSA)
- Samples of unknown concentration
- Blank solution (sample solvent)
- 1.5-mL microcentrifuge tubes
- Clear 96-well plate
- Coomassie Reagent
- Infinite 200 PRO series plate reader

Procedure:

- 1. Prepare standards by diluting the contents of 1 Albumin Standard (BSA) ampule into several clean microcentrifuge tubes (2000 μg/mL–25 μg/mL).
- 2. Pipette 5 µL of blank, standard, or unknown sample in duplicate into a clear 96 well plate.
 - Blanks should be run in duplicate.
- 3. Add 250 μL of the Coomassie Reagent to each well and mix properly. Incubate plate for 10 minutes at room temperature.
- 4. Measure the absorbance at 595 nm using a plate reader.
- 5. Subtract the average measurements for the blank duplicates from all other individual standard or sample measurements.
- 6. Prepare a standard curve by plotting the average blank-corrected measurement for each BSA standard versus its concentration in μg/mL Use the standard curve to determine the protein concentration of each unknown sample.

4.7 Measurement of optical density

Materials:

- LB medium
- Bacterial culture
- Spectrophotometer and cuvettes
- Samples of unknown optical density

Procedure:

- 1. Add 1 mL of LB medium to a disposable polystyrene spectrophotometer cuvette.
- 2. Place cuvette in spectrophotometer and measure the absorbance at a wavelength of 600 nm. This is the blank measurement.
- 3. Add 1 mL of bacterial culture to another cuvette and measure the absorbance at a wavelength of 600 nm.
- 4. Subtract the blank absorbance value from to sample absorbance value to find the optical density.

4.8 SDS-PAGE and gel staining

Materials:

- Protein samples
- Protein molecular weight standard
- Gel casting module (casting stand, casting frame, comb, short plate, spacer plate)
- Filter paper
- 100% EtOH
- Tetra cell (electrode assembly, tank, lid with power cables, buffer dam)
- PowerPac
- Coomassie stain solution
- Orbital shaker
- Solutions:

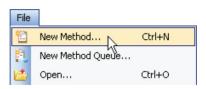
Solution	Components
4% stacking gel solution (15 mL)	 1.98 mL 30% acrylamide/bis-acrylamide 3.78 mL 0.5 M Tris-HCl, pH 6.8 150 μL 10% SDS 9 mL ddH₂O 15 μL TEMED (add just before pouring gel) 75 μL 10% APS (add just before pouring gel)
14% separating gel solution (15 mL)	 7.0 mL 30% acrylamide/bis-acrylamide 3.75 mL 1.5 M Tris-HCl, pH 8.8 150 μL 10% SDS 4.03 mL ddH₂O 7.5 μL TEMED (add just before pouring gel) 75 μL 10% APS (add just before pouring gel)

Solution	Components
4x SDS loading buffer	 200 mM Tris 8% SDS 40% glycerol
	 0.4% bromophenol blue 400 mM DTT Dilute to 1x when preparing loading samples
10x SDS-PAGE running buffer	 ddH₂O 1% SDS 250 mM Tris 1.92 M glycine Dilute 1:10 to prepare a 1x solution
Destain solution	 50% ddH₂O 40% Methanol 10% Acetic acid

Procedure:

- 1. Assemble glass cassette sandwich in the casting frame and secure on casting stand.
- Add 10% APS and TEMED to the separating gel solution and fill the cassette sandwich up to the point that will be approximately 1 cm below the teeth of the comb when inserted. Overlay the gel solution with 100% EtOH. Leave separating gel undisturbed for 45 to 60 minutes to allow polymerization.
- 3. Pour off the alcohol overlay and rinse the top of the gel with ddH₂O. Dry the area above the gel with filter paper. Partially insert the comb between the glass plates.
- 4. Add 10% APS and TEMD to the stacking gel solution and fill the cassette sandwich. Insert the comb completely. Leave stacking gel undisturbed for 30 to 45 minutes to allow polymerization.
- 5. Remove the comb and rinse wells ddH_2O .
- 6. Prepare protein samples in 1x SDS loading buffer so that 1 to 5 μ g of protein in a volume of 10 to 20 μ L can be loaded per well.

