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ABSTRACT employed, Emacs has maintained a remarkably naive design for

Emacs Lisp (Elisp) is the Lisp dialect used by the Emacs text editor
family. GNU Emacs can currently execute Elisp code either inter-
preted or byte-interpreted after it has been compiled to byte-code.
In this work we discuss the implementation of an optimizing com-
piler approach for Elisp targeting native code. The native compiler
employs the byte-compiler’s internal representation as input and
exploits libgccjit to achieve code generation using the GNU Com-
piler Collection (GCC) infrastructure. Generated executables are
stored as binary files and can be loaded and unloaded dynamically.
Most of the functionality of the compiler is written in Elisp itself,
including several optimization passes, paired with a C back-end
to interface with the GNU Emacs core and libgccjit. Though still a
work in progress, our implementation is able to bootstrap a func-
tional Emacs and compile all lexically scoped Elisp files, including
the whole GNU Emacs Lisp Package Archive (ELPA) [6]. Native-
compiled Elisp shows an increase of performance ranging from 2.3x
up to 42x with respect to the equivalent byte-code, measured over
a set of small benchmarks.
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1 INTRODUCTION

GNU Emacs is known as the extensible, customizable, free/libre
text editor [19]. This is not only one of the most iconic text editors,
GNU Emacs (from now on just “Emacs” for simplicity) represents
metaphorically the hearth of the GNU operating system. Emacs
can be described as a Lisp implementation (Emacs Lisp) and a
very broad set of Lisp programs written on top that, capable of
a surprising variety of tasks. Emacs’ design makes it one of the
most popular Lisp implementations to date. Despite being widely
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such a long-standing project. Although this makes it didactic, some
limitations prevent the current implementation of Emacs Lisp to
be appealing for broader use. In this context, performance issues
represent the main bottleneck, which can be broken down in three
main sub-problems:

o lack of true multi-threading support,
e garbage collection speed,
e code execution speed.

From now on we will focus on the last of these issues, which con-
stitutes the topic of this work.

The current implementation traditionally approaches the prob-
lem of code execution speed in two ways:

e Implementing a large number of performance-sensitive prim-
itive functions (also known as subr) in C.

e Compiling Lisp programs into a specific assembly repre-
sentation suitable for targeting the Emacs VM called Lisp
Assembly Program (LAP) and assembling it into byte-code.
This can be eventually executed by the byte-interpreter [3,
Sec.1.2], [15, Sec. 5.1].

As a result, Emacs developers had to implement a progressively
increasing amount of functions as C code primarily for perfor-
mance reasons. As of Emacs 25, 22% of the codebase was written
in C [3, Sec. 1.1], with consequences on maintainability and exten-
sibility [24]. The last significant performance increase dates back
to around 1990, when an optimizing byte-compiler including both
source level and byte-code optimizations was merged from Lucid
Emacs [15, Sec. 7.1]. However, despite progressive improvements,
the main design of the byte-code machine stands unmodified since
then. More recently, the problem of reaching better performance
has been approached using Just-In-Time (JIT) compilation tech-
niques, where three such implementations have been attempted or
proposed so far [15, Sec. 5.11], [23]. Possibly due to their simplistic
approaches none of them proved to introduce sufficient speed-up,
in particular if compared to the maintenance and dependency ef-
fort to be included in the codebase. In contrast, state-of-the-art
high-performance Lisp implementations rely on optimizing com-
pilers targeting native code to achieve higher performance [12].
In this context, C-derived toolchains are already employed by a
certain number of Common Lisp implementations derived from
KCL [2, 9, 17, 18, 31], where all these, except CLASP, target C code
generation.

