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ABSTRACT Number representation systems establish ways in which numbers are mapped to computer
architectures, and how operations over the numbers are translated into computer instructions. The efficiency
of public-key cryptography is strongly affected by the used number representations, as these systems are
constructed from mathematically inspired problems to ensure security, and thus rely on operations over
large integers. In this paper, unconventional representations systems, including the Residue Number System
(RNS) and stochastic number representations, are systematically reviewed. Homomorphic representations,
which allow for parties to operate on data without having access to their plaintext representation, are also
considered. The main goal of this survey is to introduce the reader to key aspects of non-traditional number
representations that may be exploited for public-key cryptography, without delving too much into the details.
Examples of the methods and algorithms herein surveyed include subquadratic modular multiplication for
isogeny-based cryptography, the acceleration of Goldreich-Goldwasser-Halevi (GGH) decryption by an
order of magnitude, the improvement of the Direct Anonymous Attestation (DAA) protocol both in terms
of storage requirements and the time taken to execute it, and efficient algorithm-hiding Fully Homomorphic
Encryption (FHE). The implementation of this type of systems in both sequential and parallel platforms is
analysed, and their performance is compared with traditional approaches. We hope this work sows the seed
of further research on the application of non-positional number arithmetic to other cryptographic use-cases.

INDEX TERMS Homomorphic Encryption, Lattice-based Cryptography, Modular Arithmetic, Residue
Number System (RNS), Stochastic Computing

I. INTRODUCTION

PUBLIC-KEY cryptography has become the root of se-
curity on devices ranging from high-performance plat-

forms to Internet of Things (IoT) systems with restricted
capabilities [1]. In public-key cryptographic systems, each
user creates a pair of keys. The public-key is widely dis-
tributed, while the other, that is private, should be protected
from data disclosure. Depending on the system, the pair of
keys may have different uses. A straightforward use corre-
sponds to the ciphering of messages with the public-key, and
the deciphering of the corresponding cryptogram with the
private-key [2], [3]. Another use is related to the generation
and verification of digital signatures: one message might be
exclusively associated with a user if they produce a signature
of that message under their private-key [2], [3]. Any other

user might confirm this association through the verification
of the signature with the public-key. A more sophisticated
use allows for the processing of encrypted data. A user might
encrypt data, and send the resulting cryptograms to a server.
The server may process the cryptograms with the help of
the public-key and return the encrypted results. After having
deciphered the message, the user will have access to the
results of the computation as if he or she had processed the
data himself or herself [4], [5], [6].

Hard mathematical problems are used to ensure the secu-
rity of public-key cryptographic systems. These systems are
designed so that the derivation of the private-key from the
public-key is as hard as computing the solution to problems
like the discrete logarithm [3], [7], [8], the factorisation of
large integers [2], [9], or the determination of the shortest
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vector of a lattice [10]. The number of steps required to solve
these problems is evaluated as a function of the length of the
input. Then, the dimension of the keys is enlarged in a way
that makes the system impossible to break while it is under
use. Since the keys often need to remain valid for a long time,
in some cases several years, their dimension is made very
large, leading to the need of processing sizeable mathemati-
cal structures in cryptographic operations, like encryption or
signing.

Innovative arithmetic for the implementation of crypto-
graphic operations has been fundamental to achieve systems
capable of both taking advantage of the architectural develop-
ments of high-performance processors, while also executing
on platforms with limited memory and processing power.
While in the past these goals were achieved with the appli-
cation of the RNS to number-theoretic cryptography [11],
[12], [13], if a large quantum computer is ever developed this
type of systems will no longer be secure [14]. As a result of
the National Institute of Standards and Technology (NIST)
efforts to standardise post-quantum cryptography [15], a
large number of cryptosystems has been proposed. Security is
built upon problems related to lattices and isogenies, among
others, whose arithmetic structures have yet to be deeply
investigated [16], [17]. Recent developments of cryptography
have also enabled the processing of encrypted data, but they
offer a set of instructions that is radically different from
traditional programming [4], [5], [6]. Therefore, there is
an urgent need to develop novel arithmetic methods and
algorithms supporting emerging cryptography, and achieve
more efficient, secure and usable systems.

This paper adopts a tutorial style to introduce unconven-
tional number representations, including homomorphisms,
and how they can be leveraged to achieve more efficient, us-
able and robust cryptosystems. Table 1 includes the number
representations described in this paper, and associates them
with cryptosystems that benefit from their usage. Moreover,
it includes references to the Sections in which the represen-
tation systems are described, and where they are applied to
public-key cryptographic schemes.

The remainder of this paper is organised as follows. Sec-
tion II reviews non-conventional arithmetic systems, describ-
ing how their properties differ from traditional binary repre-
sentation systems. Lattices are a recurrent topic throughout
the article, being used not only to support the security of
cryptosystems, but also to aid the design of novel represen-
tation systems. Hence, they are introduced in Section III.
In Section IV, state-of-the-art RNS techniques are presented
for improving the decryption of the lattice-based GGH cryp-
tosystem. Recently proposed methods for modular multipli-
cation are reviewed in Section V which reduce the complex-
ity of standardised Elliptic Curve Cryptography (ECC) and
isogeny-based cryptography. Furthermore, methods are de-
scribed in Section VI that methodically design homomorphic
circuits based on stochastic number representations, while
efficiently achieving secrecy of the processing algorithm.
Rather than trying to provide algorithm-secrecy in general,

this paper focuses on a subset of applications that can be effi-
ciently evaluated homomorphically. Moreover, Section VII
considers the representation of values through homomor-
phisms. This allows for one party to provide their data
to another party, while preserving its confidentiality. This
property is exploited to reduce the computational complexity
of a lattice-based DAA scheme [18]. Techniques for the
efficient implementation of the aforementioned techniques,
alongside an experimental evaluation of their effectiveness,
are presented in Section VIII. Finally, conclusions are drawn
in Section IX and directions for future research are discussed.

II. UNCONVENTIONAL NUMBER REPRESENTATIONS
In this section, unconventional number representations are
reviewed in a systematic way so as to identify their key
properties to be used on cryptography. We start by giving
intuitive definitions of what number representation systems
and their underlying computing models are.

Definition 1 (Number representation system). Number rep-
resentation systems are associated with real-life applications.
Each application defines a set of elements and describes oper-
ations to process them. A number representation system is a
morphism mapping elements from the set that arises naturally
when describing the application onto another set that may be
interpreted by an underlying computing model. Note that this
mapping need not be only a function of the original set; in
certain cases, for instance, randomness may be added as a
second variable, thus associating each element of the original
set onto multiple of the codomain. Moreover, it maps the
operations necessary for the processing of the application
over the original set onto operations, or combinations thereof,
compatible with the underlying computing model.

Definition 2 (Computing model). A computing model de-
fines admissible ways to represent numbers, and the opera-
tions that are available to process them. It is often used to
abstract physical implementations of a processor.

An example of a traditional number representation system,
depicted in Figure 1, is the binary representation system that
maps elements from the finite field Fp with a prime order p =
2256− 2224 + 2192 + 296− 1 onto arrays of 8 32-bit integers,
which might be processed by a 32-bit processor. Addition
over Fp may be mapped onto an algorithm over (Z232)

8 that
iteratively computes 232ci+zi = xi+yi+ci−1, where xi, yi
are the words of the input, zi the words of the output, and ci
correspond to the carries that must be propagated from the
least significant digit to the most significant one. Moreover,
one would need to subtract p from the result, if the output
were greater than or equal to p. Multiplications could be
mapped to an application of the Montgomery algorithm [19],
which we will have a chance to review in the context of other
number representations.

While Definition 2 has been traditionally applied to ab-
stract physical implementations of processors, in this article
it will be used more generically, and may:

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2983020, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Number
representation Residue Number System Stochastic Computing Homomorphisms

introduced in Section II-A II-B II-C
applied to GGH Isogeny FHE DAA
in Section IV V VI VII

TABLE 1: Surveyed numeral representation systems, along with the schemes for which methods/algorithms are developed
exploiting them

Real-life Application

Digital signing with ECDSA

Elements from 

Traditional
Number Representation

Computing Model

32-bit Processor

Montgomery
multiplication w/
32-bit words

Carry-chained
addition of
32-bit words +
comparison &
subtraction

FIGURE 1: Example of traditional number representation applied to digital signatures

• represent a third party, such that admissibility of repre-
sentations excludes any number representation system
which would allow the third party to deduce the element
of the original domain to which that representation
corresponds;

• represent an homomorphic encryption system, such that
the ways to represent numbers and process them are the
ones that arise from the mathematical structure of that
encryption system.

