
Reusing Code from StackOverflow:
The Effect on Technical Debt

Nikolaos Nikolaidis, Georgios Digkas, Apostolos Ampatzoglou, Alexander Chatzigeorgiou
Department of Applied Informatics, University of Macedonia

Thessaloniki, Greece
it14189@uom.edu.gr, digasgeo@gmail.com, a.ampatzoglou@uom.edu.gr, achat@uom.gr

Abstract—Software reuse is a well-established software engi-
neering process that aims at improving development productivity.
Although reuse can be performed in a systematic way (e.g.,
through product lines), in practice, reuse is performed in many
cases opportunistically, i.e., copying small code chunks either
from the web or in-house developed projects. Knowledge sharing
communities and especially StackOverflow constitute the primary
source of code-related information for amateur and professional
software developers. Despite the obvious benefit of increased
productivity, reuse can have a mixed effect on the quality of
the resulting code depending on the properties of the reused
solutions. An efficient concept for capturing a wide-range of
internal software qualities is the metaphor of Technical Debt
which expresses the impact of shortcuts in software development
on its maintenance costs. In this paper, we present the results
of an empirical study on the relation between the existence of
reusing code retrieved from StackOverflow on the technical debt
of the target system. In particular, we study several open-source
projects and identify non-trivial pieces of code that exhibit a
perfect or near-perfect match with code provided in the context
of answers in StackOverflow. Then, we compare the technical
debt density of the reused fragments, obtained as the ratio of
inefficiencies identified by SonarQube over the lines of reused
code, to the technical debt density of the target codebase. The
results provide insights to the potential impact of small-scale code
reuse on technical debt and highlight the benefits of assessing
code quality before committing changes to a repository.

Keywords-Technical Debt; StackOverflow; Code Reuse; Soft-
ware Quality;

I. INTRODUCTION

Software developers reuse code fragments from libraries,
other in-house projects, or the Web, to implement and maintain
software products. Nowadays, software engineers are members
of various knowledge sharing communities, which in the form
of question and answer (Q&A) provide ready-to-use solutions
for various development problems and facilitate the exchange
of ideas among practitioners [1]. StackOverflow is the biggest
Q&A site (i.e., approximately 15 billion answered questions)
and high levels of loyalty by users, who suggest that more
than 60% of them visit the website at least once per day [2].
There is also anecdotal evidence that a high reputation on
StackOverflow can help developers obtain high-profile jobs.
Another similar information source is GitHub, which is the
most frequently used online repository for code development.

The popularity of such websites is so fast growing and
their credibility is so high that the vast majority of software
engineers reuse the fragments of code that they identify

in StackOverflow or GitHub, without any filtering process
and not being aware on how the reused code will affect
their project. Nevertheless, according to Constantinou et al.
[3] in some cases opportunistic reuse, might diminish the
quality of the target application, e.g., in terms of coupling or
cohesion. Possible interpretations of this phenomenon are: (a)
the reusable asset is not identified in a systematic manner, or
(b) reuse alternatives are not considered, or (c) the adaptation
per se is not properly performed. Nevertheless, we cannot
neglect that the majority of reuse activities take place just by
copy-pasting code chunks from one system to the other.

Motivated by the increasing dependence of developers on
StackOverflow this paper attempts to shed light on the pos-
sible implications of small-scale, opportunistic reuse of code
retrieved from knowledge sharing communities, on the quality
of the source code. With the term small-scale opportunistic
reuse, we refer to the case when a software engineer, identifies
a code fragment and clones/duplicates it in the source code of
the target application. To achieve this goal, two aspects need
to be captured:

• Identification of small-scale opportunistic reuse in-
stances. There are four categories of clone types depend-
ing on the level of similarity [4] and in order to identify
them there are many state-of-the-art techniques and tools.
Among those, in the context of this research, we used
CPD (i.e., a token-based tool) [4], which identifies clones
with modifications such as changed, added or deleted
statements (i.e., 3rd-type clones). By using the tool, we
can compare the source code of GitHub projects, with
the retrieved StackOverflow code fragments. Since this
process is by nature time consuming, we decided to
specify the following two filters: (a) the GitHub projects
should belong to the Apache Software Foundation (ASF)
and (b) the source code files should have a reference
to StackOverflow. StackOverflow has its own copyright
rules: when someone wants to use an answer of a question
he/she must also include the URL of that answer or ques-
tion. But this phenomenon is very rare, approximately
only 23% of the duplicated code fragments actually had a
reference to StackOverflow [5]. At the same time, 75% of
developers are not aware that they have to use a reference
when they reuse code from StackOverflow [5].