In this work we present a different approach to tackle this prob-
lem, based on the use of a novel intermediate representation (IR)
to bridge Elisp code with the GNU Compiler Collection [20]. This
intermediate representation allows to effectively implement a num-
ber of optimization passes and for Elisp byte-code to be translated
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Figure 1: Program representation formats used by byte-
compiler (blue) native compiler (red) pipelines.

to a C-like semantic, compatible with the full pipeline of GCC op-
timization passes. This process relies on libgccjit to plug into the
GCC infrastructure and achieve code generation without having to
target any intermediate programming language [14]. The result of
the compilation process for a compilation unit (CU) is a file with
.eln extension (Emacs Lisp Native). This is a new file extension we
have defined to hold the generated code and all the necessary data
to have it re-loadable over different Emacs runs. This last charac-
teristic, in contrast with typical JIT-based approaches, saves from
having to recompile the same code at each run and allows for more
time expensive optimization passes. Also, the classical Lisp image
dump feature is supported.

From a more general point of view, here we demonstrate how a
Lisp implementation can be hosted on top of libgccjit. Although dif-
ferent libraries for code generation, such as libjit [13] or LLVM [11],
have been successfully employed by various Lisp implementations
so far [10, 18], we are not aware of any leveraging libgccjit. More-
over, the proposed infrastructure introduces better support for
functional programming style in Emacs Lisp with a pass perform-
ing tail recursion elimination [30] and the capability to be further
extended in order to perform full tail call optimization.

2 IMPLEMENTATION
The proposed compiler pipeline can be divided in three main stages:

o Front-end: Lisp programs are compiled into LAP by the cur-
rent byte-compiler.

e Middle-end: LAP is converted into “LIMPLE”, a new inter-
mediate representation named after GCC GIMPLE [8] which
is the very core of the proposed compiler infrastructure.
LIMPLE is a sexp-based IR used as static single assignment
(SSA) representation [7, 26]. Middle-end passes manipulate
LIMPLE by performing a series of transformations on it.

e Back-end: LIMPLE is converted into the libgccjit IR to trigger
the final compilation through the conventional GCC pipeline.

The sequence of program representation formats is presented in
Figure 1. The compiler takes care of type and value propagation
through the program control flow graph. We point out that, since
Emacs Lisp received in 2012 lexical scope support, two different
sub-languages are currently coexisting [15, Sec. 8.1]. The proposed
compiler focuses on generating code for the new lexically scoped
dialect only, since the dynamic one is considered obsolete and close
to deprecation.

2.1 LAP to libgccjit IR

Here, we briefly discuss the two endpoints of our compilation
pipeline: the Lisp Assembly Program and the libgccjit IR, by show-
ing different representations of an illustrative and simple code.
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LAP representation is a list of instructions and labels, expressed
in terms of S-expressions. Instructions are assembled into byte-
code, where each one is associated with an operation and a ma-
nipulation of the execution stack, both happening at runtime and
defined by the opcode corresponding to the instruction. When
present, control flow instructions can cause a change in the exe-
cution flow by executing jumps to labels. As an example, the Lisp
expression (if *bar* (+ *barx 2) 'foo) is compiled into the
following LAP representation:

(byte-varref =xbarx)
(byte-goto-if-nil TAG 8)
(byte-varref =xbarx)
(byte-constant 2)
(byte-plus)
(byte-return)

(TAG 8)

(byte-constant foo)
(byte-return)

where byte-varref pushes the value of a symbol into the stack,
byte-goto-if-nil pops the top of the stack and jumps to the
given label if it is nil, byte-constant pushes the value from an
immediate into the stack, byte-plus pops two elements from the
stack, adds them up and pushes the result back into the stack and
byte-return exits the function using the top of the stack as return
value. An extensive description of these instructions is available in
Ref. [3, Sec. 1.3].

libgccjit allows for describing code programmatically in terms of
gce_jit_objects created through C or C++ API [14, Sec. Objects].
The semantic it can express can be described as a subset of the
one of the C programming language. This includes 1 and r values,
arithmetic operators, assignment operators and function calls. The
most notable difference with respect to C is that conditional state-
ments such as if and else are not supported and the code has to
be described in terms of basic blocks. Inside GCC, libgccjit IR is
mapped into GIMPLE when the actual compilation is requested.
One key property of Emacs Lisp LAP is that it guarantees that, for
any given program counter, the stack depth is fixed and known at
compile time. The previous LAP code can be transformed in the
following pseudo-code, suitable to be described in the libgcgjit IR:

Lisp_Object local[2];

bb_0:
local[@] = varref (xbarx);
if (local[@] == NIL) goto bb_2;

else goto bb_1;

bb_1:
local[@] = varref (xbarx);
local[1] = two;

local[@] = plus (locall[@], locall1]);
return local[(int)e];

bb_2:
local[@] = foo;
return locall[0];
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This transformation accomplishes the following:

o performs opcode decoding during the transformation so that
it is not needed anymore at runtime.

e decodes and compiles all the operations within the original
stack into assignments.

e splits the initial list of LAP instructions into basic blocks.

These tasks are performed by means of an intermediate translation
into LIMPLE, which enables standard code optimization routines
present in GCC as well as dedicated optimization passes.

2.2 LIMPLE IR

As previously introduced, in order to implement a series of opti-
mization passes, we defined an intermediate representation, that
we called “LIMPLE”, whose main requirement is to be SSA. The de-
scription of every variable inside the compiler is accomplished with
instances of a structure we called m-var and reported in Appen-
dix A. This represents the Lisp objects that will be manipulated by
the function being compiled. A function in LIMPLE is a collection
of basic blocks connected by edges to compose a control flow graph
where every basic block is a list of insn (instructions). The format
of every LIMPLE insn is a list (operator operands) whose valid
operands depend on the operator itself, such as:

e (set dst src) Copy the content of the slot represented by
the m-var src into the slot represented by m-var dst.

e (setimm dst imm) Similar to the previous one but immis a
Lisp object known at compile time.

e (jump bb) Unconditional jump to basic block whose name
is represented by the symbol bb.

e (cond-jump a b bb_1 bb_2) Conditional jump to bb_1 if
a and b are eq or to bb_2 otherwise.

e (call f a b
a, b, ... arem-varsused as parameters.

e (comment str) Include annotation str as comment inside
the .eln debug symbols (see Sec. 5.3).

e (return a) Perform a function return having as return
value the m-var a.

e (phi dst srci
SSA representation. When all m-vars src1
the same immediate value this is assigned to dst. Similarly
it happens for the type (no handling for type hierarchy is
implemented up to date).

. . . ) Call a primitive function f where

. srcn) Conventional ® node used by
. srcn have

3 COMPILATION PASSES

The compilation pipeline is composed by a sequence of passes
that, starting from the input Elisp source code, apply a succession
of transformations to finally produce the executable code in the
form of a .eln file. The following sections describe each of the
compilation passes, all of them are implemented in Lisp with the
exception of final.

However, before getting into the details of each pass, it is useful
to discuss the reason why the data-flow analysis and optimization al-
gorithms already present in the GCC infrastructure are not enough
for the Elisp semantic, and dedicated ones had to be developed in
Lisp.
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Type propagation. Emacs Lisp is a strong dynamically-typed
programming language. Typing objects is done through tagging
pointers [27]. While GCC has passes to propagate both constants
and ranges, it has no visibility of the Lisp type returned by Lisp
primitive functions and, as a consequence, on the tag bits set.

Pure functions. Similarly, GCC does not know which Lisp func-
tions can be optimized at compile time having visibility only on
the local compilation unit. Optimizable functions are typically pure
functions or functions that are pure for a specific set of parameters.

Reference propagation. Another useful property to be propagated
is if a certain object will or will not be referenced [29] during
function calls. This information is required to generate a more
efficient code, as discussed in Sec. 3.8.

Unboxing. GCC does not offer infrastructure for unboxing val-
ues. Although not yet implemented, the proposed infrastructure is
designed to host further improvements, such as unboxing, requiring
data-flow analysis [28].

Compiler hints. The data-flow analysis can be fed with compiler
hints about the type of certain expressions, included as high-level
annotations in the source code by the programmer.