- 7. Set the electrode assembly to the open position on a clean, flat surface. Place the gel cassette in the electrode assembly.
 - Two cassettes are required to create a functioning assembly. When using 1 or 3 gels, use the buffer dam (included with the cell) to complete the assembly.
- 8. Place the assembly into the tank. Fill the buffer chambers with 1x SDS-PAGE running buffer.
 - Approximately 200 mL of buffer is required for the inner buffer chamber and approximately 550 mL (for 1–2 gels) or 800 mL (for 3–4 gels) in the outer buffer chamber.
- 9. Remove the comb from the gel to allow the sample wells to fill with running buffer.
- 10. Gently load 5 μ L of protein ladder into the first well from the left. Load the remaining wells with 10 to 20 μ L of samples.
- 11. Secure the lid on the tank and connect the power cables to the PowerPac. Set the power supply to constant voltage at 150 V. Run gel for approximately 1.5 hours or until the loading dye front and/or molecular weight standards reach the desired position on the gel.
- 12. Disassemble the gel apparatus. Open the gel cassettes and transfer the gel to a container containing 50 mL ddH₂O. Place the container with the gel on an orbital shaker set to 50 rpm and wash for 5 minutes. Discard the wash. Repeat this step 2 more times.
- 13. Add 30 mL of Coomassie stain solution to the gel. Shake until the blue protein bands become visible (approximately 30 minutes).
- 14. Discard the stain solution and rinse gel with ddH_2O .
- 15. Add 50 mL destain solution to the gel. Shake until the gel background is clear and only the blue protein bands are visible (2 hours to overnight).



4.9 Instructions for using UNICORN 7.0.2 software on the ÄKTA pure L protein purification system

- 1. Turn on the ÄKTA pure L system and open the UNICORN software.
- 2. In the Administration window, under the Tools menu, select Method Editor from the Tools menu.

- 3. Create a new method to equilibrate the Superdex 200 16/600 column.
 - In the Method Editor window, select the New Method icon ¹ or by selecting New Method from the File menu.

• In the **New Method** window, select **Gel Filtration (GF)** under **Predefined Method** and then select **OK**. A **Method Navigator** window will open.

New Method	>
System:	
AKTA2237212	~
Create a new method by usir	ng the:
Predefined Method:	
Gel Filtration (GF)	v
Method Description After equilibration and sam elute according to their siz	ple application, proteins separate and e (largest first).

• In the **Method Navigator** window, select **Method Settings** and then enter the parameters shown in the image:

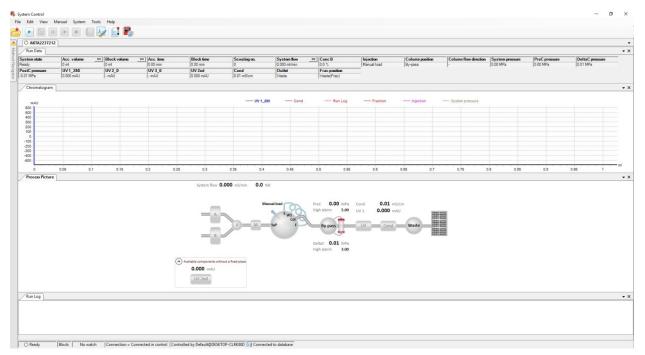
Method Settings	Method Settings	
	Column selection	Result Name & Location
Equilibration	Show by technique Gel Filtration	Start Protocol
Equilibrium	Column type HiLoad 16/600 Superdex 200 pg V	Method Notes
▼	Show only suggested columns Column Properties	
Elution	Column volume 120.637 ml Pressure limit pre-column 0.50 MPa [0.02 - 20.00] i Pressure limit delta-column 0.30 MPa [0.02 - 20.00] i	Unit selection Method Base Unit Volume V Flow Rate Unit ml/min V Monitor settings
		UV variable wavelengths
	Column position 3 ~	UV 1 280 [190 - 700] nm
		UV 2 254 [190 - 700] nm
	Flow rate 1.000 ml/min [0.000 - 25.000]	UV 3 214 [190 - 700] nm
	Control the flow to avoid overpressure	Note! UV monitors with fixed wavelength are not presented in this view