• Measure Software Quality. As a means to capture



the quality of source code we selected to employ the
metaphor of Technical Debt (TD), which indicates the
effort (in minutes) someone should spend on fixing
all identified inefficiencies in a given piece of code.
Technical Debt characterizes the gap between the current
state of a code and a hypothetical optimal condition [6].
The gap includes known defects, code decay, outdated
documentation, and features to be implemented [7]. To
measure TD, there is a variety of available tools. A very
popular platform that performs source code analysis to
measure technical debt is SonarQube1.

Given the aforementioned process, we have performed a
case study for exploring the effect of reusing code from
StackOverflow on the amount of TD at the source code level.

II. RELATED WORK

As related work for this paper, we consider two categories of
studies, depending on the aspect of research. On the one hand
there are studies investigating the effect of reuse on quality and
on the other hand studies related to the use of StackOverflow
code fragments.

A. Effect of Reuse on Quality

In principle, reuse should enhance the quality of software,
primarily because of the increased opportunity it provides
for error discovery. Quoting Gaffney and Cruickshank [8],
“each time reusable code is used in a new application, an
additional opportunity is provided for error discovery and
removal”. Early empirical studies have provided evidence
that systematic reuse can have a positive effect on software
quality, especially leading to lower fault-density [9]–[11]. An
overview of empirical studies on quality benefits from reusing
software components is available in the study by Li et al. [12].
However, we have been able to identify only one study that
focuses on the effect of reuse from StackOverflow, in which 22
Android projects have been investigated revealing that there is
preliminary evidence of a negative effect on quality, in terms
of bug fixing activity [13]. In our work we aim at extending
the study of quality aspects that can be affected by code reuse,
giving special emphasis on structural aspects that are covered
by the technical debt concept and not only the fault density.

B. Reuse from/to knowledge sharing communities

Yang et al. [14] investigated how developers use snip-
pets from StackOverflow in their projects. The authors cross
checked 909k non-forked Python projects in GitHub with
1.9M Python snippets captured from StackOverflow using
exact matching, matching on the tokens and near-duplication.
The results show that exact duplication is very rare (less
than 1%) and that the majority of duplicates are very small
(typically 2 lines of code). The authors then focused on blocks
of reused code that are somehow larger, as we also do in
our study. A similar large-scale empirical study has been
performed by Baltes and Diehl [15] aiming at analyzing the

1https://www.sonarqube.org/

usage and attribution of non-trivial Java code snippets from
StackOverflow in public GitHub projects. Up to 11.9% of the
analyzed projects were found to contain a file with an explicit
reference to StackOverflow. Studies have also investigated the
opposite flow of information, i.e., from software projects to
questions and answers in StackOverflow. Ragkhitwetsagul et
al. [16] found clone pairs between 72,365 Java code snippets
on StackOverflow and 111 open source projects in the curated
Qualitas corpus. The study revealed that 153 clones have been
copied from a Qualitas project to StackOverflow, with some of
the reuse snippets in StackOverflow potentially violating the
license of the original software.

III. CASE STUDY DESIGN

In this section we present the design of this case study. The
study is designed according to the guidelines of Runeson et al.
[17]. The goal is to determine whether reusing code fragments
from StackOverflow has an impact on the quality of the host
code. To this end, the following steps have been performed:

• Fragments of code were retrieved from StackOverflow
• Target projects/files from GitHub were selected
• Matching between StackOverflow snippets and target files

was performed, looking for code duplicates
• For each match, the Technical Debt density of the reused

fragment and the receiving code was measured

A. Objectives and Research Questions

Quality analysis tools such as SonarQube identify design
and code inefficiencies such as code smells. Considering
that 32% of software professionals are not aware of code
smells [18] and acknowledging the importance of software
quality for long-lived software projects, we aim at investigating
whether the reused StackOverflow fragments of code have a
different quality (in terms of Technical Debt) than the quality
of the target project. More specifically, our study addresses
the following research question (RQ): Does the quality of
StackOverflow code fragments differ from the quality of the
projects in which the code is reused?