A. RESIDUE NUMBER SYSTEM
The Chinese Remainder Theorem (CRT) states that for co-
prime integers b1,0, . . . , b1,h1−1 and for B1 = b1,0 × . . . ×
b1,h1−1, the ring ZB1 is isomorphic to Zb1,0 × . . .×Zb1,h1−1

with the following map:

g : ZB1 → Zb1,0 × . . .× Zb1,h1−1

g(a) = (a1,0, . . . , a1,h1−1)
= (a mod b1,0, . . . , a mod b1,h1−1)

and inverse

a =

[
h1−1∑
i=0

ξ1,i
B1

b1,i

]
B1

=

h1−1∑
i=0

ξ1,i
B1

b1,i
− αB1 (1)

where ξ1,i =
[
a1,i

b1,i
B1

]
b1,i

.

The RNS exploits the CRT to replace additions, subtrac-
tions and multiplications over large integers in ZB1

by the
coefficient-wise additions, subtractions and multiplications
over the smaller channels Zb1,0 , . . . ,Zb1,h1−1

, which may
be efficiently processed by modern processors. While these
operations are made faster with the RNS, operations such as
divisions and modular reductions are harder to implement.

One often has to use basis extensions to deal with these
operations. This procedure exploits (1) to extend the repre-
sentation of a number in basis B1 = {b1,0, . . . , b1,h1−1} to
another basis B2 = {b2,0, . . . , b2,h2−1}. In cases where an
error of αB1 can be tolerated, extensions may be performed
with FastBConv to approximate (1) in an efficient way [20]:

a2,i = FastBConv(a,B1) =

h1−1∑
i=0

ξ1,i
B1

b1,i
mod b2,i (2)

When such an error cannot be tolerated, an extra residue
ask = a mod bsk may be computed. This enables the com-
putation of α as

α =
[
(FastBConv(a,B1)− ask)B−11

]
bsk

for |a| < λB2, an integer λ and bsk ≥ 2(h2 +λ) [21, Lemma
6]. In this case, the basis extension may be terminated with
FastBConvSK:

a2,i = FastBConvSK(a,B1, α) =
h1−1∑
i=0

ξ1,i
B1

b1,i
− αB1 mod b2,i (3)

B. STOCHASTIC COMPUTING
A stochastic representation of a number x ∈ [0, 1] is de-
fined to be a sequence of n bits, x1, . . . , xn, drawn from a
Bernoulli distribution, such that the probability P (xi = 1) =
x,∀1≤i≤n [22]. AND and XOR operations can be combined
to perform the following two operations on three independent
stochastic representations x, y, s ∈ [0, 1] (note that when two
representations are not statistically independent, they can be
rotated to become so):
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zi = xi ∧ yi ⇒ z = xy (4)

zi = ((1⊕ si) ∧ xi)⊕ (si ∧ yi) ⇒ z = (1− s)x+ sy (5)

where ∧ and ⊕ stand for the AND and XOR operations,
respectively.

These two operations serve as the basis for the polynomial
evaluation procedure described in Algorithm 1.

Algorithm 1 De Casteljau’s algorithm for the evaluation of a
polynomial in Bernstein form [23]

Require: B(X) =
∑d
i=0

(
d
i

)
biX

i(1−X)d−i

Require: x0
1: for i ∈ {0, . . . , d} do
2: b

(0)
i = bi

3: end for
4: for j ∈ {1, . . . , d} do
5: for i ∈ {0, . . . , d− j} do
6: b

(j)
i = b

(j−1)
i (1− x0) + b

(j−1)
i+1 x0

7: end for
8: end for
9: return B(x0) = b

(d)
0

C. HOMOMORPHISMS
A traditional computing model considers programs that op-
erate, instruction by instruction, over imputed data. Alterna-
tively, when distributed computing is considered, some of
these inputs might belong to another party. In the former
computing model, isomorphisms, like the RNS, provide for
ways to manipulate data in more computationally efficient
domains (e.g. RNS channels), with operations having coun-
terparts in the original domain (e.g. large integer arithmetic).
In the latter computing model, values should be represented
in a way that prevents the second party from deriving infor-
mation about the input. In this case, the parties might exploit
homomorphisms to protect the confidentiality of their data.

Definition 3 (Homomorphism). A map f : A → B is
said to be homomorphic with respect to the operator µ of
arity k, defined on both A and B, if f(µA(a1, . . . , ak)) =
µB(f(a1), . . . , f(ak)) for all elements a1, . . . , ak ∈ A.

A basic example of homomorphism corresponds to Baum
et al’s commitment scheme [24]. Let R = Z[X]/〈Φm(X)〉
be the set of polynomials equipped with addition and mul-
tiplication modulo the mth cyclotomic polynomial, Φm(X)
=
∏

1≤k≤m
gcd(k,m)=1

(X − e2iπ
k
m ) – note that even though the

formula for Φm(X) involves complex numbers, it is a poly-
nomial with integer coefficients. Furthermore, let Rq =
R/(qR) beR with coefficients reduced modulo an integer q.
With this scheme, the addition of commitments to messages
~s1, ~s2 ∈ Rdq , produces a commitment to ~s1 + ~s2. More com-
plex examples of homomorphism include the FHE scheme
described in Section VI-A.

Definition 4 (Baum et al’s Commitment Scheme). Baum et
al’s commitment scheme is a triplet of functions (KeyGen,
Commit, Open) defined as follows.
• C.KeyGen(k): Given a security parameter k, generates

the system parameters (q, Rq, α, γ, ~b), where q is
a prime modulus defining Rq , α and γ are positive
numbers, and B is a uniformly random matrix of poly-
nomials inRk×(d+1)

q , for some positive integer d.
• Commit(~s): To commit to a message ~s ∈ Rdq , choose

a uniformly random vector of invertible polynomials
~r ∈ D ⊆ Rk such that ‖~r‖∞ ≤ α. Compute ~c =
COM(~s, ~r) = ~rB + (0, ~s), and output ~c.

• Open(~c,~s, ~r,p): A valid opening of a commitment ~c is a
3-tuple: ~s ∈ Rdq , ~r ∈ Rk and an invertible polynomial
p ∈ R such that ‖p‖∞ ≤ γ. The verifier checks that

~rB + (0,p~s) = p~c with ‖~r‖∞ ≤ α.

The security of the scheme in Definition 4 is based on
the difficultness of solving the Ring Learning with Errors
(RLWE) problem, which will be described in Section III.

III. LATTICES
Lattices have significant applications in the field of cryptog-
raphy [25], which include ensuring the security of crypto-
graphic schemes like the one in Definition 4, and supporting
the design of number representations, such as the one in
Section V. A lattice can be seen both as an additive subgroup
of Rm, or as the vector space generated by all linear combina-
tions with integer coefficients of a set R = {~r0, . . . , ~rn−1},
with ~ri ∈ Rm, of linearly independent vectors:

L(R) =

{
n−1∑
i=0

zi~ri : zi ∈ Z

}
(6)

The set R can also be associated with a matrix R having
the vectors ~ri as rows. The previous expression can thus be
written as L(R) = {~z × R : ~z ∈ Zn}. It is said that the
rank of the lattice is n and its dimension is m. Each lattice
induces an equivalence relation over span(R) (i.e. the linear
space generated by the rows of R). Two vectors in span(R)
are congruent if their difference is in L(R):

a = b(mod L(R))⇔ a− b ∈ L(R) (7)

We associate with each basis the parallelepiped:

P(R) =

{
n−1∑
i=0

wi~ri : wi ∈
(
−1

2
,

1

2

]}
(8)

For any point ~y = ~w + ~x ∈ span(R), where ~w ∈ L(R)
and ~x ∈ P(R), the reduction of ~y modulo P(R) is defined
as ~x = ~y mod P(R). It should be noted that lattices
have an infinite number of bases for n ≥ 2. The modular
reduction has a different meaning for each basis, since they
are associated with different parallelepipeds. An example of
this is featured in Figure 2, where the point ~c is reduced both

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2983020, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

~b0

~b1 = ~r1

~r0

P(R)

P(B)

~c mod P(B)

~c mod P(R)

~c

FIGURE 2: Two basis ~r0, ~r1 and ~b0,~b1 of the same lattice,
along with the corresponding parallelepipeds in red and grey,
are represented. The point ~c is reduced modulo the two
parallelepipeds

modulo P(R) and P(B), producing two different points,
which are represented as triangles, whilst L(R) = L(B).

Any two basis of the same lattice, B and R, are related
by a unimodular matrix (a square integer matrix having
determinant +1 or −1):

B = UR. (9)

The volume of a lattice L(R) is given by:

vol(L(R)) =
√

det(RRT ). (10)

From (9) and (10), one concludes that the volume of a lattice
is independent of the basis used to describe it.