• In the **Method Navigator** window, select **Equilibration** and then enter the parameters shown in the image:

	Phase Properties Text Instructions IT	
Method Settings	Equilibration	
Equilibration	Reset UV monitor (recommended if the equilibration	on occurs before the purification).
•	Use the same flow rate as in Method Settings	Use the same inlets as in Method Settings
Elution	Flow rate 0.200 ml/min [0.000 - 25.000]	Inlet A 🔍
		Inlet B 0.0 % B [0.0 - 100.0]
		Fill the system with the selected buffer
	Equilibrate until	
	the total volume is 100.00 ml	
	O the following condition is met	
	Conductivity greater than	~
	Conductivity greater than	0.00 mS/cm [0.00 - 1000.00]
	Accepted pH fluctuation	0.10 (0-14)

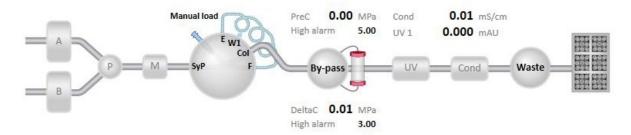
• In the **Method Navigator** window, select **Elution** and then enter the parameters shown in the image:

	Phase Properties Tex	t Instructions			
Method Settings	Elution				
	Use the same flow rate as	in Method Settings	Use the same inlets as in Method S	ettings	
Equilibration	Flow rate 1.000 ml/min	[0.000 - 25.000] Inle	tA 🔍		
		Inle	B		
V	Up flow 🦆				
Elution					
	Isocratic elution				
	Volume 180.96	ml 0.0 % B [0.0 -	100.0] Fill the system	with the sel	ected buffer
	Gradient elution				
	Start at 100.0	% B [0.0 - 100.0]	Fill the system with the selected bu	ffer	
	Туре	Target %B Len	gth		
	1 Linear	(0-100) (m v 100.0 1	50.00 Add Segment		
			Delete Segment		
			Delete Segment		
	Nete A continent delaw	ومنابعه والمعالية والمعارفة والمعارفة			
	Note. A gradient delay i	s automatically added, provided	ulat the last gradient segment is ini	501	
	Fractionate	Fractionation settings			
	in waste (do not collect)	Fractionation type	Fixed volume fractionation	~	
	O using outlet valve	Fractionation destination	96 deep well plate	~	
		Peak fractionation destination	96 deep well plate	~	
	O using fraction collector	Fixed fractionation volume			
	Fraction collector	Peak fractionation volume			
		reak tractionation volume			
	Start fractionation after	24.13 ml (only for isocrati	c elution)		



- Save the method with unique file name.
- 4. Run the equilibration method.
 - Place line A1 into a flask containing ddH₂O and line B1 into a flask containing filtered, sonicated PBS. Seal the tops of the flasks with Parafilm.
 - In the Administration window, open the System Control from the Tools menu.

• In the **System Control** window, select **Open** from the **File** menu. The **Method Navigator** window will open.



• In the **Method Navigator** window, select your equilibration method. Select **Start** to run the method. The method takes approximately 11 hours to run (can be run overnight).