B. Data Collection Process

To test whether StackOverflow fragments have a different
TD density than the target projects, two different types of
datasets are required: The first dataset should contain candidate
fragments of code (i.e., successive instructions) from Stack-
Overflow and the second dataset should contain the source
code of candidate projects that reuse code from StackOverflow.

Our study focuses on Java StackOverflow fragments and
GitHub projects developed in Java. Knowing that fragments
with few lines of code (e.g., only 2) have been excluded
from the dataset, in the sense that they might generate many
false positives: similar sequences of instructions might have
been written from the developers without any intent to reuse.
To avoid such false positives, and based on experimentation,
we excluded fragments with less than seven lines of code.
Also, we have set a maximum limit, which was necessary,
due to time and resource constraints. To come up with a

https://www.sonarqube.org/


number for the upper limit, we adopted the “rule of 30”,
which states that if a code element consists of more than
30 sub-elements then the comprehension and maintenance of
the element becomes intractable [12]. This rule applies to
the lines of code in a method, in the methods that exist in
a class and so on. Thus, we decided to set as upper limit
for the lines in a fragment of code to 30 lines. To retrieve
information from StackOverflow threads, a web scraper [19]
has been implemented and the total number of fragments that
we acquired was 126,340. The second dataset contains the
candidate files against which the StackOverflow fragments will
be tested for match. To limit the search space and reduce
computation time, we retrieved projects that have already at
least one reference to StackOverflow in their source files as
comments.

To check for duplicates between the two datasets we used
PMD2, which is a widely used static code analyzer. PMD
offers clone detection functionality with the Copy/Paste Detec-
tor (CPD) module, which can detect duplicated code in one
or more files, in several programming languages, including
Java. Each code fragment retrieved from StackOverflow was
wrapped in a Java file and CPD was used to check for
duplicates between each StackOverflow file and all candidate
GitHub files. Once the files containing duplicates have been
identified, we manually examined them for false positives.
The automated search resulted in 47 files, while the manual
inspection narrowed down the actual reuse cases to 34.

To enable the comparison between the quality of the reused
code fragment and the quality of the reuse target project,
we calculated their TD density using SonarQube. For the
reused fragment, SonarQube parsed the artificial file in which
the corresponding fragment was placed. For the host project,
we identified the parent (previous) commit from the one
in which the code fragment was reused, and measured the
Technical Debt of the entire project for that commit. As
already explained, to normalize the TD measurement against
the size (of the project or the code fragment) we calculated
the TD density as the ratio of the effort to remediate total TD
over the non-commented lines of code.

C. Data Analysis

At the end of the process our dataset contained four
variables: (a) project name, (b) TD density before the reuse
activity, (c) TD density of the reused code, and (d) change
proneness of the reused artifact. Analysis was performed with
descriptive statistics, boxplots and hypothesis testing.

IV. RESULTS

The search for StackOverflow-reused code in 260 files
from GitHub projects that already had some references to
StackOverflow in their comments has led to 37 code fragments
of a substantial size (i.e. at least 7 lines of code) that have
been reused. The quality of the reused fragments of code
and especially the maintainability can be indirectly assessed

2https://pmd.github.io/

from the frequency and extent of modification that the reused
code has underwent. In the context of our study we have
also investigated the change proneness of the reused code
fragments, i.e., the times that the corresponding code was
modified since the initial introduction from StackOverflow. It
is noteworthy that only 8.5% (4 cases) of the examined frag-
ments changed after they were inserted from StackOverflow.
The extent of modification in these 4 cases ranged from 1 to
4 LOC (constituting 4.5% to 80% of the reused code).

With respect to the RQ concerning the quality of the reused
code versus the quality of the host code, data analysis resulted
in the findings of Table I. For each project we compare the
TD density of that project file prior to the reuse (i.e., in the
previous commit) to the TD density of the reused fragment.
We note that initially, the dataset contained 37 rows, which
after analysis of the outliers was reduced to 34. The Table
contains only 10 cases of reuse, as for the rest 24 cases the
TD density of the reused code was zero, and these cases are
not listed for brevity.

