69

The Delta Programming Language: An Integrated Approach to
Non-Linear Phonology, Phonetics, and Speech Synthesis

Susan R. Hertz

1 Brief Overview

The Delta programming language is designed to let linguists easily formalize and
test phonological and phonetic theories. Its central data structure lets rule-writers
represent utterances as multiple “streams” of synchronized units of their choice, giving
them considerable flexibility in expressing the relationship between phonological and
phonetic units. This paper presents the Delta language, showing how it can be applied to
two linguistic models, one for Bambara tone and fundamental frequency patterns and one
for English formant patterns. While Delta is a powerful, special-purpose language that
alone should serve the needs of most phonologists, phoneticians, and linguistics students
who wish to test their rules, the Delta System also provides the flexibility of a general-
purpose language by letting users intermingle C programming language statements with
Delta statements.

2 Introduction

Despite their common interest in studying the sounds of human language, the fields
of phonology and phonetics have developed largely independently in recent years. One
of the contributing factors to this unfortunate division has been the lack of linguistic rule
development systems. Such systems are needed to let linguists easily express utterance
representations and rules, and facilitate the computational implementation and testing of
phonological and phonetic models.

SRS (Hertz, 1982) is a rule development system that was designed, starting in
1974, for just this purpose—to let linguists easily test phonological and phonetic rules,
and explore the interface between phonology and phonetics through speech synthesis.
SRS, however, was influenced quite heavily by the theory of generative phonology that
was prevalent at the time, a theory that posited linear utterance representations consisting

70

of a sequence of phoneme-sized segments represented as bundles of features (Chomsky
and Halle, 1968). Although at the phonetic level, SRS uses different “streams” for
different synthesizer parameters, the parameter values and segment durations must all be
set in relation to the phoneme-sized segments at the linear phonological level.

Thus, while SRS lets users express rules in a well-known linguistic rule notation,
and easily change the rules, it forces them to work within a particular framework.
Because SRS was biased toward a particular theory of sound systems, we became equally
biased in our approach to data analysis and rule formulation. For example, we took for
granted that phonemes (more precisely, phoneme-sized units) were the appropriate units
for the assignment of durations and formant patterns, a basic assumption that blinded us
for years to the possibility of alternative models. As alternatives finally emerged,
however, the need for a more flexible system for expressing and testing phonological and
phonetic rules became apparent.

The clearest requirements for a more flexible rule development tool were a multi-
level (or multi-tiered) data structure that could make explicit the relationship between
phonological and phonetic units, and a precise and flexible rule formalism for
manipulating this structure. In response to these needs, in July 1983 I began the
development of a new synthesis system, the Delta System (Hertz, Kadin, and Karplus,
1985; Hertz, 1986), in consultation with two computer scientists, Jim Kadin and Kevin
Karplus. The Delta System provides a high-level programming language specifically
designed to manipulate multi-level utterance representations of the sorts suggested by our
rule-writing experience with SRS (Hertz, 1980; Hertz, 1981; Hertz, 1982; Hertz and
Beckman, 1983; Beckman, Hertz, and Fujimura, 1983). This language lets users write
and test rules that operate on multi-level utterance representations without having to take
care of the programming details that would be required in an ordinary programming
language like C. A one-line delta statement might easily take a page to accomplish in C.
The ease of expressing and reading rules in Delta enables rule-writers to test alternative
strategies freely and conveniently.

While the move from the linear utterance representations central to SRS to the
multi-level representations central to Delta parallels the move by phonologists from linear
to non-linear representations, the Delta System is a direct consequence of our SRS
experience, and, unlike SRS, was developed independently of the phonological theories
in vogue at the time. The Delta System is flexible enough to let phonologists and

71

phoneticians of different peréuasions express and test their ideas, constraining their
representations and rules in the ways they, rather than the system, see fit. The system
assumes as little as possible about the phonological and phonetic relationships that rule-
writers may wish to represent in their utterance representations, and the manner in which
their rules should apply, allowing them to make dependencies between rules explicit and
giving them full control, for example, over whether their rules should apply cyclically or
non-cyclically, sequentially or simultaneously, left-to-right or right-to-left, morph by
morph or syllable by syllable, to the entire utterance or only a portion thereof, and so on.

In addition to a powerful programming language for building and manipulating
multi-level utterance representations, the Delta System provides a flexible interactive
debugger. The debugger lets users issue commands to interact with a program while it is
executing. It lets users trace their rules during program execution, stop the execution of
their program at selected points (e.g., each time the utterance representation or a
particular variable changes), display the utterance representation and other data
structures, modify the utterance representation “on the fly” (e.g., to hear the result of a
longer duration for a particular unit in a program designed for synthesis), and so on. The
debugger, like the system in general, is designed for speed and flexibility in the
development of phonological and phonetic rules, letting rule-writers test and modify their
hypotheses quickly and easily. The debugger is an essential part of the system, but a
description of it is outside the scope of this paper. Hertz et al. (1985) describes an early
version of the debugger. The debugger has been enhanced substantially since that paper
was written. It is now a complete source-level debugger with many more capabilities
than those shown in that paper.

The Delta System has been designed to be as portable as possible, to give linguists
the widest possible access to it. A Delta program is éompiled by the Delta compiler into
a C program, and can be run on any computer with a standard C compiler and at least
512K of memory, such as an IBM PC-AT or a Macintosh. Compiling into C has the
additional advantage that it lets users integrate C programs with Delta programs at will,
even intermingling Delta and C code in a single procedure.! The system is also made

1. Earlier versions of the system compiled Delta programs into pseudo-machine instructions. The current
approach (compiling into C) sacrifices the extremely compact storage of rules achieved by the pseudo-
machine approgch in favor of much faster rule execution and flexibility in interfacing C routines.

72

accessible through the comprehensive Delta User’s Manual, which contains an overview
of the system, a tutorial, extensive reference sections, and sample programs.