Start Protocol - AKTA2237212 - Equil HiLoa	200 ON				×
Result Name and Location >>	un info Date: 2018-07-05 5:09:10 Jser: Default Method: Equil HiLoadS200 C				
	esult No result Add unique identifier to resu Directory: /DefaultHome Scouting subdirectory: Name: Equil HiLoadS200 ON 002	Jt name		Browse	
@			< Back	Next >	Start Cancel

- Switch line A1 from the flask containing water to the flask containing PBS.
- In the System Control window, right click on the A in the Process Picture. Select Start pump A wash to fill the line with PBS.

- 5. Create a new method to run the sample.
 - In the Method Editor window, select the New Method icon ¹ or by selecting New Method from the File menu.
 - In the **New Method** window, select **Gel Filtration (GF)** under **Predefined Method** and then select **OK**. A **Method Navigator** window will open.

• In the **Method Editor** window, select **Methods Settings** and then enter the parameters shown in the image:

	Phase Properties Text Instructions iT	
Method Settings	Method Settings	
	Column selection	Result Name & Location
Equilibration	Show by technique Gel Filtration ~	<u>S</u> tart Protocol
· · · · · · · · · · · · · · · · · · ·	Column type HiLoad 16/60 Superdex 200 pg 🗸 🗸	Method Notes
▼	Show only suggested columns Column Properties	
Sample Application	Column volume 120.637 ml	Jnit selection Method Base Unit Volume ~
•		Flow Rate Unit ml/min 🗸
Elution	✓ Pressure limit deta-column 0.30 MPa [0.02 - 20.00] ✓ Use flow restrictor M	Monitor settings
		UV variable wavelengths
	Column position 3 ~	UV 1 280 [190 - 700] nm
		UV 2 254 [190 - 700] nm
		UV 3 214 [190 - 700] nm
		Note! UV monitors with fixed wavelength are not presented in this view

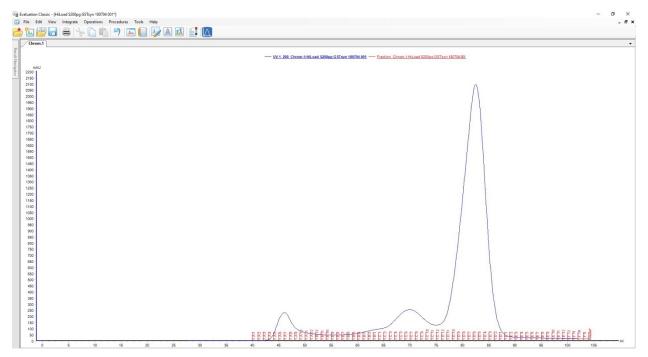
• In the **Method Editor** window, select **Equilibration** and then enter the parameters shown in the image:

	Phase Properties Text Instructions T	
Method Settings	Reset UV monitor (recommended if the equilibrati	ion occurs before the purification).
	☑ <u>U</u> se the same flow rate as in Method Settings	☑ Use the same inlets as in Method Settings
Equilibration	Flow rate 1.000 ml/min [0.000 - 25.000]	Inlet A 🗸 🗸
		Inlet B V 0.0 % B [0.0 - 100.0]
		☐ Fill the system with the selected buffer
Sample Application		
	Equilibrate until	
Elution	the total volume is 1.00 ml	
	O the following condition is met	
	Conductivity greater than	
	Conductivity greater than	0.00 mS/cm [0.00 - 1000.00]
	Accepted pH fluctuation	0.10 (0-14)
	Accepted UV fluctuation	0.10 mAU [0.00 - 6000.00]
	Accepted conductivity fluctuation	0.10 mS/cm [0.00 - 300.00]

• In the **Method Editor** window, select **Sample Application** and then enter the parameters shown in the image:

Method Settings	Sample Application				
Equilibration	Use the same flow rate as Flow rate 1.000 ml/min	s in Method Settings [0.000 - 25.000]			
•	 Inject sample from loop 	Fill the loop using	Manual load 🛛 🗸 🗸	🖂 Wash samp	ple flow path with buffer
ple Application	O Inject sample directly ont	Loop type	Capillary loop \sim	Prime sample inlet with 6.00 r	
-		Loop position	1 ~	Wash samp buffer after	ple flow path with sample application.
•		Sample inlet	Sample pump 🛛 🗸		
Elution		Fill loop with	0.60 ml		ilet A set in Method e used to wash the ath
	·	Empty loop with	5.00 ml	sample flow p	ath
		Sample volume	0.00 ml		
			inlets as in Method Settings		
		Inlet A	×		
		Inlet B	v 0.0 2	é.	
	1		with the selected buller		
	Fractionate	Fractionation settings			
	in waste (do not collect)	Fractionation type	Fixed volume fractionation	~	
	O using outlet valve	Fractionation destination	96 deep well plate	~	eseninge
	O using fraction collector	Peak fractionation destination	96 deep well plate	~	
	Fraction collector	Fixed fractionation volume			
		Peak fractionation volume			

• In the **Method Editor** window, select **Elution** and then enter the parameters shown in the image:


	Phase Properties Text I				
Method Settings	Elution				
	Use the same flow rate as in	Method Settings	Use the same inlets as in Method	Settings	
Equilibration	Flow rate 1.000 ml/min [0.000 - 25.000] Inl	iet A 🗸 🗸 🗸		
Edamaran		Inl	let B 🗸 🗸		
▼	🗌 Up flow 🤙				
Sample Application					
	Isocratic elution				
V	Volume 130.00 ml	0.0 % B [0.0	- 100.0]	m with the sele	cted buffer
Elution	O Gradient elution				
	Start at 0.0 %	B [0.0 - 100.0]	Fill the system with the selected	huffer	
	Туре		ngth		
	Linear	(0-100) ((ml) 2.00 Add Segment	í	
	Linear		2.00 Add Segment		
	Linear				
	T Linear		2.00 Add Segment		
	T Linear		2.00 Add Segment		
		✓ 100.0	2.00 Add Begment		
		✓ 100.0	2.00 Add Segment	inear	
	Note: A gradient delay is a	v 100.0	2.00 Add Begment	inear	
	Note: A gradient delay is a	✓ 100.0	2.00 Add Begment	inear	Advance
	Note: A gradient delay is a Fractionate O in waste (do not collect)	100.0 Interface of the second seco	2.00 Add Segment Delete Segment d that the last gradient segment is I Fixed volume fractionation	~	
	Note: A gradient delay is a Fractionate O in waste (do not collect) O using outlet valve	100.0 International settings Fractionation type Fractionation destination	2.00 Add Segment Delete Segment d that the last gradient segment is I Fixed volume fractionation 96 deep well plate	~ ~	Settings
	Note: A gradient delay is a Fractionate O in waste (do not collect) O using outlet valve	100.0 Interface of the second seco	2.00 Add Segment Delete Segment d that the last gradient segment is I Fixed volume fractionation 96 deep well plate 96 deep well plate	~	Settings Peak Fra
	Note: A gradient delay is a Fractionate I O in waste (do not collect) O using outlet valve () using fraction collector	100.0 International settings Fractionation type Fractionation destination	2.00 Add Segment Delete Segment d that the last gradient segment is I Fixed volume fractionation 96 deep well plate	~ ~	Advance Settings Peak Fra Settings

- Save method with a unique file name.
- 6. Run the sample method.
 - Place a 96 deepwell plate in the fraction collector.
 - Clean the sample loop by injecting 10 mL of ddH₂O, and then prime the sample loop by injecting 10 mL of PBS.
 - Inject the sample.
 - In the **System Control** window, select **Open** from the **File** menu. The **Method Navigator** window will open.
 - In the **Method Navigator** window, select your sample method and rename the file name to the sample name. Select **Start** to run the method. The method takes approximately 2 hours to run.

- 7. In the **Evaluation** window, visualize the sample fractionation. Collect and combine all fractions from the desired peak.
 - In the example shown below, fractions D1–D11 should be collected.