Theorem 1 (Minkowski’s First Theorem [26]). For any full-
rank latticeL of rank n, the norm of its shortest vector λ1(L),
satisfies

λ1(L) ≤ √n n
√

det(L)

Lattice-based Cryptography (LBC) is usually supported
on either the Closest Vector Problem (CVP), the Shortest
Vector Problem (SVP) or the General Learning with Errors
(GLWE), the definitions of which follow [10], [27], and
can be instantiated for any norm. The Learning with Errors
(LWE) and RLWE problems are captured in Definition 7, and
correspond to GLWE when m = 1 and n = 1, respectively.

Definition 5 (CVP). Given a base R ∈ Rn×m, and ~y ∈ Rm,
find ~x ∈ L(R), such that ||~y − ~x|| = min~z∈L(B) ||~y − ~z||.
Definition 6 (SVP). Given a base R ∈ Rn×m, find ~x ∈
L(R), such that ||~x|| = min~z∈L(B)\~0 ||~z||.

Definition 7 (GLWE). Let n,m, q ∈ Z; let R =
Z[X]/〈Φm(X)〉, Rq = R/(qR); and let χ be a distribution
over R (typically a Gaussian distribution). Given arbitrarily
many samples (~xi, yi) ∈ Rn+1

q , where yi = 〈~xi, ~s〉+ei, with
~xi, ~s← Rnq sampled uniformly and ei ← χ, find ~s.

In Definition 7, Φm(X) refers to the mth cyclotomic
polynomial: Φm(X) =

∏
1≤k≤m

gcd(k,m)=1

(X − e2iπ
k
m ). We may

intuitively establish a connection between the LWE problem
and lattices (a similar rationale can be conducted for the
RLWE). First the lattice L(R) is defined, where the matrix
R ∈ Zn×t has t ~xi samples as columns. If one was able to
compute the closest vector, ~y′ to ~y = (y0, . . . , yt−1) in the
lattice, then solving the system ~s × R = ~y′ would provide a
solution to the LWE problem.

IV. A RNS BASED GGH CRYPTOSYSTEM
A main operation limiting the performance of post-quantum
cryptography, namely GGH, corresponds to the division and
rounding used to approximate the closest lattice point to a
vector. Division and rounding has no parallel in traditional
cryptography. This issue has been addressed in [28], [29],
[30]. Herein, the techniques proposed therein are reviewed,
which allow for the exploitation of unconventional number
representations to adapt GGH to modern computing plat-
forms featuring data and multicore parallelism.

A. GGH CRYPTOSYSTEMS
For the remaining of this paper, [·]q denotes the centred
residue modulo q in [−q/2, q/2), | · |q the traditional residue
modulo q in [0, q), and b·e rounding to the nearest integer.

Encryption, with [31], consists of adding a small “error”,
which represents the message, to a vector of the lattice. The
public key corresponds to a “bad basis” of the lattice, with
which solving the CVP is hard. Contrastingly, the private key
is a “good basis”, enabling the computation of the closest
lattice vector for small errors. To obtain the original mes-
sage, the receiver computes the closest lattice point to the
cryptogram, and produces the difference between the two.

Babai’s Round-Off [32] provides approximate solutions to
the CVP. It is supported on the observation that span(R) is
equal to the disjoint union of the parallelepiped P(R) shifted
by lattice points ~u ∈ L(R):

span(R) =
⋃

~u∈L(R)

~u+ P(R) (11)

Hence, an approximation of the closest lattice point to ~v ∈
span(R) corresponds to determining to which tile ~u+ P(R)
~v belongs to and returning ~u ∈ L(R). The more orthogonal
the basis R is, the better the results will be.

[31] is supported on integer full-rank lattices (i.e. ~ri ∈ Zm
and m = n in (6)). The private basis is produced as a
rotated nearly-orthogonal basis, such that Babai’s Round-Off
procedure may be used to compute the closest vector [32].
Moreover, the public basis is of a Hermite Normal Form
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(HNF). The HNF is a lower triangular basis of L(R), H ∈
Zn×n, such that:

∀ 0 ≤ i, j < n, 0 ≤ Hi,j


= 0 if i < j

≥ 1 if i = j

< Hj,j if i > j

(12)

This normal form is unique, and can be efficiently com-
puted from any basis of L. If an efficient attack based on
the HNF of a lattice was produced, any public-key could be
broken, regardless of its form, because it would be possible to
efficiently compute the HNF from it. In contrast, if an attack
was developed based on a different basis of the lattice, there
would be no guarantee that that basis could be efficiently
computed from the HNF, making the HNF a good choice for
the public-key. In particular, Rose’s cryptosystem uses bases
of an Optimal Hermite Normal Form (OHNF) as the public-
key. OHNFs form a subclass of HNFs, where all but the first
column are trivial. More formally, H is an OHNF basis of
L if and only if H is an HNF basis and ∀0<i<n, Hi,i = 1.
As an example, most lattices with a prime number as the
determinant have an OHNF.

The key generation step consists of finding a rotated
nearly-orthogonal private basis, such that its HNF H is
optimal. Since H is of an OHNF, the public-key reduces to a
column, denoted as H0. A plaintext is then represented as
a vector ~p ∈ Zn. To encrypt it, ~p is reduced modulo the
public basis, by applying Algorithm 2. Due to the public basis
structure, the cryptogram corresponds to a vector, where all
the entries but the first are zero. Therefore, it suffices a scalar
c to store its value.

Algorithm 2 Rose’s Encryption Algorithm
Require: p ∈ Zn, H0 ∈ Zn
Ensure: c ∈ Z

1: c← p[0]
2: for i← n− 1 to 1 do
3: c← c− p[i]×H0[i]
4: end for
5: c← c mod H0[0]
6: return c

In order to decipher~c, Babai’s Round-Off algorithm can be
applied. This procedure gives an approximation to the CVP,
as represented in Algorithm 3.

Algorithm 3 Rose’s Decryption Algorithm

Require: ~c ∈ Z, R−10 ∈ Qn, the first row of R−1

Ensure: ~p ∈ Zn
1: ~p← (c, 0, . . . , 0)−

⌊
cR−10

⌉
R

2: return ~p

B. DIVISION AND ROUNDING
Algorithm 3 can be modified to make it more suitable

for implementation with the RNS. The operation
⌊
~cR−1

⌉
in

Algorithm 4 RNS-based Decryption Algorithm for Rose’s
Cryptosystem
Require:
Require: d = det(R) ∈ Z, R̂ = R−1d ∈ Zn×n, R′ =

γR̂B1 mod d, and R̂0 ∈ Zn and R′0 ∈ Zn are the first
rows of R̂ and R′, respectively

Require: c ∈ Z
Ensure: ~p ∈ Zn

1: ~q1 = −cR′0d−1 mod B1
2: ~q2 = FastBConv(~q1,B1) mod {γ,mσ}
3: ~w =

cR′0+~q2d
B1

mod {γ,mσ}
4: ~µ = γcR̂0−~w

d mod {γ,mσ}
5: ~p = (c, 0, . . . , 0)− ~µ−[~µ]γ

γ R mod mσ

6: return ~p

Algorithm 3 is replaced by the approximation ~µ of bγ~cR−1c
through an RNS Montgomery reduction [19], where ~c =
(c, 0, . . . , 0). The scaling by γ enables the detection and
correction of the errors resulting from the approximate RNS
Montgomery reduction: for an encryption ~c = ~kR + ~p of
~p, the computation of ~µ ≈ bγ~cR−1c produces the vector
γ~k plus a small error term that is nonzero modulo γ. We
retrieve the error term from the centred residue of ~µ modulo
γ, and then decrypt the message with ~p = ~c − ~µ−[~µ]γ

γ R =

~c− ~kR mod mσ .
The resulting procedure, depicted in Algorithm 4, is based

on the rewriting of bγ~cR−1c using integer arithmetic as

bγ~cR−1c =
γ~cR̂− |γ~cR̂|d

d
(13)

where R̂ = R−1d and d = det(R). While R−1 is not typi-
cally an integer matrix, R̂ is. Initially, ~q1 = −cR′0d−1 mod
B1 is computed in an RNS basis B1, and approximately ex-
tended to a second basis {mσ, γ}. Notice that in Algorithm 4
~w satisfies

~w =
~cR′ + ~q2d

B1
= |γ~cR̂|d + ~ed mod {mσ, γ} (14)

since ~cR′ + ~q2d = ~cR′ −~cR′d−1d+ ~αB1d = 0 (mod B1),
where ~α is an error term associated with an approximate basis
extension. Hence, B1 divides ~cR′ + ~q2d over the integers.
Furthermore, ~cR′+~q2d

B1
= ~cγR̂B1B

−1
1 = γ~cR̂ (mod d).

The value of B1 is chosen to ensure that ~e is small. More
concretely, for a d < εB1, we have that ‖~e‖ < ε + h1.
This enables the production of ~µ = bγ~cR−1c − ~e =(
γ~cR̂− |γ~cR̂|q − ~ed

)
/d mod {mσ, γ} that approximates

(13). By noticing that

~µ = γ~k + bγ~pR−1c − ~e,
if
∥∥bγ~pR−1c − ~e∥∥ < γ/2, then [~µ]γ = bγ~pR−1c − ~e.