The next section of this paper (Section 3) presents selected features of the Delta
language, introducing many of the concepts needed to understand the sample programs in
subsequent sections. It uses examples from Bambara, a Mande tone language spoken in
Mali. These examples anticipate the programs in Section 4, which illustrate how tone
patterns and corresponding fundamental frequency values might be assigned in Bambara.
Bambara is chosen because it exhibits many of the properties of tone languages that have
motivated multi-level representations in phonology (e.g., tone spreading and floating
tones), while at the same time providing good examples of the function of phonological
units in determining actual phonetic values (e.g., the role of the tones in determining
fundamental frequency values). Section 5 presents a model of English formant timing
that further illustrates Delta’s flexibility in accomodating a wide range of theories about
the interface between phonology and phonetics. Finally, Section 6 presents conclusions,
gives a brief overview of the features of Delta not described in the paper, and discusses
our plans for enhancing Delta and complementing it with another system in the future.

3 Selected Features of Delta

The Delta programming language is a high-level language designed to create, test,
and manipulate a data structure called a delra for representing utterances. A delta
consists of a set of user-defined streams of tokens that are synchronized with each other
at strategic points. The tokens can represent anything the rule-writer wishes—phrases,
morphs, syllables, tones, phonemes, sub-phonemic units, acoustic parameters,
articulators, durations, classes of features, and so on. This section describes the structure
of deltas, focusing first on the kinds of relationshiﬁs that can exist between tokens in
different streams, and then on the language for determining and testing these
relationships.

For most of its sample deltas, this section uses the Bambara phrase muso jaabi
‘answering the woman’, which can be transcribed as [muso ! ja:bi]. In this transcription,
the grave accent ~ represents a low tone and the acute accent “ a high tone. Thus the first
syllable has low tone, and all the other syllables have high tone. The exclamation point
represents tonal downstep, the lowering in pitch of the following high tones. This

73

lowering occurs in Bambara after a definite noun. To account for the tonal downstep,
linguists, following Bird (1966), posit as a definite marker a “floating low tone” that
occurs after the noun and is not associated with any syllable.

Following is a sample delta that a program couched in the framework of
autosegmental CV phonology (Clements and Keyser, 1983) might build for the phrase
muso jaabi:

(1) phrase: | NP | VP |
word: | noun | | verb |
morph: | root | | root |
phoneme: | m| u | s | o | 1 3 1 a | b 1 |
CvV: |c| v | Cc| Vv | fclivivicl| v |
nucleus: | | nuc | | nuc | | | nuc | | nuc |
syllable: | syl | syl | | syl | syl |
tone: | L | H | L | H |

1 2 3 4 5 6 7 8 9 10 11

This delta consists of eight streams: phrase, word, morph, phoneme, CV, nucleus,
syllable, and tone. The phrase stream has two tokens, NP (noun phrase) and VP
(verb phrase); the word stream has two tokens, noun and verb; and so on. The tokens
in the CV stream represent abstract timing units, in accordance with CV theory. The long
phoneme a is synchronized with two V tokens in the CV stream, while the short vowels
are synchronized with a single V. The nucleus stream marks each vowel, regardless of
length, as the nucleus of the syllable. The tone stream has four tokens, two L (low)
tokens and two H (high) tokens, reflecting the tone pattern given in the transcription
above.

The vertical bars in each stream are called sync marks. Our sample delta has
eleven sync marks, numbered at the bottom for ease of reference. Sync marks are used to
synchronize tokens across streams. For example, sync marks 1 and 3 synchronize all of
the tokens that constitute the first syllable. Sync marks 5 and 6 surround a L tone that is
not synchronized with any tokens in any other stream. It represents a floating low tone
that marks the noun phrase as definite, as discussed above. Sync marks 1 and 6
synchronize this floating tone along with the preceding L and H tones of the root with the
NP token in the phrase stream. Following the analysis of Rialland and Sangare (1985),
sync marks 6 and 11 synchronize a single H tone with two syllables and one root, rather
than a separate H tone with each syllable.

This delta could be expressed in more familiar autosegmental terms as follows:

74

""] — =
(2) phoneme: m u s o 3j a i
| | | | [N | I
Ccv: C \ cC v C v Vv o} v
\/l \/l \)/ \/'
nucleus: nuc nuc nuc nuc
syllable: ? ? o c
\/
tone: | L H _JL | H _
N v
root root
NP vp

Note that while the delta representation makes the appropriate associations among tokens
using sync marks alone, the autosegmental representation must use brackets in addition to
association lines in order to show that the floating low tone is part of the noun phrase.

Furthermore, while the tiers in autosegmental representations are critically ordered
with respect to each other in the sense that “tokens” on one tier can only be explicitly
linked to tokens on particular other tiers (see, for example, Clements, 1985) the streams
of a delta can always occur in any order with respect to each other. The same
relationships exist between the tokens in different streams regardless of the order in
which the streams are listed. For example, the phoneme, syllable, and CV streams
in delta (1) above could also be displayed in the following order:

(3) phoneme: | m | ul s | ol | 3 1 a | b | 1]
syllable: | syl | syl | | syl | syl |
Cv: | C | v]C]|] V] lcil vi]iv]Ccl V]|

As in this example, examples of deltas from here on will show only those streams
relevant to the discussion at hand.

In-addition to syntactic, morphological, and phonological streams, a delta can also
have phonetic streams. For example, a time stream might be added to delta (1) as

follows:

(4) phoneme: | 8 | o | [a |
CV: e | C 1V | € | Vv | V|
duration: | 200 | 150 | | 140 | 200 |

Here, a duration (in milliseconds) is synchronized with each phoneme token.

In a delta, unlike in an autosegmental representation, a time stream can be used to
time articulatory movements or acoustic patterns with respect to phonological units like

75

phonemes. In the following delta fragment, an FO (fundamental frequency) stream is
used to time F, targets with respect to the syllable nuclei:

(5) phoneme: | s | o | I 31 a I
nucleus: | | nuc | | | nuc I
tone: eee | H | L | H |
FO: | | 150 | | | | 130 | |
duration: 1200} 75 | 0 | 75 | 1140 100 | 0 | 100 |

An F, target is placed halfway through each nucleus. The targets themselves have no
duration, being used only to shape the F, pattern, which moves from target to target in
accordance with the specified durations. A program designed for actual synthesis could
interpolate the values (transitions) between the targets and send them, along with the
values for other synthesizer parameters, to the synthesizer.