Warning and errors. A data-flow analysis engine as the one pro-
posed in this work could be used in the future to provide more
accurate warnings and errors during the compilation phase.

GCC optimization constraints. GCC optimization passes often
adopt conservative strategies not to break the semantic of all the
supported programming languages. As an example, the GCC tail
call optimization pass does not perform transformations when-
ever an instruction referencing memory is present in the compiled
function. Given the specific semantic of the code generated by
the proposed work, conditions as the one mentioned may be too
restrictive resulting in missed optimizations.

3.1 spill-lap

As already discussed, the main input for the compilation process
is the Lisp Assembly Program Intermediate Representation (LAP
IR). spill-lap runs the byte-compiler infrastructure with the Elisp
source as input collecting all top-level forms and spilling the LAP
before it is assembled into final byte-code.

3.2 limplify

This pass is responsible for translating LAP IR into LIMPLE IR. In
general, LAP is a sequence of instructions, labels and jumps-to-
label. Since the Emacs byte-interpreter is a stack-based machine,
every LAP instruction manipulates the stack [3], [15, Sec. 5.1]. It
is important to highlight that at this stage all the stack manipula-
tions performed by LAP instructions are compiled into a series of
m-var assignments. Spurious moves will eventually be optimized
out by GCC. This pass is also responsible for decomposing the
function into lists of LIMPLE insns, or basic blocks. The code nec-
essary for the translation of most LAP instructions is automatically
generated using the original instruction definition specified in the
byte-compiler.
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3.3 static single assignment (SSA)

This pass is responsible for bringing LIMPLE into minimal SSA
form, discussed in [7, Sec. 2.2], as follows:

a) Edges connecting the various basic blocks are created.
b) The dominator tree is computed for each basic block [4].
c) Dominator frontiers are computed for each basic block.
d) @ functions are placed as described in [7, Sec. 3.1].

e) m-vars goes through classic SSA renaming.

Once LIMPLE is in SSA form every m-var object appears as
destination of an instruction only in one place within the SSA
lattice. The same object can be referenced multiple times as source
though, but each m-var can be identified by its unique id slot.

3.4 forward data-flow analysis

For each m-var, this pass propagates the following properties within
the control flow graph: value, type and where the m-var will be
allocated (see Sec. 3.8). Initially, all immediate values set at compile
time by setimm are propagated to each destination m-var. After-
wards, for each insn in each basic block the following operations
are iteratively performed:

a) If the insn is a @, the properties of m-vars present as source
operands are propagated to the destination operand when
in agreement.

b) If a function call has a known return type, this is propagated
to the result.

c) If a function call to a pure function is performed with all
arguments having a known value, the call is optimized out
and the resulting value is substituted.

d) Assignments by set operators are used to propagate all
m-vars.

This sequence is repeated until no more changes are performed
in the control flow graph.

3.5

This pass is responsible for identifying all function calls to primi-
tives going through the funcall trampoline and substitute them
with direct calls. The primitive functions most commonly used
in the original LAP definition are assigned dedicated opcodes, as
described in [3, page 172]. When a call to one of these functions
is performed, the byte-interpreter can thus perform a direct call
to the primitive function. All the remaining functions are instead
called through the funcall trampoline, which carries a consider-
able overhead. This mechanism is due to the intrinsic limit of the
opcode encoding space. On the other hand, native-compiled code
has the possibility to call all Emacs primitives without any encoding
space limitation. After this pass has run, primitive functions have
all equal dignity, being all called directly irrespective of the fact
that they were originally assigned a dedicated byte-opcode or not.
The same transformation is performed for function calls within the
compilation unit when the compiler optimization level is set to its
maximum value (see Sec. 5.1). This will improve the effectiveness of
inlining and other inter-procedural optimizations in GCC. Finally,
recursive functions are also optimized to prevent funcall usage.

call-optim

1
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3.6 dead-code

This pass cleans up unnecessary assignments within the function.
The algorithm checks for all m-vars that are assigned but not used
elsewhere, removing the corresponding assignments. This pass is
also responsible for removing function calls generated by compiler
type hints (see Sec. 5.2) if necessary.