TABLE I
TECHNICAL DEBT OF HOST PROJECT AND REUSED CODE

Project Name TD density of
project prior
to reuse

TD density of
Reused Code

brooklyn-server 0.968 0.294
pdfbox 0.297 0.714
storm 0.377 0.167
giraph 0.218 0.182
maven-shared 0.566 0.071
hbase 0.569 2.000
apex-core 0.541 1.000
sling-org-apache-sling-
crankstart-launcher

0.000 1.000

velocity-tools 0.499 1.000
pdfbox 0.296 0.167

The distribution of TD density for the host project and the
reused code is graphically depicted in the boxplot of Figure 1.
It becomes evident that the reused code tends to be ‘cleaner’
than the host project, exhibiting a substantially lower TD
density. This is also validated by a paired-samples two-tailed
t-test on the two sets of data, which reveals a statistically
significant difference (p < 0.01) between the TD density of
new code (M=0.194, SD=0.441) and the TD density of the
code in which the reused fragments are introduced (M=0.468,
SD=0.034); t(33) = 3.216, p = 0.003. The results suggest that
the reused code has fewer rule violations per line of code
according to SonarQube.

It is also noteworthy that in the majority of the cases the
reused code was absolutely ‘TD-free’ with no rule violations
at all. Figure 2 illustrates the distribution of TD (measured
by the effort to eliminate the identified rule violations) for the
analyzed reused code fragments. Nevertheless, we have spotted
limited cases, in which the TD density of the reused code is
quite high. For instance, in the hbase project the inserted
code (10 lines) suffers from two issues (namely: “Change this
“try” to a “try-with-resources” and Use or store the value

https://pmd.github.io/
https://github.com/apache/brooklyn-server
https://github.com/apache/pdfbox
https://github.com/apache/storm
https://github.com/apache/giraph
https://github.com/apache/maven-shared
https://github.com/apache/hbase
https://github.com/apache/apex-core
https://github.com/apache/sling-org-apache-sling-crankstart-launcher
https://github.com/apache/sling-org-apache-sling-crankstart-launcher
https://github.com/apache/velocity-tools
https://github.com/apache/pdfbox


Fig. 1. Distribution of TD density for reused target projects and reused code.

returned from “readLine” instead of throwing it away”) that
cumulatively insert 20 minutes of TD (TDdensity=2.00). Such
cases (as presented in the boxplot of Fig. 1) are quite rare and
they could be considered as outliers. Nevertheless, we decided
to retain them in the dataset.

Fig. 2. Distribution of Technical Debt in reused code fragments.

V. DISCUSSION

A. Interpretations of Results

The main finding of this study points out to the fact
that code fragments in StackOverflow have low TD density
and in many cases are completely free of design or code
rule violations, as identified by SonarQube. Thus, reusing
code from knowledge sharing communities not only boosts
productivity (as a solution to a problem is rapidly found),
but can also increase structural software quality. Although
one could argue that this occurs because code snippets in
StackOverflow are often small-sized and less complex, the
retrieved code fragments in our study had size from 7 to
30 lines of code, indicating considerable functionality and
complexity. Moreover, we do not rely on any absolute measure

of TD, but on the more ‘fair’ measure of TD density, i.e., the
effort to address rule violations per LOC.

The relatively high quality of code that can be retrieved
from StackOverflow can probably be attributed to the mo-
tivation of posting tested and well-thought-out solutions on
such forums. This is even more probable for questions/answers
having a positive rating, rendering the included code more
reliable. At the same time, code reused from StackOverflow
is certainly domain-agnostic so as to be applicable in many
problem spaces. This property relieves the code from external
dependencies or ties to business logic, which are often the
cause of shortcuts and inefficiencies in software development.
Finally, it should be borne in mind that the host code of the
projects underwent maintenance, often over a large number
of revisions, whereas the reused code is ‘fresh’. Considering
that maintenance under time pressure is usually the root for
quality decay, it is reasonable to observe improved quality for
independent pieces of code that have not been maintened.