3.1 Token Structure

Each token in a stream is a collection of user-defined fields and values. Each token
has at least a name field. It is the value of the name field that is displayed for each token
in the deltas shown above. Tokens can be given other fields as well, as shown below for
a phoneme token named m:

(6) name: m
place: labial
manner: sonorant
class: cons

nasality: nasal

where cons = “consonantal”. All tokens in a given stream have the same fields, but of
course the values for the fields can differ.2 Also, the value for a field can be undefined,
when the value is not relevant for the token. Fields can be of different types, as discussed
below. In most of the sample deltas, only the value of the name field is displayed, but it
should be kept in mind that the tokens may have other fields as well.

A field together with a particular value is called an attribute. Thus the phoneme
token illustrated above has the attributes <name: m>, <place: labial>,
<manner: sonorant>, and <nasality: nasal>. The non-name attributes of a

2. A fuwure version of Delta is planned that will allow tokens in the same stream to have different fields.
This next version will also allow tokens to be represented as trees of features, as in the model of
autosegmental phonology proposed by Clements (1985). See Section 6, “Final Remarks”, for more
details.

76

token are also called features, so that we can speak of the token named m as having the
features <place: labial>, <manner: sonorant>, etc. In general, token
features are distinguished from token names in this paper by being enclosed in angle
brackets. When the value of a field is unambiguous (i.e., when it is a possible value for
only one field in the stream in question), the field name can be omitted in Delta programs,
so we can also consider the m to have the features <labial>, <sonorant>, and so on.
This abbreviated form for features will be used throughout the paper.

3.2 Delta Definitions

The first thing that a Delta rule-writer must do is give a delta definition. A delta
definition consists of a set of stream definitions that define the streams to be built and
manipulated by the program (rules). Figure 1 shows fragments of possible phoneme
and FO stream definitions for Bambara. All text following a double colon (: :) to the end
of a line is a comment that is not part of the actual stream definition.

e she sk e e 2k e 2k ke e e e e ke e e sk e ok e ke el el e ke ke ke ke keoke sk ke sk ke ok ok

Insert Figure 1 here

ek 2be sk ke ok o e sfe e ke sk ke ke ke ke s ke ke e e 2k ke ke ok e e vl ok e ke ke oke ke ek ok ke

The phoneme stream definition defines the tokens in the phoneme stream as
having name, place, manner, class, nasality, voicing, height, and
backness fields. (The stream names in the program fragments in this paper are all
preceded by a percent sign.) The name field is a name-valued field; the place,
manner, height, and backness fields are multi-valued fields; and the class,
nasality and voicing fields are binary fields. A name-valued field is a field that
contains the token names of some stream as possible values.?> A multi-valued field is a
field that has more than two posible values and is not name-valued and not numeric (see
the next paragraph). A binary field is a non-name-valued field that has exactly two
possible values, such as <nasal> or <~nasal>, where “~” is Delta notation for “not”.

3. It is not only the name field that can be name-valued. For example, Hertz et al. (1985) gives an example
of a text stream definition that defines a name-valued field called default_pronunc with the
names of the tokens in the phoneme stream as possible values, and shows how this field might be used
in a Delta program for English text-to-phoneme conversion to synchronize default pronunciations
(phoneme tokens) with text characters.

77

A binary field is always defined by specifying only one of the two possible values. The
opposite value is assumed.

The phoneme tokens in this example do not have any numeric fields. A numeric
field would be defined by following the field name with a keyword specifying the kind of
number that can be a value of the field, as shown in the FO stream definition, where the
name field is defined as having integers as possible values. Thus a field can be both
name-valued and numeric; all other field types are mutually exclusive. The keywords for
numeric values are the same as the numeric type specifiers in C.

Below the field definitions for the phoneme stream are a set of initial feature
definitions. These definitions assign values to tokens with particular names. When a
token with a particular name is inserted into a delta stream, the token’s initial field values
are automatically set, as discussed below.

If a token is not given a value for some field by an initial feature definition, it is
automatically given an initial default value. For binary fields, the initial default value is
the binary value not specified for the field in the stream definition. For example, in this
case, all tokens not given the value <cons> for the class field will automatically be
given the value <~cons>, and all tokens not given the value <~voiced> for the
voicing field will automatically be given the value <voiced>. For multi-valued
fields, the default value is <undefined>, a built-in value automatically defined for any
multi-valued field. For numeric fields (other than numeric name fields), the default value
is <0>. For name-valued fields, the default value is GAP, a built-in value automatically
defined for any name-valued field. Gaps (i.e., tokens named GAP) are generally used as
special “filler tokens” that separate tokens that would otherwise be considered adjacent,
as discussed below.

3.3 Sample Program—Synchronizing Tokens

A Delta program consists of a delta definition followed by a set of procedures that
operate on the delta. Figure 2 shows a short sample program that reads a sequence of
phoneme tokens representing a Bambara word from the terminal into the phoneme
stream, and synchronizes a C token in the CV stream with an initial consonantal token in
the phoneme stream. (Later it will be shown how to apply the rule across the entire
delta, synchronizing a C token with each consonantal phoneme.)

78

e ke sfe fe sk e e e ok e o e s e ke e e ke e sfe e s ohe e e ke e e ke ek ke ke sk ke ke e ok

Insert Figure 2 here

e ke 3k e e s ke e e s e s e e e o s e e s e e s e e sk ke ke ok e ke ke e e ke ske ek

This program consists of a single procedure called main. Every program must
have at least a procedure called main, where execution of the program begins. When the
program begins execution, the delta has the following form (assuming that the streams
shown are those defined by the delta definition):*

(7) phrase: |
word: |
morph: |
phoneme: |
Cv: |
syllable: |
tone: |

The first program line,

(8) read %phoneme;

reads a sequence of phoneme token names from the terminal and places the tokens in the
phoneme stream. The fields of each phoneme are set as specified in the phoneme
stream definition. For example, given the phoneme stream definition in Figure 1, if the
sequence m u s o is entered, the delta would have the following form after the read
statement has been executed:

(9) phrase:
word:
morph:
phoneme:

name:
place:
manner:
class:
nasality:
voicing:
height:
backness:
syllable:
tone:

m
labial
sonorant
cons
nasal
voiced

~cons
~nasal
voiced
high
back

4. Earlier papers about Delta showed initial deltas with a gap in each stream. The current version of Delta
lets rule-writers specify in the stream definition whether a stream should be initialized to contain a gap or
nothing. “Nothing” is assumed by default.