- 8. Create a new method to clean the column.
 - In the Method Editor window, select the New Method icon ¹ or by selecting New Method from the File menu.
 - In the **New Method** window, select **Gel Filtration (GF)** under **Predefined Method** and then select **OK**. A **Method Navigator** window will open.

• In the **Method Editor** window, select **Methods Settings** and then enter the parameters shown in the image:

	Phase Properties Text Instructions IT	
Method Settings	Method Settings	
	Column selection	Result Name & Location
Equilibration	Show by technique Gel Filtration	Start Protocol
	Column type HiLoad 16/600 Superdex 200 pg 🗸 🗸	Method Notes
▼	Show only suggested columns Column Properties	
Elution	Column volume 120.637 ml Pressure limit pre-column 0.50 MPa [0.02 - 20.00] Pressure limit deta-column 0.30 MPa [0.02 - 20.00] Use flow restrictor Column position 3 Flow rate 1.000 ml/min [0.000 - 25.000] Control the flow to avoid overpressure Inlet A Inlet B	Unit selection Method Base Unit Volume V Flow Rate Unit Inl/min V Montor settings UV variable wavelengths UV 1 280 [190 - 700] nm UV 2 254 [190 - 700] nm UV 3 214 [190 - 700] nm Notel UV monitors with fixed wavelength are not presented in this view Enable pH monitoring Enable air sensor alam V Inlet A V Inlet B
		Sample inlet
		Column Logbook Enable logging of
		Column Performance Test

• In the **Method Editor** window, select **Equilibration** and then enter the parameters shown in the image:

Method Settings Equilibration	^
Equilibration	commended if the equilibration occurs before the purification).
▼ Use the same flow ra	te as in Method Settings 🛛 Use the same inlets as in Method Settings
Elution Flow rate 1.000 ml	/min [0.000 - 25.000] Inlet A
	Inlet B 🛛 🗸 🚺 0.0 % B [0.0 - 100.0]
	☑ Fill the system with the selected buffer
Equilibrate until	
the total volume is	100.00 ml
O the following condition	n is met
Conductivity greater th	an 🗸
Conductivity	greater than 0.00 mS/cm [0.00 - 1000.00]
Accepted pH	fluctuation 0.10 (0-14)
Accepted UV	
	ductivity fluctuation 0.10 mS/cm [0.00 - 300.00]
Stability time	
Maximum equ	ilibration volume 1206.37 ml
	v

• In the **Method Editor** window, select **Elution** and then enter the parameters shown in the image:

Method Settings	Elution			
	Use the same flow rate as in Met	hod Settings 🖂 U	se the same inlets as in Method Settin	gs
Equilibration	Flow rate 0.200 ml/min [0.000	0 - 25.000] Inlet	Α 🗸	
Equilibration		Inlet	B	
▼	🗌 Up flow 🥠			
Elution				
	O Isocratic elution			
	Volume 180.96 ml	0.0 % B [0.0 - 10	00.0] Fill the system with	the selected buffer
	Gradient elution			
	Start at 100.0 % B [0.	0 - 100.01 🗆 F	ill the system with the selected buffer	
		Target %B Lengt		
	1 Linear	(0-100) (ml)		
		✓ 100.0 150	0.00 Add Segment	
			Delete Segment	
	Note: A gradient delay is autor	natically added, provided th	hat the last gradient segment is linear	
	Fractionate			
		ionation settings	Fixed volume fractionation	Y Idemand
				 Advanced Settings
	(in waste (do not collect)	Kanadian dan Kanting	00.1	
	O using outlet valve Frac		96 deep well plate	~
	O using outlet valve Frac	ractionation destination	96 deep well plate 96 deep well plate	 Peak Frac Settings
	O using outlet valve Frac			V Peak Free
	O using outlet valve Frac O using fraction collector Peak Fraction collector Fixe	ractionation destination		V Peak Free

- 9. Run the cleaning method.
 - Place line A1 into the flask containing ddH₂O and line B1 into 20% EtOH.
 - Clean the sample loop by injecting 10 mL of PBS, then 10 mL of ddH₂O, and finally 10 mL of 20% EtOH.
 - In the Systems Control window, select Open from the File menu. The Method Navigator window will open.
 - In the **Method Navigator** window, select your cleaning method and rename the file name to the date. Select Start to run the method. The method takes approximately 15 hours to run.