B. Implications for Practitioners and Researchers

The improved quality in terms of TD density for StackOver-
flow code fragments obviously implies that StackOverflow is
a reliable source of code related information. Although blind
reuse without checking for design, code or security issues is a
bad practice, developers can assume that highly-rated answers
are usually accompanied with code that has limited or no
rule violations. Contemporary methodologies advocate the use
of quality gates as a means of preventing the introduction
of further issues into the codebase of a project. Thus, code
reuse from StackOverflow combined with internal processes
for quality control can ensure high quality software artifacts.
It should be stressed that only in very few cases the reused
code contained rule violations, which in the majority concern
inappropriate exception handling. As exception handling is
strongly dependent on the context in which code is introduced,
these violations might be even less important. In other words,
most probably the developer, who copied that piece of code,
did not tailor it to his/her specific context. Under this perspec-
tive, almost all reused code fragments from StackOverflow
were safe to use without introducing any TD.

For developers interested in posting code to Q&A forums
such as StackOverflow, these findings underline the importance
of thoroughly checking a solution before making it public.
Although wisdom of the crowd can filter or promote code
fragments by voting against or for them, code quality analysis
(e.g. through a tool like SonarQube) before posting, can
sustain the reputation of these communities. These findings,
if validated by other studies, open up an interesting research
field, in which the reuse from knowledge sharing communities
can be studied more thoroughly for its effect on software
quality. On a large scale, it can be empirically studied whether
projects that systematically reuse code exhibit higher quality
than more introvert projects. On a more fine-grained level
research could focus on the qualities of the reused code
fragments over time. As an example, it would be valuable to



learn whether reused code fragments are easily maintainable
on the long term and whether they are change or error prone.

VI. THREATS TO VALIDITY

The number of StackOverflow code fragments for which
a match in an open-source project was found, is relatively
small. Thus, our main conclusion is subject to external validity
threats, implying that we cannot argue that reused code from
StackOverflow has always lower TD density, when compared
to the quality of the host projects. To address this threat, we
plan to replicate this study on a larger dataset of StackOverflow
code fragments and a larger set of potential target projects.

One threat to the construct validity of the study stems from
the fact that the host code refers to an evolving system, which
might have underwent multiple revisions. Quality degradation
usually occurs as software systems evolve (software aging).
On the other hand, the reused code fragments are assessed at
the time they are introduced, that is, prior to any maintenance.
To mitigate this threat, further studies should look into the
evolution of the reused code and their tendency to accrue TD.

Another threat to the validity of our conclusions with respect
to the impact of the reused code on the quality of the host code,
is related to the extent of reuse. In other words, even if the
reused code fragments exhibit lower TD density, their effect
on the host code is bounded by their contribution to the overall
codebase. It would be irrational to claim that reusing 5-15 lines
of code can have a significant effect on the overall quality.
However, if reuse from StackOverflow is a continuous practice,
as it is often the case, the cumulative effect can become
significant. As for the previous threat, evolution studies can
shed light into the effect of repeated reuse on quality.

Finally, it should be emphasized that SonarQube is one of
the available tools for quantifying the principal of TD and
consequently reflects SonarQubes ruleset to identify liabilities
in the source code. Other TD tools may lead to different results
as they rely on diverse techniques for TD measurement.

VII. CONCLUSION

Seeking answers by asking more experienced peers is a
natural and wise approach for problem solving. In software
development, it is commonplace, both for junior and senior
developers, to consult StackOverflow on daily basis for code
fragments that can solve technical issues that they are fac-
ing. As a result, reusing code from such knowledge sharing
communities can increase productivity and enable knowledge
transfer. One key question is whether this type of opportunistic
reuse has an effect on the quality of the receiving codebase.

To this end, we have performed an empirical study to
compare the Technical Debt density of StackOverflow code
fragments against that of the projects in which these fragments
have been reused in. By crosschecking 126,340 code fragments
against 260 Java files from Apache projects we identified 34
reused snippets, ranging from 7 to 30 lines of code. The results
revealed a statistically significant lower TD density for the
StackOverflow code. Furthermore, in the majority of the cases
the reused code was ‘TD-free’ containing no design or code

rule violations. These findings confirm the high reputation
that StackOverflow enjoys among developers, indicating that
beyond an improvement of productivity, reuse of code can also
enhance software quality.