79

The dashes for the height and backness fields in the m and the place and manner
fields in the u represent the value <undefined>.

The next statement,

(10) [%phoneme _“~left <cons> !“ac] -> insert [%CV C] "left..."ac;

is a rule. A rule consists of a fest and an action. The action in this rule is separated from
the test by a right arrow (->).

The test portion of the rule,

(11) [%phoneme _“left <cons> !"ac]

is a delta test, which tests the delta for a particular sequence of tokens and sync marks.
Sync marks are referred to in Delta programs by means of pointer variables (also called
pointers), such as ~left and ~ac in our sample rule. Pointer variable names in this
paper always begin with a carat (*). The variable ~1eft is a built-in pointer that always
points at the leftmost sync mark in the delta, while ~ac (“after consonant™) is a user-
defined pointer whose use is explained below.

The sync mark where testing starts is the anchor of the delta test, and is marked by
an underscore before the appropriate pointer name. In the above test, “left is the
anchor, so testing starts at the leftmost sync mark in the delta.

The test looks in the phoneme stream immediately to the right of ~1eft for a
token that has the feature <cons>. If such a token is found, the expression ! “~ac sets
~ac to point at the sync mark immediately to its right. Since our sample phoneme
stream does start with a consonantal token, the delta test succeeds and ~ac is set to the
sync mark following the token:

(12) phoneme: | m l ul s | o
Ccv: | |
~left “ac

The action of the rule,

(13) insert [%CV C] “left..."ac;

inserts a token named C into the CV stream between ~left and ~ac:

80

(14) phoneme: | m | u | s | o |
Cv: | Cc | |
~left ~ac

The expression ~left...”"ac, which specifies where the insertion is to take place, is
called the insertion range.

Note that the sync mark pointed to by “~ac, originally defined only in the
phoneme stream, is now defined in the CV stream as well. In general, when an insertion
is made between two sync marks in the delta, each sync mark is put into the insertion
stream if it does not already exist in that stream. A sync mark that is put (defined) in a
new stream is said to be projected into that stream.

The final statement in our sample program,

(15) print delta;

displays the delta, showing only the token names in each stream. (Other print statements
can be used to display features.) The sample program ends after this statement.

3.4 Adjacent Sync Marks

Adjacent sync marks in a stream act like a single sync mark for purposes of testing
the stream. Consider, for example, the morph and tone streams of delta (1):

(16) morph: | root | | root |
tone: | L | H| L | H |

The following delta test would succeed, despite the intervention of two sync marks
between the roots in the morph stream:

(17) [%morph _"left root root]

Thus the floating L tone is in effect “invisible” in the morph stream. It could be made
visible by placing a gap between the adjacent sync-marks. If a gap were present, the
above test would fail.

81

3.5 One-Point vs. Two-Point Insertions

The insert statement presented in Figure 2 specified a two-point insertion, which
places a token sequence between two sync marks already existing in the delta. An insert
statement can also specify a one-point insertion, which places a token sequence to the
right or left of a single sync mark. For example, given the delta

(18) phoneme: lm]Juls | ol |
syllable: | syl | syl | |
tone: | L | L |

1 2 3 4 5 6
the one-point insert statement

(19) insert [%tone H] ..."5;

would insert a H token into the tone stream just before sync mark 5, automatically
creating a new sync mark before the inserted H token:3

I m]l ul s | ol
| syl | syl |
| L | H |
1 2 314 5

(new sync mark)

(20) phoneme:
syllable:

tone: L

O — — ——
.

Note that the new sync mark is unordered with respect to sync marks 2, 3, and 4.

3.6 Sync Mark Ordering

Within each stream, all the sync marks have an obvious left to right ordering.
Across streams, however, two sync marks may or may not have a relative left to right
ordering. Consider, for example, the following delta:

(21) morph: | root | | root |
phoneme: | m | u | s | o | l 31l alalbli]
syllable: | syl | syl | | syl | syl |
tone: | L | H | L | H |

1 2 345 6 7 8 9 10 11 12

5. In the examples of one-point insertions in earlier papers about Delta, the new sync mark bounding the
inserted token was automatically projected into all streams in which the sync mark designated by the
range pointer was defined. The system has been changed so that by default the new sync mark is only
defined in the insertion stream. The project option to the insert statement can be used to cause one-
1()05int insert statements to work the way they did in earlier versions of Delta, as illustrated in example

55).

82

In this delta, sync mark 4 is to the left of sync marks 6 through 12, because sync mark 6
is in the tone stream after sync mark 4, and is also in the phoneme stream before sync
marks 7 through 12. Similarly, sync mark 4 is to the left of sync mark 8, because sync
marks 6 and 7 are to the right of sync mark 4 in the tone stream, and to the left of sync
mark 8 in the phoneme stream. However, sync mark 4 is not ordered with respect to
sync mark 5, because sync mark 5 does not exist in the t one stream, and there is no sync
mark between sync mark 4 and 5 that is to the right of 4 or the left of 5 or vice versa.
(Sync mark 4 could just as well have been displayed after sync mark 5.) By the same
logic, sync mark 4 is also not ordered with respect to sync mark 2 or 3.

Delta (21) might be posited as an early form for the word muso during the
derivation of its surface representation, as explained below. It gives the tone pattern L H
to the first root, without synchronizing either tone with a particular syllable.