Therefore, assuming that ~p can be represented modulo mσ

with no wrap-around, ~p may be obtained as

~p = ~c−
~µ− [~µ]γ

γ
R mod mσ.
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FIGURE 3: The additionR of points P andQ over an elliptic
curve E

V. RNS BASED ELLIPTIC CURVE AND ISOGENY
CRYPTOGRAPHY
Another operation limiting the performance of emerging
cryptography is modular multiplication. There has been ex-
tensive research towards making it as efficient as possi-
ble [12], [13], [33], [34], [35], since it is featured in ECC [7],
[8]. However, one of the most efficient methods for modular
arithmetic relies on the selection of finite fields of a specific
shape [13] which does not match those of isogeny-based
cryptography [17]. A recently proposed number represen-
tation [36] that removes this restriction is discussed in this
section.

A. ELLIPTIC CURVE AND ISOGENY BASED
CRYPTOGRAPHY
ECC corresponds to the design of public-key cryptography
based on the algebraic structure of Elliptic Curves (ECs) over
finite fields. Points (X,Y ) belonging to an EC satisfy (15).

Definition 8 (Elliptic Curve). An elliptic curveE over a field
F (denoted E(F )) is defined by an equation of the form:

Y 2 + aXY + bY = X3 + cX2 + dX + e, (15)

where a, b, c, d, e ∈ F .

The structure of ECs might be exploited to define the addi-
tion of two of these points. Geometrically, to add P,Q ∈ E,
one starts by drawing the line PQ (see Fig. 3). Except for
the case where PQ is vertical, due to the cubic nature of
(15), this line will intersect the EC a third time. This point is
called −R in the representation in Figure 3 of an EC over R.
By reflecting −R across the x axis, the point R = P + Q
is produced. The scalar multiplication of m ∈ Z by P
corresponds to the repeated application of point addition as

[m]P = P + . . .+ P︸ ︷︷ ︸
m times

. (16)

Miller and Koblitz [7], [8] have independently proposed
basing the security of cryptosystems on the difficulty of
computing the discrete logarithm over elliptic curves defined

in finite fields, i.e. of computing m from [m]P, P ∈ E(F ).
While these systems reduce the computational complexity
of public-key cryptography, when compared to traditional
systems like Rivest-Shamir-Adleman (RSA) [2], they are
also susceptible to quantum computing attacks [14].

Alternatively, one might define isogenies φ over ECs.
Isogenies correspond to surjective morphisms with finite
kernels, i.e. they map one EC E to another EC E′, possibly
mapping several points of E to the same point in E′, while
preserving point addition. Cryptosystems may then be built
based on the difficulty of computing φ given P,Q ∈ E and
φ(P ), φ(Q) ∈ φ(E), where φ has a fixed, smooth, public
degree [17] with presumed post-quantum resistance.

The concrete formulae for the computation of point multi-
plication and isogenies are immaterial for the purpose of this
paper. Nonetheless, ECC is defined over fields with prime
order or extensions thereof [7], [8], [17]. This enables for
a greater flexibility of representations of numbers. While,
for instance, the computation of multiplicative roots is made
impossible for the kind of rings Zn used in RSA, unless one
knows the factorisation of n (and hence the corresponding
secret-key), this becomes trivial over a finite field of prime
order p [37]. This property has recently been exploited to
accelerate modular arithmetic over curves with fixed p, cur-
rently used for standardised curves [38], [39] and isogeny-
based cryptography [17].

B. MODULAR MULTIPLICATION

To accelerate modular multiplications for a generic modulus
P , numbers a ∈ ZP are represented in [36] as polynomials
A(X) with coefficients of norm smaller than ρ that when
evaluated in γ produce:

A(γ) = a mod P, (17)

where γ satisfies [γn]P = β for a small integer β. Thus, oper-
ating with these polynomials moduloXn−β is isomorphic to
operating with the corresponding integers modulo P . In [35],
it is proven that for digits satisfying |a(i)| < ρ, a ρ ≥ βP 1/n

suffices to represent all congruency classes a ∈ ZP . Digits
are represented with respect to two RNS bases B1 and B2 and
a modulus bsk. The need for these moduli will become evident
when describing the Hybrid Polynomial-Residue Number
System (HyPoRes) multiplication algorithm.

Definition 9 (HyPoRes). An Hybrid Polynomial-Residue
Number System (HyPoRes) is a sextuple H =
(P, n, ρ,B1,B2, bsk). β is defined to be the smallest integer
that is not an nth power over Z, but that has an nth root
modulo P . We identify this root with γn = β mod P .
Positive integers 0 ≤ a < P are represented as a polynomial
of n coefficients (a(0), . . . , a(n−1)), wherein each coefficient
a(i) is represented with respect to the two RNS bases
B1 = {b1,0, . . . , b1,h1−1} and B2 = {b2,0, . . . , b2,h2−1} and

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2983020, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the modulus bsk, satisfying:

a =
n−1∑
i=0

h1−1∑
j=0

ξi,1,j
B1

b1,j


B1

γi mod P

with ξi,1,j =
[
ai,1,j

b1,j
Bj

]
b1,j

, |a(i)| < ρ and ai,k,j =

a(i) mod bk,j . We use ai,k to denote a(i) mod Bk, capital
values A to denote a representation of a under H, A1 to de-
note the representation of a under B1, A2 the representation
of a under B2 and ask the representation of amodulo bsk; and
define the norm ||A||∞ = max(|a(0)|, . . . , |a(n−1)|).

Algorithm 5 HyPoRes Modular Multiplication Algorithm
Require: ||A||∞, ||C||∞ < kρ
Require: M ′ = −M−1 mod B1
Ensure: ||R||∞ < ρ with r = acB−11 mod P
D = A ? C mod B1 ∪ B2 ∪ {bsk}
Q1 = D ?M ′ mod B1
Q2 = FastBConv(q,B1) mod B2
qsk = FastBConv(q,B1) mod bsk
R2 = D+Q?M

B1
mod B2

rsk = dsk+qsk?M
B1

mod bsk
α =

[
(FastBConv(r,B2)− rsk)B−12

]
bsk

R1 = FastBConvSK(r,B2, α) mod B1
R = (R1, R2)

The improved modular multiplication can be found in Al-
gorithm 5. Therein, the operationA?C denotes the following
vector-matrix multiplication:

A ? C = AC mod (Xn − β) =

[
a(0) a(1) . . . a(n−1)

]


c(0) c(1) . . . c(n−1)

βc(n−1) c(0) . . . c(n−2)

...
...

. . .
...

βc(1) βc(2) . . . c(0)


(18)

where element-wise multiplications are conducted in RNS.
The vector M used in Algorithm 5 corresponds to a small

nonzero representation of zero under H. A representation of
M with norm smaller than P 1/n is guaranteed to exist, as
described in Lemma 1.

Lemma 1. A nonzero representation of zero of norm smaller
than P 1/n exists underH
Proof. Let us start by building the lattice L(Γ) of the repre-
sentations of zero underH where

Γ =


P 0 . . . 0
−γ 1 . . . 0

...
...

. . .
...

−γn 0 . . . 1


Each line in Γ corresponds to either P = 0 mod P or
−γi +Xi, which when evaluated at X = γ produces a value

congruent with 0. Theorem 2 guarantees that L(Γ) contains a
nonzero vector of norm at most (detL(Γ))

1/n
= P 1/n. Thus

M can be obtained by finding the nonzero shortest lattice
point in L(Γ). While this problem is complex in general,
herein we are dealing with lattices of small dimension, typi-
cally with n < 10, making it solvable in a short time.

In essence, Algorithm 5 starts by computingD = A?C ∼=
A × C mod P . Then, to reduce the size of the coefficients,
a multiple of a nonzero representation of zero M is added to
D, making the result divisible byB1. Since the scaling factor
Q is computed modulo B1, it is first produced in B1 and then
extended to B2. Afterwards, R = D+Q?M

B1
is outputted. The

division byB1 guarantees that the norm of the result is small.
However, since this division is not possible in B1, this value
is first produced in B2 and then extended to B1.

Algorithm 5 requires that an inverse ofM exists in the ring
ZB1

[X]/ (Xn − β). Lemma 2 guarantees that this is the case
when B1 is built from prime numbers b1,i that do not divide
the resultant of M and Xn − β, and M 6= 0 mod B1.

Lemma 2. When B1 = {b1,0, . . . , b1,h1−1} such that all b1,i
are primes not dividing the resultant of M and Xn − β, and
M 6= 0 mod B1, M is invertible in ZB1 [X]/(Xn − β).

Proof. SinceXn−β is irreducible,M with deg(M) < n and
Xn−β are coprime. Hence, there exists (U, V ) ∈ Z[X]2 s.t.