3.7

This peephole pass [16, Chap. 18] performs a special case of tail call
optimization called tail recursion elimination. The pass scans all
LIMPLE insns in the function searching for a recursive call in tail
position. If this is encountered it is replaced with the proper code
to restart executing the current function using the new arguments
without activating a new function frame into the execution stack.
This transformation is described in [16, Chap. 15.1].

tail recursion elimination (TRE)

3.8 final (code layout)

This pass is responsible for converting LIMPLE into libgccjit IR
and invoking the compilation through GCC. We point out that the
code we generate for native-compiled Lisp functions follows the
same ABI of Elisp primitive C functions. Also, a minimal example
of pseudo C code for a native-compiled Elisp function is listed in
Appendix B.

When optimizations are not engaged, m-vars associated to each
function are arranged as a single array of Lisp objects. This array has
the length of the original maximum byte-code stack depth. Depend-
ing on the number of their arguments, Elisp primitive functions
present one of the following two C signatures [22]:

a) Lisp_Obj fun (Lisp_Obj argol, ., Lisp_Obj argn),
for regular functions with a number of arguments known
and smaller or equal to 8.

b) Lisp_Obj fun (ptrdiff_t n, Lisp_Obj =*args),
otherwise.

where ptrdiff_t is an integral type, n is the number of arguments
and args is a one-dimensional array containing their values. When
a call of the second kind is performed, GCC clobbers all the args
array content, regardless the number of arguments n involved in
the call. This means that the whole array content after the call
is considered potentially modified. For this reason the compiler
cannot trust values already loaded in registers and has to emit new
load instructions for them. To prevent this, when the optimization
we have called “advanced frame layout” is triggered, each m-var
involved in a call of the second kind is rendered in a stack-allocated
array dedicated to that specific call. All other m-vars are rendered
as simple automatic variables. The advanced frame layout is en-
abled for every compilation done with a non zero comp-speed, as
discussed in Sec. 5.1.

This pass is also responsible for substituting the calls to selected
primitive functions with an equivalent implementation described
in libgccjit IR. This happens for small and frequently used functions
such as: car, cdr, setcar, setcdr, 1+, 1-, or - (negation). As an
example, the signature for function car implemented in libgccjit IR
will be:

static Lisp_Object CAR (Lisp_Object c,
bool cert_cons)
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If compared to the original car function a further parameter
has been added, cert_cons which stands for “certainly a cons”.
final will emit a call to CAR setting cert_cons to true if the data-
flow analysis was able to prove c to be a cons or setting it to
false otherwise. This mechanism is used in a similar fashion with
most inlinable functions injected by this pass in order to provide
the information obtained by the data-flow analysis to the GCC
one. Since the GCC implementation has the full definition of these
functions, they can be optimized effectively.

4 SYSTEM INTEGRATION

4.1 Compilation unit and file format

The source for a compilation unit can be a Lisp source file or a single
function and, as already mentioned, the result of the compilation
process for a compilation unit is a file with .eln extension. Tech-
nically speaking, this is a shared library where Emacs expects to
find certain symbols to be used during load. The conventional load
machinery is modified such that it can load . eln files in addition
to conventional .elc and . el files.

In order to be integrated in the existing infrastructure we define
the Lisp_Native_Comp_Unit Lisp object. This holds references to
all Lisp objects in use by the compilation unit plus a reference to
the original .eln. Every .eln file is expected to contain a number
of symbols including:

e freloc_link_table: static pointer to a structure of function
pointers used to call Emacs primitives from native-compiled
code.

e text_data_reloc: function returning a string representing
all immediate constants in use by the code of the compilation
unit. The string is formed using prin1 so that it is suitable
to be read by Lisp reader.

e d_reloc: static array containing the Lisp objects used by the
compiled functions.

e top_level_run: function responsible of performing all the
modifications to the environment expected by the load of
the compilation unit.