Delta’s merge statement can be used to merge two unordered sync marks into a
single sync mark, creating the appropriate synchronizations. For example, if ~3 points at
sync mark 3 in delta (21) and ~4 at sync mark 4, the statement

(22) merge ~3 *~4;

would produce the following delta:

(23) morph: | root | |
phoneme: | m | u | s | o | |
syllable: | syl | syl | |
tone: | L | H | L |

1 2 3 5 6 7
(4)

It will be assumed in the remainder of this paper that in the examples that contain deltas
with numbered sync marks, ~1 has been set to point at sync mark 1, ~2 at sync mark 2,
etc.

3.7 Contexts

The ordering of sync marks is important for determining sync mark contexts,
which are in turn important for determining where sync marks can be legally projected
and for determining the relationship between tokens across streams, as explained below.
The context of a sync mark in stream x is the portion of stream x where the sync mark

83

could be put without causing it to cross the closest sync mark to its left or right. For
example, in the delta

(24) morph: | root | |
phoneme: | m | u | s | o | |
syllable: .| syl | syl | |
tone: | L | H | L |

1 2 345 6 7

the context in the morph stream of sync mark 2 is the root token; the context in the
phoneme stream of sync mark 4 is the sequence of phonemes and sync marks between
sync marks 1 and 6 (recall that sync mark 4 is unordered with respect to sync marks 2, 3,
and 5); the context in the syllable stream of sync mark 5 is the second syl token,
and so on;

The left context in stream x of a sync mark n is the sync mark that is the left
boundary of the context in stream x of sync mark #. Thus in delta (24), the left context of
sync mark 2 in the morph stream is sync mark 1, and the left context of sync mark 5 in
the syllable stream is sync mark 3. Similarly, the right context in stream x of a sync
mark » is the sync mark in stream x that is the right boundary of the context in stream x of
sync mark n. If sync mark »n is defined in stream x, its context, left context, and right
context in stream x is itself.

The Delta language has the operators \\ and // for taking the left and right
context of a sync mark. For example, the statement

(25) ~x = \\ %syllable ~5;

sets ~x to point at the sync mark that is the left context of ~5 in the syllable
stream—at sync mark 3 in the case of delta (24).

In the following test, the context operators are used to test whether a H tone is the
only token between the left context in the tone stream of sync mark 5 and the right
context in the tone stream of sync mark 6. This test can be applied to delta (24) to
determine whether the vowel o (surrounded by sync marks 5 and 6) is “contained in” a H
tone.

(26) [%tone _(\\ %tone ~5) H (// %tone ~6)]

84

(The multiple references to the tone stream could be eliminated by specifying in a
previous statement a stream to be assumed if no other is specified. In general, Delta lets
users set default streams for different purposes.) This test would fail in the case of delta
(24), since the o is “contained in” a sequence of two tones, L H, but would succeed in
delta (23), where the merging of sync marks 3 and 4 has provided an ordering of sync
mark 5 with respect to the sync mark between the two tones.

3.8 Time Streams

While sync marks can be used to specify gross temporal relationships, such as
whether one token is before, after, partway through, or concurrent with another, time
streams are needed to make precise temporal specifications—for example, that a token in
one stream begins 75% of the way through the duration of a token in another stream, or
50 milliseconds after its end. The tokens in a time stream are different from other (non-
gap) tokens in that sync marks can be projected into the middle of them. When a sync
mark is projected into a time token, the token is automatically divided into the
appropriate pieces. For example, if a sync mark is placed a quarter of the way through a
token with a duration (name) of 100, the token would get divided into a token with
duration 25 and a second token with duration 75.

A time stream is defined very much like any other stream, as illustrated by the
following definition of a time stream called duration:
(27) time stream %duration;

name: int;
end %duration;

The keyword t ime in the first line indicates that the stream is a time stream.

Any number of time streams can be defined and used in a single delta. For
example, a rule-writer might use one time stream for slow speech and another for fast
speech, or a rule-writer might use one time stream for actual milliseconds, and another
for abstract phonological “time”. Consider, for example, a hypothetical language that is
like Bambara in all respects except that intervocalic consonants are ambisyllabic. In the
following delta for muso in this language, an abstract time stream called t ime is used to
represent the s as ambisyllabic:

85

(28) syllable: | syl | syl |
phoneme: lm | u | s | o |
time: 1 | 1 |} .51 .51 1 |
duration: | 70 | 120 | 200 | 150 |

Note that given such a representation of ambisyllabicity, the context operators can be
used to determine the phonemic composition of the syllables. The phonemes that
comprise a syllable are those phonemes that are between the left context in the phoneme
stream of the sync mark before the syllable and the right context in the phoneme stream
of the sync mark following the syllable.

In the Delta language, a time expression is used to refer to a particular point in a
time stream. A time expression consists of a time stream name, a pointer name, a plus or
minus sign, and an expression representing a quantity of time. For example, given the
delta

(29) phoneme: | s | o | I 3 | a |
Cv: | C | v | | C | V| V|
nucleus: | | nuc | | | nuc |
tone: | H | | H
duration: | 200 | 150 | | 140 | 200 |

1 2 3 4 5 6 7

the following time expressions would all refer to the instant midway between ~2 and ~3:

(30) %duration ~2 + 75
(31) %duration ~3 - 75
(32) %duration ~4 - 75
(33) %duration ~5 - 215
(34) %duration 2 + (.5 * dur(*2...73))

where dur (~2...73) in the last time expression uses the built-in function dur, which
returns the duration between the specified points in the delta, in this case ~2 and *3. In
general, the expression after the plus or minus sign in a time expression can be an
arbitrarily complex numeric expression.

Delta lets users define a particular time stream as the default stream, so that the
stream name can be omitted in time expressions that refer to that stream. Users can also
specify in a time stream definition whether time should be measured from left to right or
right to left. When time is measured from left to right, a time expression with a positive
stream offset, such as expression (30) above, refers to a point that is # time units to the
right of the sync mark specified by the pointer variable, while one with a negative time
offset refers to a point » time units to the left. When time is measured from right to left

86

(as it might be, for example, for a Semitic language, which is written from right to left), a
positive time offset specifies a time to the left, and a negative one a time to the right. It
will be assumed in the remainder of this paper that the deltas have a single time stream
called duration, that this stream is the default time stream, and that time is measured
from left to right.