UM + V (Xn − β) = r

where r is the resultant ofM andXn−β, and r 6= 0 [40]. We
find the inverse of M modulo B1 and Xn − β by computing
Ur−1 mod b1,i for 0 ≤ i ≤ h1 − 1 and lifting the result to
ZB1

with the CRT. The resultant r must be invertible modulo
b1,i, i.e. coprime to b1,i. Since b1,i is prime, it must not divide
r.

Even though values represented under H will normally
satisfy ||A||∞ < ρ, their norm might grow after non-reduced
additions. Hence, it is assumed that the inputs to Algorithm 5
have their norm bounded by ||A||∞, ||C||∞ < kρ. It is also
assumed that ρ < εB1. Notice that since the value of Q
is extended from B1 to B2 in an inexact way, its norm is
bounded by h1B1. In this case, the norm of R will satisfy

||R||∞ =

∥∥∥∥A ? C +Q ?M

B1

∥∥∥∥
∞
<

βnk2ρ2 + βnh1B1||M ||∞
B1

< βnεk2ρ+ βnh1||M ||∞.
(19)

Since we require that ||R|| < ρ, ε should satisfy:

0 < ε <
ρ− βnh1||M ||∞

βnk2ρ

As a result, Algorithm 5 produces values with the expected
norm as long asB1 > ρ/ε and ρ > βnh1||M ||∞. In addition,
FastBConvSK produces the correct value when ρ < λB2

and bsk ≥ 2(h2 + λ).
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VI. STOCHASTIC COMPUTING FOR FHE
This section will discuss the results of [41], [42], which en-
able the methodic design of homomorphic circuits based on
stochastic number representations, while efficiently achiev-
ing secrecy of the processing algorithm. Rather than trying
to provide algorithm-secrecy in general [43]; [41], [42] focus
on a subset of applications that can be efficiently evaluated
homomorphically. Through the exploitation of stochastic
computing, automated mechanisms will be described to map
real-valued operations onto the homomorphic domain that
result in efficient systems exploiting batching.

A. FULLY HOMOMORPHIC ENCRYPTION
Structured lattices underpin one of the most promising
classes of cryptosystems supporting FHE [4]. FHE provides
malleable ciphertexts, such that given two ciphertexts en-
crypting a and b one is able to produce another ciphertext
encrypting a × b or a + b. There is noise associated with
the ciphertexts that grows as homomorphic operations are
applied. Since decryption can only handle a certain amount
of noise, there is a limited amount of operations that can
be applied before decryption starts associating a message
with the wrong value. Gentry [4] has mitigated this problem
through bootstrapping, a technique in which ciphertexts are
homomorphically decrypted. While the decryption would
normally completely remove the noise, homomorphically
evaluating the decryption procedure introduces noise. If at
the end of bootstrapping the homomorphic capacity of the
scheme still allows for one further operation, the process of
applying one operation and homomorphically decrypting the
result can be indefinitely repeated to achieve FHE.

More modern FHE systems rely on RLWE [44]. With
RLWE, techniques have been proposed, which limit the need
for bootstrapping, namely by reducing the rate at which noise
grows. In [27], modulus-switching is introduced. With this
refinement, one can linearly increase the magnitude of the
public-key according to the depth of the circuits one wants
to process homomorphically, to avoid using bootstrapping.
Schemes with this property are said to be leveled FHE
schemes.

With the leveled Brakerski-Gentry-Vaikuntanathan (BGV)
FHE scheme, the secret-key s ∈ R is defined as a “small”
polynomial drawn from a distribution χkey . An encryption
of m ∈ Rt, for t ∈ N, corresponds to a pair of polynomials
~ct = (c0, c1) ∈ R2

q satisfying:

[c0 + c1s]q = [[m]t + tv]q (20)

where v is a noise term that is originally introduced during
encryption (which is related to a distribution χerr) and that
grows as homomorphic operations are applied.

BGV provides for the homomorphic addition and multipli-
cation of polynomials in Rt. The homomorphic addition of
two ciphertexts corresponds to the pairwise addition of the
ciphertexts’ polynomials. Regarding homomorphic multipli-
cation, it is useful to see ciphertexts as first degree polynomi-

als with coefficients inR. Evaluating a polynomial c0 + c1y
at y = s leads to (20). In this context, the homomorphic
multiplication of ct1 and ct2 takes place in two steps.
First, ~ctmult ←

([
c10c

2
0

]
q
,
[
c10c

2
1 + c11c

2
0

]
q
,
[
c11c

2
1

]
q

)
is

computed. Evaluating ctmult,0+ctmult,1y+ctmult,2y2 at
y = swould lead to the decryption of [m1m2]t. Afterwards,
one converts the three-element ciphertext back to a two-
element ciphertext, through a process called relinearisation.
In a nutshell, ctmult,2 is multiplied by a pseudo-encryption
of s2 and the result is added to (ctmult,0,ctmult,1). How-
ever, since ctmult,2 is uniformly random in Rq , doing this
directly would lead to a significant increase of noise after
multiplying it by the pseudo-encryption of s2. Two functions
are introduced to solve this issue:

Dω,q(a) =
(

[a]ω ,
[⌊
aω−1

⌋]
ω
, . . . ,

[⌊
aω−(lω,q−1)

⌋]
ω

)
(21)

Pω,q(a) =
(

[a]q , [aω]q , . . . ,
[
aωlω,q−1

]
q

)
(22)

where lω,q = blogω(q) + 1c and ω ∈ N.
Instead of multiplying ctmult,2 directly by a pseudo-

encryption of s2, Dω,q(ctmult,2) is multiplied by pseudo-
encryptions of Pω,q(s2) (designated

−−→
rlk), and the result is

added to the other two elements:

~ctrelin ←
([
ctmult,0 +

〈
Dω,q(ctmult,2),

−−→
rlk0

〉]
q
,[

ctmult,1 + 〈Dω,q(ctmult,2),
−−→
rlk1〉

]
q

)
(23)

Since the norm of the elements of Dω,q(ctmult,2) is at
most ω2 , noise growth due to the relinearisation in (23) can be
limited by choosing a small ω. Finally, modulus-switching
is applied to reduce the growth rate of the norm of v in
(20) due to the homomorphic multiplication. This technique
consists of scaling the ciphertext to a smaller ring Rq′ with
an appropriate rounding, which is performed in two steps:

δi ← t · [−ctmult,i/t]q/q′ for i = 0, 1

~ct ←
(

[q′/q · (ctmult,0 + δ0)]q′ ,

[q′/q · (ctmult,1 + δ1)]q′
) (24)

As a result of this rounding, noise is similarly scaled down
by a factor q′/q.

Batching [5] is a method to improve FHE performance
based on the CRT. It allows multiple bits to be encrypted in a
single ciphertext, so that one can AND and XOR the bits of
sequences of bits using a single homomorphic multiplication
or addition. For example, in the considered RLWE cryptosys-
tem, a binary plaintext space has the following structure:

P = Z[X]/〈Φm(X), 2〉 (25)

Φm factors modulo 2 into l polynomials F0, . . . , Fl−1 with
the same degree d; d is the smallest positive integer satisfying
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2d = 1(modm) and l = ϕ(m)/d. Through the polynomial
CRT, there is a ring isomorphism:

P ∼= Z[X]/〈F0(X), 2〉 × . . .× Z[X]/〈Fl−1(X), 2〉. (26)

Batching exploits (26) to encrypt multiple bits in a single
ciphertext, so that additions and multiplications operate on
them in parallel. To do so, bits m0, . . . ,ml−1 are encoded as
a polynomial m (X) satisfying:

mi = m (X) mod (Fi (X) , 2)∀0≤i<l (27)

Finally, rotations of the plaintext slots can be obtained
through mappings of the form κi : X 7→ Xi. A detailed
analysis of these mappings can be found in [45, Section C.3].

Techniques have been proposed in [43] that allow for the
offloading of the processing of data, without an homomor-
phic evaluator knowing the function that is being used for
the processing. More concretely, in [43], the emulation of an
entire computer architecture is suggested. Since the instruc-
tions in memory are also kept encrypted, a homomorphic
evaluator has no knowledge of the underlying algorithm.
However, [43] only presents experimental results for a toy
homomorphic cryptosystem, because homomorphic opera-
tions are in general computationally demanding and the cycle
by cycle evaluation of a computer architecture is complex.
Moreover, since the homomorphic evaluator does not know
which instruction is being processed, it is hard to determine
when to stop execution.