4.10 Measurement of endotoxin concentration using LAL chromogenic endotoxin quantification kit

Materials:

- LAL chromogenic endotoxin quantification kit
- Sample of unknown concentration
- 25% acetic acid (Stop Reagent)
- 1.5-mL microcentrifuge tubes
- Clear 96-well plate
- Infinite 200 PRO series plate reader
- Heating block at 37°C
- Vortex mixer
- Timer

Procedure:

- 1. Reconstitute the vial of Endotoxin Standard by adding 1 mL of room temperature endotoxinfree water. Vortex the solution vigorously for at least 15 minutes on a vortex mixer before use.
 - The amount of the Endotoxin Standard is printed on the vial label (endotoxin units [EU]). For example, a vial of 26 EU, when reconstituted with 1 mL of endotoxin-free water, will yield a concentration of 26 EU/mL.
 - Reconstituted stock solution is stable at 2°C to 8°C for up to 4 weeks. Prior to subsequent use, warm the solution to room temperature and vigorously mix for 15 minutes (endotoxin adheres to sides of the glass vial).
- 2. Prepare standards by diluting the reconstituted Endotoxin Standard in endotoxin-free water in several clean microcentrifuge tubes (1 EU/mL–0.1 EU/mL).
 - Vigorously vortex each standard for at least 1 minute before use.
- 3. Reconstitute the LAL reagent immediately before use by adding 1.4 mL of endotoxin-free water. Swirl gently to dissolve the powder.
 - Avoid foaming; do not vortex the solution.
 - If more than one vial is required, pool two or more vials before use.
 - Reconstituted LAL reagent is stable at -20°C or colder for up to 1 week if frozen immediately after reconstitution. Thaw to room temperature and gently swirl the reagent to mix before adding to samples. Once thawed, the reagent may be used only one time and cannot be refrozen.

- 4. Reconstitute the Chromogenic Substrate by adding 6.5 mL of endotoxin-free water.
 - Reconstituted Chromogenic Substrate is stable at 2°C to 8°C for up to 4 weeks. Prior to use, warm up sufficient substrate solution for the assay to 37°C.
- 5. Place the 96-well plate on the heating block for 10 minutes to equilibrate to 37°C.
- 6. Pipette 50 μL of blank (endotoxin-free water), standard, or unknown sample in duplicate into the plate wells.
- Add 50 µL of LAL reagent to each well and start the timer. Remove the plate from the heating block and gently tap to mix. Replace the plate on the heating block and cover with the lid. Incubate for 10 minutes.
- 8. When the timer reaches 10 minutes, add 100 μL of Chromogenic Substrate to each well. Remove the plate from the heating block and gently tap to mix. Replace the plate on the heating block and cover with the lid. Incubate for 6 minutes.
 - Add the Chromogenic Substrate in the same well order and with the same speed as the LAL reagent was added.
- 9. When the timer reaches 16 minutes, add 100 μ L of Stop Reagent to each well. Remove the plate from the heating block and gently tap to mix.
- 10. Measure the absorbance at 405 to 410 nm using a plate reader.
- 11. Subtract the average measurements for the blank duplicates from all other individual standard or sample measurements.
- 12. Prepare a standard curve by plotting the average blank-corrected measurement for each endotoxin standard versus its concentration in EU/mL Use the standard curve to determine the endotoxin concentration of each unknown sample.