Time expressions can be used anywhere ordinary pointer variables can be
used—for example, in the range of an insert statement. Thus, given delta (29) above, the
statements

(35) n= (.4 * dur(*2...73)):
[$tone _\\"2 H //*3] -> insert [%F0 160] (“2 + n)...(*3 - n);

would produce the following result:

(36) phoneme: | s | o |
Cv: | C | v |
tone: eee | H
FO: | | 160 |
duration: | 200 | 60 | 30 | 60 |

Notice that sync marks have automatically been placed at the appropriate timepoints in
the delta. In general, when a time expression is used where a sync mark is required, the
sync mark is automatically created in the time stream.

Delta has the special operator at for placing a token at a single point in time.
Thus if instead of the rule in (35), the rule

(37) [%tone _\\"2 H //"3]
-> insert [%F0 160] at (2 + (.5 * dur(*2...73)));

had been executed, the result would be the following:

(38) phoneme: | s | o |
Cv: | C | v |
tone: ceo | H |
FO: | | 160 |
duration: | 200} 75| O | 75 |

~1 ~2 ~3

The at operator is special in that it will create two sync marks if no sync marks exist at
the specified point in time, it will add one sync mark if a single sync mark exists, and it
will use the outermost sync marks if several exist. Thus the at operator makes it easy to

87

place tokens in different streams at the same point in time, and synchronize the tokens
with each other.

3.9 Forall Loops

The previous sections have included several examples of rules. Each of these
rules was restricted to operating at one particular point in the delta. For example, rule
(10),

(10) [%phoneme _"left <cons> !“ac] -> insert [%CV C] "left..."ac;

is only tested against the first token in the phoneme stream. Usually, however, a rule is
meant to apply at all appropriate points across the entire delta. Delta has several control
structures for applying rules across the entire delta or selected stretches of the delta. One
of the most useful of these is the forall loop, which performs the body of the loop each
time the test at the top of the loop succeeds.

Consider, for example, the following forall loop, which applies rule (10) across the
entire delta.
(39) loop forall [%phoneme _“bc <cons> !“ac];

insert [%CV C] “bc..."ac:
pool;

The first time the loop is executed, the forall test at the top of the loop is tested with “bc .
(“before consonant”), the anchor of the test, automatically set to “1eft. If a consonantal
phoneme follows ~bc, the loop body is executed, synchronizing a C token in the CV
stream with the phoneme. After execution of the loop body, and also whenever the forall
test fails to match, the advance pointer ~bc is automatically advanced to the next sync
mark, and the test is repeated. This advancing is continued until the advance pointer hits
the rightmost sync mark in the delta, in which case the loop terminates.

Assume that loop (39) is being applied to the following delta:

(40) phoneme: | m | u | 8 | o |
Cv: | |
1 2 3 4 5

First, “bc would be set at sync mark 1. The forall test would succeed, setting ~ac at
sync mark 2, and the body of the loop would insert a C token between ~bc and “ac:

88

(41) phoneme:
Ccv:

Then ~bc would be advanced to sync mark 2. The forall test would fail, since a vocalic,
rather than consonantal, phoneme follows. Pointer “bc would then be advanced to sync
mark 3, the forall test would succeed (setting ~ac at sync mark 4), and the body of the
loop would insert a C token:

| o |
I |
4 5
~ac

(42) phoneme: | m | u |
Cv: | C | I
1 2 3

Qo

bc
The loop would continue in this fashion until ~bc reaches sync mark 5.

Users can override the system’s default assumptions about forall loop application
by specifying the initial setting of the advance pointer, where the advance pointer should
start from on subsequent iterations of the loop, a particular pointer to advance, the stream
through which to advance, in which direction to advance (left to right or right to left), and
so on. In general, the forall loop is a powerful construct with which users can specify
precisely how their rules should apply.

3.10 Token Variables

The program fragments in previous sections have included several examples of
pointer variables and one example of a numeric variable (example (35)). In addition,
Delta provides token variables, which hold entire tokens. The following forall loop uses
a token variable to replace with a single phoneme all token pairs consisting of two
identical vocalic phonemes. For example, it replaces two adjacent a’s with a single a:

(43) loop forall [%$phoneme “bv <~cons> !S$vowel $vowel !“av];

insert [%phoneme $vowel] “bv...%av;
pool;

Assume that this loop is being applied to the following delta:
(44) phoneme: | j | a | a | b | 1 |

(The two a tokens might be used in the initial underlying representation for jaabi to
represent the long vowel [a:], as discussed below.) The forall test first looks for a vocalic

89

(<~cons>) phoneme following ~“bv (“before vowel”). It will succeed when ~bv
precedes the first a. The expression ! $vowel puts a copy of the first a token in the
token variable $vowel. (Token variable names in this paper always start with a dollar
sign.) The next expression, $vowel, tests the next token to see whether it is the same as
the token in $vowe 1—that is, whether it is also a. If so, ~av is set after this vowel, and
the body of the loop inserts a copy of the token in $vowel between ~bv and “av,
thereby replacing the two vowels and their intervening sync mark with a single a:

(45) phoneme: | j | a | b | 1 |

3.11 Fences

It is often necessary to prevent a delta test from crossing a linguistic boundary,
such as a morph boundary. Delta has a special construct, called a fence, for limiting the
scope of a delta test. A fence is a pair of built-in pointer variables, ~1fence and
~rfence. "~lfence delimits the left side of the fence, and “rfence delimits the
right.