4.2 Load mechanism

Load can be performed conventionally as: (load "test.eln").
Loading a new compilation unit translates into the following steps:

a) Load the shared library into the Emacs process address space.

b) Given that .eln plugs directly into Emacs primitives, for-
ward and backward version compatibility cannot be ensured.
Because of that each . eln is signed during compilation with
an hash and this is checked during load. In case the hash
mismatches the load process is discarded.

¢) Lookup the following symbols in the shared library and set
their values: current_thread_reloc, freloc_link_table,
pure_reloc.

d) Lookup text_data_reloc and call it to obtain the serial-
ized string representation of all Lisp objects used by native-
compiled functions.

e) Call the reader to deserialize the objects from this string and
set the resulting objects in the d_reloc array.
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f) Lookup and call top_level_run to have the environment
modifications performed.

We show in Appendix B an example of pseudo C code for a native-
compiled function illustrating the use of freloc_link_table and
d_reloc symbols.

When loaded, the native-compiled functions are registered as
subrs as they share calling convention with primitive C functions.
Both native-compiled and primitive functions satisfies subrp and
are distinguishable using the predicate subr-native-elisp-p.

4.3 Unload

The unload of a compilation unit is done automatically when none
of the Lisp objects defined in it is referenced anymore. This is
achieved by having the Lisp_Native_Comp_Unit object been inte-
grated with the garbage collector infrastructure.

4.4 Image dump

Emacs supports dumping the Lisp image during its bootstrap. This
technique is used in order to reduce the startup time. Essentially a
number of . elc files are loaded before dumping the Emacs image
that will be invoked during normal use. As of Emacs 27 this is
done by default by relying on the portable dumper, which is in
charge of serializing all allocated objects into a file, together with
the information needed to revive them. The final Emacs image is
composed by an executable plus the matching dump file. Image
dump capability has been extended to support native-compiled
code, the portable dumper has been modified to be able to dump
and reload Lisp_Native_Comp_Unit Lisp objects.

4.5 Bootstrap

Since the Elisp byte-compiler is itself written in Elisp, a bootstrap
phase is performed during the build of the standard Emacs dis-
tribution. Conventionally this relies on the Elisp interpreter [15,
Sec. 5.2.1]. We modified the Emacs build system to allow for a full
bootstrap based on the native compiler. The adopted strategy for
this is to follow the conventional steps to produce . eln files instead
of . elc when possible (lexically scoped code) and fall-back to .elc
otherwise. More than 700 Elisp files are native-compiled in this
process.

4.6 Documentation and source integration

The function documentation string, describe-function, and “goto
definition” mechanism support have been implemented and inte-
grated such that native-compiled code behaves as conventional
byte-compiled code.

4.7 Verification

A number of tests have been defined to check and verify the com-
piler. These include some micro test cases taken from Tom Tromey’s
JIT [15, Sec. 5.11], [23]. A classical bootstrap compiler test has also
been defined, where the interpreted compiler is used to native-
compile itself, and then the resulting compiler is used to compile
itself. Finally, the two produced binaries are compared. The test is
successful if the two objects are bytewise identical.
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5 ELISP INTERFACE

5.1 Code optimization levels

Some special variables are introduced to control the compilation
process, most notably comp-speed, which controls the optimization
level and safety of code generation as follows:

(0) No optimization is performed.

(1) No Lisp-specific optimization is performed.

(2) All optimizations that do not modify the original Emacs Lisp
semantic and safeness are performed. Type check elision is
allowed where safe.