ACKNOWLEDGMENT

Work reported in this paper has received funding from the
European Union H2020 research and innovation programme
under grant agreement No. 780572 (project: SDK4ED).

REFERENCES

[1] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in 2013 International Conference on Social Computing. IEEE,
2013, pp. 188–195.

[2] “Stack Overflow Insights - Developer Hiring, Marketing, and User
Research.” [Online]. Available: https://insights.stackoverflow.com/

[3] E. Constantinou, A. Ampatzoglou, and I. Stamelos, “Quantifying Reuse
in OSS: A Large-Scale Empirical Study,” Int. J. Open Source Softw.
Process., vol. 5, no. 3, pp. 1–19, Jul. 2014.

[4] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470–495, 2009.

[5] S. Baltes, R. Kiefer, and S. Diehl, “Attribution required: Stack overflow
code snippets in GitHub projects,” in Proceedings of the 39th Interna-
tional Conference on Software Engineering Companion. IEEE Press,
2017, pp. 161–163.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka, “Managing Technical Debt in Software-reliant
Systems,” in Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, ser. FoSER ’10. New York, NY, USA:
ACM, 2010, pp. 47–52, event-place: Santa Fe, New Mexico, USA.

[7] E. Tom, A. Aurum, and R. Vidgen, “An Exploration of Technical Debt,”
J. Syst. Softw., vol. 86, no. 6, pp. 1498–1516, Jun. 2013.

[8] J. E. Gaffney, Jr. and R. D. Cruickshank, “A General Economics Model
of Software Reuse,” in Proceedings of the 14th International Conference
on Software Engineering, ser. ICSE ’92. New York, NY, USA: ACM,
1992, pp. 327–337, event-place: Melbourne, Australia.

[9] W. B. Frakes and C. J. Fox, “Quality improvement using a software reuse
failure modes model,” IEEE Transactions on Software Engineering,
vol. 22, no. 4, pp. 274–279, Apr. 1996.

[10] S. Haefliger, G. von Krogh, and S. Spaeth, “Code Reuse in Open Source
Software,” Management Science, vol. 54, no. 1, pp. 180–193, Jan. 2008.

[11] P. Mohagheghi and R. Conradi, “An Empirical Investigation of Software
Reuse Benefits in a Large Telecom Product,” ACM Trans. Softw. Eng.
Methodol., vol. 17, no. 3, pp. 13:1–13:31, Jun. 2008.

[12] J. Li, A. Gupta, J. Arvid, B. Borretzen, and R. Conradi, “The Empirical
Studies on Quality Benefits of Reusing Software Components,” in 31st
Annual International Computer Software and Applications Conference
(COMPSAC 2007), vol. 2, Jul. 2007, pp. 399–402.

[13] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on Android apps,” Information
and Software Technology, vol. 88, pp. 148–158, 2017.

[14] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack overflow in github:
any snippets there?” in 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 2017, pp. 280–290.

[15] S. Baltes and S. Diehl, “Usage and attribution of Stack Overflow code
snippets in GitHub projects,” Empirical Software Engineering, Oct.
2018.

[16] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic Code Snippets on Stack Overflow,” arXiv:1806.07659 [cs], Jun.
2018, arXiv: 1806.07659.

[17] P. Runeson, Case study research in software engineering: guidelines and
examples. Hoboken, NJ: Wiley, 2012, oCLC: 868367873.

[18] A. Yamashita and L. Moonen, “Do developers care about code smells?
An exploratory survey,” in 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 242–251.

[19] E. Vargiu and M. Urru, “Exploiting web scraping in a collaborative
filtering-based approach to web advertising.” Artif. Intell. Research,
vol. 2, no. 1, pp. 44–54, 2013.

https://insights.stackoverflow.com/

	Introduction
	Related Work
	Effect of Reuse on Quality
	Reuse from/to knowledge sharing communities

	Case Study Design
	Objectives and Research Questions
	Data Collection Process
	Data Analysis

	Results
	Discussion
	Interpretations of Results
	Implications for Practitioners and Researchers

	Threats To Validity
	Conclusion
	References