Fences are often used in conjunction with forall loops. For example, the forall
loop below, whose body is itself a loop, adds a fence to loop (43) to restrict it to operating
only on identical vowels that are within the same morph (see below for a simpler,
unnested loop that accomplishes the same thing):

(46) loop forall [%morph _“~lfence <> !“rfence]:;
loop forall [%phoneme _“bv <~cons> !S$vowel $vowel !“~av]
advance from “lfence;

insert [%phoneme $vowel] “bv..."av;

pool;
pool;

The empty angle brackets in the outer forall loop match any token in the morph stream.
Thus the outer loop surrounds the morph with “1fence and “rfence. For each
morph, the inner forall loop reduces two identical vowels to a single one. The expression
advance from “~1lfence initializes the advance pointer, “bv, to ~1fence, the
beginning of the morph matched by the outer loop. The forall test in the inner loop will
fail if it has to cross one of the fence variables in order to succeed. Thus it will not match
vowels across a morph boundary.

90

In loop (46), the sole purpose of the outer forall loop is to set a fence. An
alternative way to set the fence that does away with the outer loop altogether is to include
the option fence $%$morph after the delta test in the inner loop:

(47) loop forall [%phoneme _“bv <~cons> !$vowel $vowel !“av]
fence %morph;

insert [%phoneme $vowel] “bv...”%av;
pool;

The expression fence $%$morph prevents the forall test from crossing a morph
boundary, just as the outer loop did in the previous example.

3.12 Conclusion

This section has presented the delta data structure, and has shown various ways in
which this data structure can be tested and manipulated. The concepts and constructs
presented—streams, tokens, sync marks, contexts, delta tests, one-point and two-point
insertions, time streams, forall loops, fences, and others—are by no means a complete
inventory of Delta language features; rather, they have been strategically selected for
presentation in order to provide enough information to follow the sample programs in the
next two main sections, which show applications of the Delta language to Bambara and
English.

4 Modeling Tone and Fundamental Frequency Patterns in Bambara

This section presents some sample programs that illustrate how Delta can be used
to formalize and test a model of Bambara tone realization. This model is actually an
integration of two separate models, a model of phonological tone assignment based on
the work of Rialland and Sangare (1985), and a model of the phonetic realization of the
phonological tones based on the work of Mountford (1983). Only the facts concerning
monosyllabic, bisyllabic, and trisyllabic non-compound words in Bambara are
considered. Words with four syllables exist, but are rare.

4.1 A Model of Bambara Tone Assignment

Each Bambara word has an inherent (unpredictable) tone pattern. Monosyllabic
and bisyllabic words either have a low or a high tone on all the syllables. For example,

91

the word muso is inherently low-toned ([muso]), and the word jaabi is inherently high-
toned ([ja:bi]). The reason that muso was shown throughout this paper with a high tone
on the final syllable will become clear in the ensuing discussion.

A trisyllabic morph can have one of several patterns: 1) It can be inherently high-
toned or low-toned in the same way as the monosyllabic and bisyllabic words are. For
example, the morph [galama] ‘ladle’ is inherently low-toned, while [sunguran] ‘girl’ is
inherently high-toned. (In the transcriptions, a word-final [n] or an [n] before a consonant
marks the preceding vowel as nasalized.) 2) It can have the pattern low-high-low, as in
[sakéne] ‘lizard’. 3) It can have the pattern low-high or high-low. In this case, it is
optional whether the first tone is associated with the first syllable and the second tone
with the last two syllables, or the first tone with the first two syllables and the last tone
with the last syllable. For example, the high-low morph mangoro ‘mango’ can be
realized as [mangoro] or [mangoro]. Only the second realization will be considered for
purposes of the program shown below.

In addition to the inherent tones of morphs, Rialland and Sangare posit two other
kinds of tones in underlying representations of Bambara utterances: 1) a floating low tone
that follows definite noun phrases, as illustrated in delta (1) above, and suggested by the
work of Bird (1966), and 2) a floating high tone suffix that follows all content morphs (as
opposed to function morphs).

A floating low tone definite marker is not associated with any particular syllable in
surface representations; it serves to trigger tonal downstep at the phonetic level, the
lowering in fundamental frequency of following high tones.

The high tone suffix for content morphs is realized on different syllables,
depending on whether the content morph is part of a definite noun phrase—that is, on
whether a floating low tone immediately follows the content morph. If there is no
floating low tone, the high tone is realized on the first syllable of the morph following the
content morph, if there is one. Otherwise, it is realized on the last syllable of the content
morph itself.

For example, consider the phrase muso don ‘It’s a woman’, which has an
indefinite noun phrase, and hence, no floating low tone. In this phrase, the high tone
associated with muso is added to the inherently low-toned don, producing the pattern

92

[muso don], where the circumflex accent * represents the tone pattern high-low. (Here,
the content tone has been added to the tone of the one-syllable morph. In a polysyllabic
morph, the high tone simply replaces the inherent tone associated with the first
syllable.) On the other hand, the phrase muso don ‘It’s the woman’, which has a definite
noun phrase, is realized as [mus6 don]. See Rialland and Sangare (1985) and Bird,
Hutchison, and Kanté (1977) for a fuller description and analysis of Bambara tone
patterns.

4.2 Formulation of the Tone Model in Delta

According to the model just presented, Bambara tone patterns consist of sequences
of high and low tones. Each tone is either an inherent part of a morph, a floating definite
marker, or a floating content marker, as illustrated in Figure 3, which shows several
underlying representations of Bambara utterances in delta form. In the transcription in
example 5 in the figure, the wedge ~ represents the tone pattern low-high.

e ke sk e o etk e s e e e ke b ke e e ke ek ke she she e s e ke ek skeoke sk ke ske ke ke sk ok

Insert Figure 3 here

ke i e 3fe e 3 e e 3¢ ke ke Sk ke ke 2k sk e e ke ke 3 e Sbe 3k e e i e e e ke s ke ke e ske ke ke

Given underlying forms like these, the correct tone pattern can be assigned in two
main steps:

1. Assign each floating H tone to the appropriate morph. Attach it to the end of a
preceding morph if a floating L tone follows. Otherwise, attach it to the beginning
of the following morph.

2. Merge unordered pairs of syllable and tone syn;: marks from right to left until there
are no unordered pairs left, thereby creating the appropriate synchronizations
between tones and syllables.