(3) Code is compiled triggering all optimizations. Intra compila-
tion unit inlining and type check elision are allowed. User
compiler hints are assumed to be correct and exploited by
the compiler.

comp-speed also controls the optimization level performed by the
GCC infrastructure as indicated by the table below.

comp-speed 0 1 2 3
propagate n n y y
call-optim n ny y
call-optim (intra CU) n nn y
dead-code n nyy
TRE n n n y
advanced frame layout n y y vy
GCC -Ox 0 1 2 3

5.2 Language extensions

In order to allow the user to feed the data-flow analysis with type
suggestions, two entry points have been implemented:

e comp-hint-fixnum
e comp-hint-cons

These can be used to specify that a certain expression evaluates to
the specified type. For example, (comp-hint-cons x) ensures that
the result of the evaluation of the form itself is a cons. Currently,
when comp-speed is less or equal to 2, type hints are compiled into
assertions, while they are trusted for type propagation when using
comp-speed 3. These low level primitives are meant to be used to
implement operators similar to Common Lisp the and declare [1].

5.3 Debugging facility

libgccjit allows for emitting debug symbols in the generated code
and dumping a pseudo C code representation of the libgccjit IR. This
is triggered for compilations performed with comp-debug set to a
value greater than zero. Debugging the generated code is achieved
using a conventional native debugger such as gdb [21]. In this
condition, the final pass emits additional code annotations, which
are visible as comments in the dumped pseudo C code to ease the

debugging (see Appendix B).

6 PERFORMANCE IMPROVEMENT

In order to evaluate the performance improvement of the native
code, a collection of Elisp benchmarks has been assembled and
made available as elisp-benchmarks in the Emacs Lisp Package
Archive (ELPA) [5]. It includes the following set of programs:
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e List processing: traverse a list incrementing all elements or
computing the total length.

e Fibonacci number generator: iterative, recursive and tail-
recursive implementations.

e Bubble sort: both destructive in-place and non destructive.

e Dhrystone: the famous synthetic benchmark ported from C
to Elisp [25].

e N-body simulation: a model of the solar gravitation system,
intensive in floating-point arithmetic.

The benchmarking infrastructure executes all programs in se-
quence, each for a number of iterations selected to have it last
around 20 seconds when byte-interpreted. The sequence is then
repeated five times and the execution times are averaged per each
benchmark. The results reported in Table 1 are obtained from
an Intel i5-4200M machine. They compare the execution time of
the benchmarks when byte-compiled and run under the vanilla
Emacs 28 from master branch against their native-compiled ver-
sions at comp_speed 3. The native-compiled benchmarks are run
under Emacs compiled and bootstrapped at comp_speed 2 from the
same revision of the codebase.

The optimized native-code allows all the benchmarks to run at
least two times faster, with most of them reaching much higher
performance boosts. Despite the analysis being still preliminary,
the reason behind these improvements can be explained with sev-
eral considerations. First of all the removal of the byte-interpreter
loop which, implementing a stack-machine, fetches opcodes from
memory, decodes and executes the corresponding operations and
finally pushes the results back to the memory. Instead the native
compiler walks the stack at compile time generating a sequence
of machine-level instructions (the native code) that works directly
with the program data at execution time (see Sec. 3.2). The result
of this process is that executing a native-compiled program takes a
fraction of machine instructions with respect to byte-interpreting
it. Analyzing the instructions mix also reveals a smaller percentage
of machine instructions spent doing memory accesses, in favor of
data processing ones. This is the fundamental upgrade of native
compilation against interpretation and is probably the major source
of improvement for benchmarks with smaller speed-ups, where no
other optimizations apply.

On the other hand, benchmarks with larger improvements also
take advantage of Lisp specific compiler optimizations, in particular
from call optimizations (see Sec. 3.5). Function calls avoid the tram-
poline when targeting subroutines defined in the same compilation
unit or when calling pure functions from the C codebase. Moreover,
the data-flow analysis step allows to exploit the properties of the
structures manipulated by the compiler in order to produce code
with less overheads. Function calls can also be completely removed,
along with corresponding returns, and replaced by simple jumps
for optimized tail recursive functions, avoiding at the same time
new allocations on the execution stack.