B. STOCHASTIC COMPUTING BASED FHE
In [41], [42] the “natural” operations that arise from FHE
are analysed, and efficient algorithm-hiding systems are de-
signed for applications that take advantage of those opera-
tions. Firstly, numbers can be represented as sequences of bits
through stochastic representations. Since most FHE schemes
support batching as a an acceleration technique for the pro-
cessing of multiple bits in parallel, one can map stochastic
representations to batching slots to efficiently implement
the operations in (4) and (5). Unlike traditional Boolean
circuits, the amount of bits required for stochastic computing
is flexible, thus allowing for a more natural correspondence
between the unencrypted and encrypted domains.

The proposed homomorphic systems based on stochastic
computing target the approximation of continuous functions.
These functions are firstly approximated with Bernstein poly-
nomials, as per (28). Notice that this approximation takes
place in a black-box manner. Hence, function development
can take place with traditional programming paradigms.
Moreover, it also provides for an automated way to produce
FHE circuits.

Theorem 2 (Weierstrass Theorem). If f : [0, 1]m → R is a
continuous function, thenB(n1,...,nm)

f converges uniformly to
f as n1, . . . , nm →∞ [46].

β
(n1,...,nm)
f,k1,...,km

= f

(
k1
n1
, . . . ,

km
nm

)
(28)

B
(n1,...,nm)
f (X1, . . . , Xm) =∑

0≤kl≤nl
l∈{1,...,m}

β
(n1,...,nm)
f,k1,...,km

m∏
j=1

(
nj
kj

)
X
kj
j (1−Xj)

nj−kj (29)

The coefficients of the Bernstein polynomials resulting
from Theorem 2 are encrypted and sent to be homomorphi-
cally evaluated. Then, the polynomials are factored as

B
(n1,...,nm)
f (X1, . . . , Xm) =

n1∑
k1=0

(
n1
k1

)
Xk1

1 (1−X1)n1−k1

(
n2∑
k2=0

(
n2
k2

)
Xk2

2 (1−X2)n2−k2

. . .

(
nm∑
km=0

β
(n1,...,nm)
f,k1,...,km

(
nm
km

)
Xkm
m (1−Xm)nm−km

)
. . .

)
(30)

and Algorithm 1 is recursively called to evaluate them.
This trivially solves the problems faced in [43], albeit

at the cost of reducing its range of applicability. An ho-
momorphic evaluator still does not know which function is
being evaluated among a wide range of possible continuous
functions. Nevertheless, the evaluator knows the degree up
to which the function is being approximated, which allows
them to know when to terminate computation. Finally, since
operations naturally arise from FHE schemes, rather than
imposing the structure of a computer architecture on them,
this scheme achieves a higher degree of efficiency than [43].

VII. ADDITIVE HOMOMORPHISM FOR DAA
This section considers the representation of values through
homomorphisms. This allows for one party to provide their
data to another party, while preserving its confidentiality.
This property is exploited in [47] to reduce the computational
complexity of the DAA. In particular, the additive homomor-
phism of a commitment scheme is exploited to generate a
single proof of knowledge about a secret-key shared between
a Trusted Platform Module (TPM) [48] and a Host, instead
of two as in traditional schemes [18]. This leads to a twofold
reduction of the storage requirements of the TPM, and to
a reduction of the signature size of about five times. In
this section, we introduce the DAA in the context of TPM
and describe the arithmetic aspects of the scheme proposed
in [47].

A. DIRECT ANONYMOUS ATTESTATION
DAA is a protocol enabling a trusted platform to authenticate
itself to another party in an anonymous way, as represented
in Figure 4. The TPM in Figure 4 is a hardware module that
can be included, for example, in motherboards, that builds a
representation of the state of the Host machine as it boots.
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FIGURE 4: TPM-based attestation of a system. As software
is loaded, the TPM builds a representation of the platform
state. When wishing to prove the trustworthy state of the
platform, a DAA signature of the PCRs is produced

Concretely, as software is loaded an hash of it is concate-
nated with an hash stored in a TPM Platform Configuration
Register (PCR), and the result is itself hashed and then stored
back in the PCR. Through a DAA signature of the PCRs,
the TPM and the Host are able to prove that the platform is
in a trustworthy state and that they have been provisioned
by an Issuer, and hence that they belong to a certain DAA
community.

In a initial phase, TPM-Host pairs are provisioned with
DAA credentials by an Issuer. In practice, a DAA credential
corresponds to a signature of the signer’s identifier produced
by the Issuer. Then, when wishing to produce a DAA signa-
ture of the PCRs, the TPM and the Host collaborate to create
a zero-knowledge proof-of-knowledge of that signature. The
zero-knowledge proof-of-knowledge cryptographic construct
is used to convince the verifier that the signer possesses a
valid membership credential, but without revealing anything
else about the identity of the signer. Two mechanisms are
put in place to prevent signers from abusing their anonymity.
Firstly, should a rogue system make a secret-key publicly
available, anyone may check whether a given DAA signature
was created under this key or not. Secondly, DAA signatures
are created with respect to a basename that is negotiated
between the signer and the verifier. If a signer uses the same
basename in two signatures, they can be linked, otherwise
they cannot.

B. ADDITIVE HOMOMORPHISM AND DAA
The DAA signature includes a zero-knowledge proof-of-
knowledge, which is a cryptographic construct used to con-
vince the verifier that the signer possesses a valid member-
ship credential, but without the verifier learning anything else
about the identity of the signer. Herein, we describe at a high-
level how this proof-of-knowledge may was designed in [47],
focusing on how representations through homomorphisms
may be leveraged to improve the efficiency of DAA.

In [49], the DAA credential corresponds to a vector of

“small” polynomials that is shared between the TPM and the
Host. When one computes the inner product between this
vector and another one that is a function of the platform
identifier, a polynomial made public by the issuer is pro-
duced. To prove knowledge of this vector in zero-knowledge,
a generalisation of Inhomogeneous Small Integer Solution
(ISIS) proofs is used [50]. In [50], to prove the knowledge
of a small vector ~x with ||~x||∞ ≤ β such that ~xA = ~y mod q
for a secret ~x ∈ Znq and public A ∈ Zn×mq , ~y ∈ Zmq ,
instead of arguing directly about ~x, ~x is decomposed into
k = dlog2 βe vectors of norm at most 1:

~x =
k∑
i=1

2i−1~bi (31)

In order to prevent the leakage of the ~bi, elements from
{−1, 0, 1} are added to the decomposed vectors, so the
number of each of them is the same, producing ~xi = (~bi|~ti).
Finally, the matrix A is also extended with 2n 0 rows A′ =
(AT |0m×2n)T such that:

k∑
i=1

2i−1 ~xiA′ = ~y (32)

The prover now commits to

c1 = COM
(
π0, . . . , πk−1,

∑k
i=1 2i−1~riA′

)
c2 = COM (π0(~r0), . . . , πk−1(~rk−1))

c3 = COM
(
π0(~r0 + ~x0), . . . , πk−1(~rk−1 +

−−→
xk−1)

)
(33)

for random ~r0, . . . , ~rk−1 ←↩ Z3n
q and uniformly random per-

mutations π0, . . . , πk−1. Then, the verifier randomly chooses
a challenge i ←↩ {1, 2, 3} and the prover reveals cj∀j 6= i.
If c2, c3 are revealed, the prover will be convinced that the
~xi are indeed small. In the other two cases the verifier will
be able to validate either the left or the right-hand side of the
equation

k∑
i=1

2i−1~riA
′ =

k∑
i=1

2i−1(~ri + ~xi)A′ − ~y, (34)

giving the verifier confidence that the prover knows a preim-
age of ~y. Since revealing all commitments would also reveal
the ~x, the above described process has to be repeated several
times.

At a high level two proofs-of-knowledge of this kind are
produced in [49]. The TPM and the Host possess ~x1 and
~x2, respectively, such that ~y = (~x1 + ~x2)A. To achieve a
DAA signature, the TPM produces a signature with respect
to y1 = (~x1 + ~t)A for a small random ~t that is shared with
the Host. Then, the Host produces a proof with respect to
~y2 = (~x2 − ~t)A. Notice that ~y1 + ~y2 = ~y, and that ~t is used
to randomise the signatures. In [47], in contrast, Baum et al’
commitment scheme is exploited since it features additive ho-
momorphism. Based on this property, the TPM and the Host
produce commitments that, when homomorphically added,
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result in commitments similar to the ones of (33), but with
~x1 +~x2 playing the role of ~x in (31). The TPM and Host may
then reveal their replies to the verifier’s challenges without
anyone learning anything about their secret-key. As a result,
a single proof-of-knowledge is required in [47], instead of
two as in [49]. As a second optimisation, the commitments
are themselves hashed after having been added, resulting in a
further reduction in the signature size.

VIII. IMPLEMENTATION AND EXPERIMENTAL RESULTS
This section shows the applicability of the arithmetic, meth-
ods and algorithms presented in the previous sections to a
wide range of platforms.

A level of parallelism to be considered for massively
parallel architectures, such as GPUs, is that of deciphering
multiple messages in parallel, by instantiating the same algo-
rithm in multiple work-groups. This type of implementations
is particular useful for server settings, where multiple con-
nections are being handled at the same time, and thus several
decryptions are required to be performed simultaneously. A
similar approach could be applied to multi-core CPU archi-
tectures with SIMD extensions. Each SIMD lane would then
be used to process the decryption of a different ciphertext in
parallel. Nevertheless, as explained in the remainder of this
section, the underlying arithmetic provides a great level of
parallelism, and thus one can largely accelerate the decryp-
tion of a single ciphertext at a time when exploiting parallel
architectures, enabling for more flexible parallel systems.

In vector and matrix arithmetic, an inherent level of par-
allelism relies on the independence of components along
the columns. In the case of GGH, the round-off is mainly
composed of scalar/vector products. Thus, for instance, the
set of products −cR′0,id−1 for 0 ≤ i < n from Algorithm 4
can be easily scattered on a set of CPU cores or GPU work-
items.

The independence of its channels makes the RNS a good
match for both Single Instruction stream Multiple Data
streams (SIMD) technologies and pipelined architectures.
The RNS offers a second level of concurrency (cf. Fig. 5).
The basic arithmetic operations are made independently and
in a carry-free way on the residues. This can be exploited
in different ways, depending on the available resources. For
instance, on a multi-core CPU, whereas the first level of par-
allelization can be supported by multi-threading, the second
level can be handled by SIMD instructions sets. Similarly, on
a GPU, each work-item can process a single residue without
any dependency on other residues. The exploitation of data
parallelism is not as viable with multi-precision arithmetic,
since the carry propagation chains introduce data and control
dependencies, which are not efficiently handled by data par-
allel architectures, supported for example on SIMD and GPU
technologies. To show its wide applicability, herein we de-
scribe strategies for the implementation of GGH decryption
on highly parallel architectures and of modular multiplication
on sequential processors.

For both sequential and parallel implementations, the mod-
uli of the RNS bases were systematically chosen in pseudo-
Mersenne form, that is m = 2r − c. The intrinsic modular
reduction, inside the rings Z/mZ, can then be carried out
very efficiently through bitwise AND, shifting, and few mul-
tiplications with the constant c, as shown in Algorithm 6. This
algorithm is based on the following congruency:

x = x2 × 2r + x1 = x2 × c+ x1(modm). (35)

Algorithm 6 Modular reduction for a pseudo-Mersenne modulus

Require: m = 2r − c, c < √m, mask = 2r − 1, 0 6 x <
m2

Ensure: x mod m
1: //loop unrolled based on the worst-case scenario
2: while x ≥ 2r do
3: x← x & mask + (x� r)× c
4: end while
5: if x > m then
6: x← x−m
7: end if
8: return x

Two main parameters have a large impact on the per-
formance of schemes supported on cyclotomic rings: the
modulus q and the order m of Φm(X). The bitwidth of q
defines the homomorphic capacity of the scheme, while a
combination of q and m establish the security level. While
for power-of-two cyclotomics, the ring arithmetic benefits
from efficient Number Theoretic Transforms (NTTs) [51],
this choice precludes the exploitation of batching since
Φm(X) factors completely modulo 2. Hence, power-of-two
cyclomics constitute a good choice for the system described
in Section VII but are of limited applicability to the one
described in Section VI. Finally, the implementation of
homomorphic encryption might benefit from parallelism at
multiple levels, for instance pertaining the independence of
polynomial coefficients or of the iterations of the i-loop in
Algorithm 1.

A. DIVISION AND ROUNDING
In [28], the RNS-based GGH decryption algorithm was im-
plemented and thoroughly tested in three systems, namely
i) an Intel i7 4770K CPU with a NVidia K40c GPU, ii)
an Intel i7 5960X CPU with a NVidia GTX 980 GPU,
and iii) an Intel i7 6700K CPU with a NVidia Titan X
GPU. The experimental results, replicated from [28], can be
found in Figures 6 and 7. The label “RNS” corresponds to
a CPU sequential implementation of the algorithm described
in Section IV; “RNS AVX2” to the parallel version of this
algorithm, where both multithreading and AVX2 extensions
are exploited; “MRS” to the sequential Mixed-Radix System
(MRS) algorithm proposed in [52], wherein errors resulting
from approximate basis extensions are handled by conver-
sions to a positional system and comparisons; “MRS AVX2”
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FIGURE 5: Binary and RNS approaches for computing a scalar/vector product
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FIGURE 6: Delay of the LBC decryption algorithm for
different implementations on the i7 6700K. The y-axis is in
logarithmic scale

to the parallel version of the algorithm proposed in [52],
where both AVX2 and multithreading are exploited; “NTL”
to a multi-precision implementation of decryption using the
NTL library [53]; and “RNS GPU” to an RNS implementa-
tion on the GPU.

The delay of the MRS implementation proposed in [52]
increases rapidly with the dimension of the lattice. Never-
theless, it increases the possibility of exploiting parallelism,
which results in a smaller delay for the MRS AVX2 imple-
mentation than the NTL algorithm. In contrast, the decryp-
tion delay of the RNS and NTL approaches increases at a
slow pace. Furthermore, the RNS approach provides greater
opportunities to benefit from parallelism, which makes the
RNS-based multithreaded AVX2 algorithm the most efficient
with respect to the delay. The throughput of the different
implementations is represented in Fig. 7. We can see the
sustained throughputs of the RNS GPU implementations are
much higher than those of the CPU. This derives from the
fact that the algorithm proposed in [28] requires a significant
less amount of synchronisations and memory accesses than
what would be necessary for [52], due to the avoidance of
the computation of the MRS digits. A maximum throughput
of 11832 messages/s is obtained for Titan X and for the
dimension 1000.

The typical size of the precomputed data required for the
RNS, MRS and NTL versions of the decryption algorithm
can be found in Fig. 8. We can see that the amount of extra
data required by the RNS approach when compared with the
NTL is negligible, with an average increase in size of 8.7%.
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FIGURE 7: Throughput of the RNS AVX2 LBC decryption
algorithm on CPU platforms, as well as of the GPU version.
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FIGURE 8: Size of the required precomputed data for the
LBC decryption algorithm

Moreover, one can see that this size is more than halved
for the RNS approach when compared with the MRS, since
one no longer needs a second large base, and neither the
precomputed data associated with it, nor the data associated
with computing the mixed-radix digits.

B. MODULAR MULTIPLICATION
The HyPoRes method for modular multiplication was im-
plemented and experimentally evaluated in [36], along with
[13], [11], for comparison. The pure RNS-based multiplica-
tion [11] can be seen as a simplification of [36] when n = 1,
and thus M = P and γ and β play no role. The Hybrid-
Positional Residue Number System (HPR) representation of
[13] makes use of a positional system wherein the digits are
represented in RNS, but requires the selection of primes of
the form P = Bn1 − β to achieve efficient modular reduc-
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FIGURE 9: Average execution time of modular multiplica-
tion following a pure-RNS and [36], as well as of with HPR
with specially crafted primes. The settings in parenthesis
were used for the HPR modular multiplication

tions. After computing a product, the Most Significant Digits
(MSDs) are scaled by β and added to the Least Significant
Digits (LSDs). Then, carry propagation is applied through a
mechanism involving basis extensions. Experimental results
in [36] were obtained for the primes P383, P448 and P521 used
to define the elliptic curves M-383, Ed448-Goldilocks and E-
521 [38], [39], respectively. Moreover, HPR-crafted primes
P384, P ′448 and P512 of 384, 448 and 512 bits, respectively,
have been considered for the implementation of [13].

The average modular multiplication times for the
HyPoRes, pure-RNS and HPR representations from [36]
have been replicated in Fig. 9. Fig. 9 suggests that, although a
similar performance is attained for both HyPoRes and a pure-
RNS approach for the prime P383, the HyPoRes system has
a better scalability as the bit-length of the primes increases.
Moreover, a maximum speed-up of approximately 1.4 is
obtained for P521. While Fig. 9 shows that the performance
of HyPoRes is slightly worse than HPR, it relies on weaker
assumptions (since it does not require the use of specially
crafted primes), making it more flexible and applicable in
practice. In particular, since HPR relies on primes of a
particular kind, this makes it hardly practical, because the
primes for cryptographic applications have already been stan-
dardised with a different shape. In contrast, HyPoRes can be
used whenever one knows the factoring of the underlying
modulus. While the applicability to ECC has been herein
demonstrated, HyPoRes can also be applied to ElGamal [3]
and RSA [2] decryption and signing.