Finally, the data-flow analysis can be made even more effective
when paired with compiler hints. Without these, the only types
known at compile time are the ones belonging to constants or values
returned by some primitive functions. Type hints greatly increase
the chances for the native compiler to optimize out expensive type
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benchmark byte-comp runtime (s) native-comp runtime (s) speed-up
inclist 19.54 2.12 9.2x
inclist-type-hints 19.71 1.43 13.8x
listlen-tc 18.51 0.44 42.1x
bubble 21.58 4.03 5.4x
bubble-no-cons 20.01 5.02 4.0x
fibn 20.04 8.79 2.3x
fibn-rec 20.34 7.13 2.9x
fibn-tc 21.22 5.67 3.7x
dhrystone 18.45 7.22 2.6x
nbody 19.79 3.31 6.0x

Table 1: Performance comparison of byte-compiled and native-compiled Elisp benchmarks

checks. In our measurements, the same benchmark (inclist) anno-
tated with type hints earns a further improvement of 50% in terms
of execution speed, while compiled under the same conditions.

7 CONCLUSIONS

In this work we discussed a possible approach to improve execu-
tion speed of generic Elisp code, starting from LAP representation
and generating native code taking advantage of the optimization
infrastructure of the GNU Compiler Collection. Despite its early
development stage, the compiler successfully bootstraps a usable
Emacs and is able to compile all lexically scoped Elisp present in the
Emacs distribution and in ELPA. The promising results concerning
stability and compatibility already led this work to be accepted
as feature branch in the official GNU Emacs repository. Moreover,
a set of benchmarks was developed to evaluate the performance
gain and preliminary results indicate an improvement of execution
speed between 2.3x and 42x, measured over several runs. At last, we
point out that most of the optimization possibilities allowed by this
infrastructure are still unexplored. Already planned improvements
include: supporting fixnum unboxing and full tail call optimization,
exposing more primitives to the GCC infrastructure by describing
them in the libgccjit IR during the final pass, and allowing to sig-
nal warnings and error messages at compile time based on values
and types inferred by the data-flow analysis.
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A DEFINITION OF M-VAR

Andrea Corallo, Luca Nassi, and Nicola Manca

(cl-defstruct (comp-mvar (:constructor make--comp-mvar))

"A meta-variable being a slot in the virtual-stack."

(id nil :type (or null number)

:documentation "SSA unique id number when in SSA form.")

(const-vld nil :type boolean

:documentation "Validity signal for the following slot.")

(constant nil

:documentation "When const-vld

(type nil

:documentation "When non-nil

is non-nil this

B EXAMPLE OF A COMPILATION UNIT

Below we show an example of an elementary compilation unit followed by the pseudo C code generated dumping the libgccjit IR. The
compilation process is performed using comp-speed = 3 and comp-debug = 1.

;5; ~—*- lexical-binding: t -*-
(defun foo ()
(if xbarx
(+ *barx 2)
'fo00))

extern union comp_Lisp_Object
F666f6f_foo ()

s {

is used for holding a known value.")

indicates the type known at compile time."))

union comp_Lisp_Object[2] arr_1;
union comp_Lisp_Object localo;
union cast_union union_cast_28;
entry:
/* Lisp function: foo */
goto bb_0;
bb_0:
/* const lisp obj: *barx =*x/
/* calling subr: symbol-value =/
local® = freloc_link_table->R73796d626f6c2d76616c7565_symbol_value (d_reloc[0]);
/* const lisp obj: nil =*/
union_cast_28.v_p = (void =*)NULL;
/* EQ *x/
if (local®@.num == union_cast_28.lisp_obj.num) goto bb_2; else goto bb_1;
bb_2:
/* foo */

local® = d_reloc[2];
/* const lisp obj: foo */
return d_reloc[2];
bb_1:
/* const lisp obj: xbarx x/
/* calling subr: symbol-value =x/

arr_1[0] = freloc_link_table->R73796d626f6c2d76616c7565_symbol_value (d_reloc[@]);

/* const lisp obj: 2 %/

arr_1[1] = d_reloc[3];

/* calling subr: + =%/

local® = freloc_link_table->R2b_
return local®;

(2,

(&arr_1[01));
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