C. STOCHASTIC COMPUTING FOR FHE
The method described in Section II-B, which exploits
stochastic computing for efficient algorithm-hiding FHE, was
implemented in [41]. Therein, it was also considered the
conversion of the Bernstein polynomials that result from
Theorem 2 to power form, along with their evaluation sup-
ported on a fixed-point representation approach proposed
in [54]. It should be noted that the stochastic representation

System Encryption [s] Filter [s] Decryption [s]
Intel / Arm Intel Intel / Arm

Grey
Stretching

Fixed-point

52.5 / 685 341 6.9 / 134

Blending
Fixed-point

52.7 / 684 885 5.3 / 88

Grey
Stretching
Stochastic

34.5 / 914 1340 61.7 / 1172

Blending
Stochastic

47.7 / 1273 2103 89.4 / 1468

TABLE 2: Average execution time for homomorphic image
processing operations on an Intel i7-5960X CPU and on a
Arm Cortex-A53 CPU

proposed in [41] is more widely applicable, since most FHE
schemes support batching, while [54] is only applicable to
BGV. Two piece-wise multilinear functions were developed
for image processing, namely grey stretching and image
blending, and their encrypted approximations were automat-
ically derived using the methods described in Section VI.
Functions (36) and (37), corresponding to grey stretching
and image blending, respectively, were applied to images
with 256 × 256 pixels from [55] and pixels were mapped
to the [0, 1] interval. The fixed-point approach of [54] was
implemented with the NFLlib [51], and exploited a cyclo-
tomic polynomial Φm with m = 214, and a modulus with
log2 q ≈ 372. For the stochastic number representation,
HElib [56] was used with m = 4369 and m = 5461
(accounting for 256 and 378 batching slots), and moduli
log2 q ≈ 132 and log2 q ≈ 324 were applied for the grey
stretching and blending algorithms, respectively.

g(x1) =


0, if x1 ≤ 0.25

2x1 − 0.5, if 0.25 < x1 ≤ 0.75

1, otherwise.
(36)

b(x1, x2) =

{
x1x2, if x1 ≤ 0.5

1− 2(1− x1)(1− x2), otherwise.
(37)

The average execution times of encrypting and decrypting
images on a high-performance Intel i7-5960X CPU and on
an embedded Arm Cortex-A53 CPU and homomorphically
processing on the i7-5960X featured in [41] can be found in
Table 2. The timings of encrypting and decrypting images
on the quad-core Cortex-A53 have been included to have
experimental results representative of scenarios where data
may be encrypted or decrypted on an embedded device and
processed in the cloud. Since the considered homomorphic
image processing algorithms show a great level of paral-
lelism, 16 threads were created on the i7-5960X processor
and 4 threads on the Cortex-A53. Each thread sequentially
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FIGURE 10: Experimental results comparing the DAA protocol proposed in [47] and [18]

processed different parts of the image. Due to the limited
resources of the embedded device, encryption and decryption
are, on average, 19.8 and 17.9 times slower to execute on the
Arm than on the Intel processor, respectively. Nevertheless,
acceptable performance, in the order of hundreds of seconds,
is still achieved on the Arm processor.

Fixed-point homomorphic arithmetic made use of efficient
power-of-two cyclotomic rings, while stochastic representa-
tions made use of non-power-of-two cyclotomics. This is re-
flected in Table 2. For the two considered processors, encryp-
tion takes the same time for both grey stretching and blending
when using a fixed-point approach, because both use the
same parameter set. With a stochastic number representation,
the use of non-power-of-two cyclotomics allows for the use
of smaller parameters for grey stretching than for blending,
leading to a more efficient encryption for the former filter.
Nevertheless, as homomorphic operations contribute to the
reduction of the bit-size of the ciphertext modulus, decrypt-
ing the result on both processors after blending images takes
a shorter period than after grey stretching for the fixed-
point approach since the former application is more complex.
Finally, while the fixed-point approach is less applicable
than stochastic computing, since more FHE schemes support
batching than rescaling, the fixed-point approach takes from
2.4 up to 3.9 times less time to process images.

D. ADDITIVE HOMOMORPHISM FOR DAA

In order to evaluate the efficiency of homomorphic represen-
tations, both the scheme described in Section VII and [18]
were implemented in [47]. The implementations made use
of the following cryptographic parameters: n = 256, q =
8380417, l = 32, m = 24 and β = 256. These parameters
are only used for comparative purposes. All entities, namely
the TPM, the Issuer, the Host and the Verifier, were simulated
on an Intel i9 7900X CPU with 64GB running at 3.3 GHz
operated by CentOS 7.5. We replicated the experimental
results obtained in [47] herein. Fig. 10a shows that in practice
the size of the TPM private-key share is halved when [47]
is compared with [18]. This is of particular importance for
TPM platforms, where memory resources are constrained.
In Fig. 10b, signature sizes are shown for [47], both when
commitments are hashed and when they are not, and for [18].
The signature size of [47] is halved, when hashing is not
considered, in comparison to the scheme in [18]. This im-
provement is achieved through the exploitation of Baum
et al’s commitment scheme, enabling the construction of a
single proof of knowledge that reflects the secret-key shared
between the TPM and Host, instead of the two required
by [18]. Moreover, by hashing commitments, the size of the
proofs are themselves reduced, resulting in signatures that are
5 times smaller than [18].
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Fig. 10c shows that the signing operation of [47] is faster
than [18]. More noticeably, the verification operation is sig-
nificantly enhanced when comparing [47] to [18], as shown
in Fig. 10d. Since a single proof needs to be verified instead
of two, a speed-up of more than 2 is achieved. Notice that in
Figures 10c and 10d the execution times include the hashing
of the commitments.

IX. CONCLUSIONS AND FUTURE RESEARCH
This paper highlights the importance of investigating alterna-
tive number representations, like the RNS, stochastic repre-
sentations and homomorphisms, to achieve efficient, adapt-
able and secure emerging cryptosystems. While straight-
forward implementations of emerging cryptography would
make use of binary representations, they would lead to long
carry chains, precluding the exploitation of data parallelism,
and multiplication algorithms of quadratic complexity. Also,
FHE provides clients with unconventional instructions, onto
which the mapping of binary representations might be sub-
optimal. Moreover, homomorphisms allow for the offloading
of parts of a computation without breaking the confidentiality
of the associated data, and might be used to reduce the
workload of embedded devices processing emerging crypto-
graphic primitives.

The methods, algorithms and techniques herein surveyed
show that the beneficial aspects of the application of the
RNS to traditional cryptography are portable to post-quantum
cryptography. The interest of RNS systems has been gen-
eralised and confirmed for emerging cryptography, since:
i) they do not incur on the overhead of general-purposed
multi-precision arithmetic libraries; ii) they make exclusive
use of integer operations and hence naturally benefit from
architectural improvements to computer arithmetic units; and
iii) they reduce the asymptotic complexity of isogeny-based
and GGH-like cryptosystems, potentiating the diversification
of security assumptions in a post-quantum world. Moreover,
there has been a long stream of research on the application
of the RNS to FHE, but this has been excluded from this
paper for the sake of showing further examples of unorthodox
number representations applicable to cryptography.

FHE offers a set of instructions onto which users must map
their applications, that is radically different from traditional
programming. While one could force the structure of binary
representations onto FHE, the resulting systems would be
sub-optimal. It has been shown that stochastic representa-
tions enable not only a natural way for users to map their
applications onto the homomorphic domain, but also that
stochastic operations have direct homomorphic counterparts,
leading to low-depth circuits for scaled addition and mul-
tiplication. Moreover, by encrypting the coefficients of the
polynomials that approximate homomorphic functions, one
achieves the confidentiality of the processing algorithm in an
efficient way.

The interpretation described in this paper of homomor-
phisms as a representation of data that protects their confi-
dentiality has led to the acceleration of a lattice-based DAA

protocol. As a byproduct, the size of the key-material was
significantly reduced. This is particularly important to bring
developments of quantum-resistant cryptography onto the
realm of practicality for devices with restricted computing
resources, like the TPM.

All in all, experimental results confirm the interest of
this survey on using non-positional arithmetic for emerging
cryptographic, not only for current processing platforms but
also for the future highly parallel and heterogeneous systems
and embedded systems with severe computing restrictions.

Cryptography is a multidisciplinary topic, and one cannot
ignore the potential impact that the number representation
techniques highlighted in this survey may have on the con-
ception of future cryptographic systems. These systems may
be designed from the start targeting a specific number repre-
sentation, making them more computationally efficient on the
targeted platforms. Moreover, while this survey has mostly
focused on metrics such as execution time and memory
consumption, future research should evaluate also the impact
of number representations on other aspects, including energy
consumption and resistance against side-channel attacks. The
main risk of moving away from traditional number represen-
tations has to do with a lack of tools, and the inability to lever-
age the knowledge built for the implementation of traditional
cryptography. Nevertheless, the methods and experimental
results presented in this paper give us confidence that the
long term benefits of this novel approach largely outweigh
the risks. Finally, a panoply of other cryptographic systems
may be targeted in the future, with applications ranging from
cryptocurrencies to attribute-based encryption.
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