Step 1 would create the forms shown in Figure 4 for the sample deltas in Figure 3:

93

3k 3k 3k ok 2k sk e 3 3k ke 2k 3k ok 3k 3k o 3k ke 2k 3k e 3k ke ke 3k ok ok ke ok ke ke ke ke ke ke dke e k¢

Insert Figure 4 here

ek ok ok o o sk ok e ok e ok 2k ok ke o ok ok ok ke ok ok ke ok ok ok ke ok ok ok ke ok ke ok ok ke ok ok

Step 2 would operate on the deltas in Figure 4 to produce those shown in Figure 5.
3k 3k 2k ok 3k sk e ok ke ske ok ok 2k skefe ke Sk ke 3 e ok Sk sk sk ke ke ok ok ok ke sk sk sk ke e ke sk ok

Insert Figure 5 here

Sk 3k sk 3k 3k dfe ke ke ok Sk sk 3k 3k 3k ke Sk sk ke e ke Sk sk ok s ok ke ok Sk sk el ol ok ofe ok dfe ok ok
Note that this step does not change delta 1, since this delta contains no sync marks in the
syllable and tone streams that are unordered with respect to each other. In delta 5,
the right to left merging of sync marks correctly leaves the first syllable synchronized

with two tones, L and H. Left to right merging of the sync marks would produce the
wrong result.

A final step might be to combine adjacent H tones and L tones into single H and L
tones, but it does not make any difference for purposes of the program below that
generates fundamental frequency patterns on the basis of the tone patterns whether a
single tone is associated with several syllables, or each of the syllables has its own tone.

Step 1 can be accomplished in Delta by the forall loop shown in Figure 6.

3% ke ke ke 3k e ke Sk o e 2k sk ke ke e ke ok ke ke e ok e ke ke e ke ke e ke ke ke e ok ke ke ok ok Kk
Insert Figure 6 here

3k 2k 3k ke 3k sk e 2k ok ke 2k ok ke 2k sk ke ok o 2k ok ke ke ke ke 3k ke 2k 3k ok 2k e ok ok 2k ke dke e ke

The forall test

(48) ([%tone _~bh H !”~ah] & [%morph _“~bh “~ah])

contains two parts. The first matches any H token after ~bh, setting ~ah after it. The
second part tests whether “bh and ~ah point at adjacent sync marks in the morph
stream—i.e., whether the H token matched by the first part is a floating tone.

94

The second step, which merges the appropriate sync marks in the syllable
stream with those in the tone stream can be expressed as the forall loop shown in Figure
7.

ek sk e ok ke sk ke ok e sk e e e she e ke Sk e s e s e ke ke e ke e sk sk e ke e e e ke ek

Insert Figure 7 here

3 e sk e ok e sk b sk a4 sk e e e e e e e e sk e 3k dbe sk e 3k e e ke e e e e e feoke e ke

The outer forall loop invokes the inner simple loop for each token in the morph stream.
A simple loop continues to repeat until a statement in the loop body, in this case an exit
statement, causes the loop to terminate. The loop moves pointers bt and “bs right to
left through the morph, merging the appropriate sync marks, and terminating whenever
~bt or “bs equals “bm—that is, when one of these pointers reaches the beginning of the
morph.

4.3 Building Underlying Representations Using Dictionaries

The program fragments shown above assume an underlying representation in
which each morph is associated with a tone pattern, and floating high and low tones are
present where appropriate. A Delta program designed to test the above program
fragments would have to build the appropriate underlying representations in the first
place. To prevent users from having to enter underlying representations for the
utterances they wish to test (a tedious task), the program could be designed such that the
user only has to specify phoneme names, morph boundaries, and the unpredictable low
floating tones. For example, our sample utterancé muso jaabi might be entered as
follows:

(49) +mus o' +jaabi+

where + designates a morph boundary and ° a floating low tone. Two a tokens in
succession represent the long vowel [a:], as discussed earlier. On the basis Of this
information, the program could easily build the following structure:

(50) morph: |
phoneme: | |
|
|

m u |
cC |V

o j |
| Vv

roo
| 3 a
| cl v

Qu
<ot

roo
| | b | 1
CV: | lCc1l Vv

|
|
I
tone: |

L

95

The next step would be to insert the inherent morph tones and the floating high
content tones. Since neither the inherent tones nor the content tones are predictable from
this delta, a dictionary must be used. Delta has two kinds of dictionaries, action
dictionaries and set dictionaries, or simply sets, both of which are useful for creating
underlying representations from forms like the above.

An action dictionary contains token name strings (henceforth “search strings”) and
associated actions. An action for an entry, which can consist of any legal Delta
statements, is automatically performed whenever a search string is matched—that is, an
identical token name sequence is looked up in the dictionary. For our purposes, an action
dictionary named morphs might be defined to contain all morphs (represented in terms
of phoneme names) and associated tone patterns.5 More specifically, the action for each
morph might be an insert statement that inserts the appropriate tones for the morph into
the delta, as shown in Figure 8.7

ek ke sl sk ol ke e ske e ok e sk ke ok e ke ok e ok s ok ke sk e sk ke sk ok skeoke ok sk ke sk ok ok

Insert Figure 8 here

ek ok ok e o 2k 3¢ dke s e e 3 sk ok e ke ok e e e o ke ok ke ok ke ok e e ke e ke e ke sk ke ok

An action dictionary always has four pointer variables associated with it, in this
case “b, “e, ~1, and ~2. The first two pointer variables take on the values of the
pointers delimiting the token name sequence being looked up. The last two pointer
variables are special pointers that can be used inside the dictionary search strings to
isolate parts of the dictionary entries to which the associated actions need to refer. These
special pointers are not used in this example, and can be ignored. See Hertz et al. (1985:
1597-1598) for an example of their use.

6. In earlier papers about Delta, the sample action dictionaries were unnamed, reflecting the then-current
version of the system in which it was only possible to define a single, unnamed action dictionary. Delta
has been enhanced to allow rule-writers to use any number of named action dictionaries.

7. Bambara contains sets of morphs that differ phonetically only in their tone pattern. The dictionary action
for such morphs might prompt the user for the intended tone pattern. Alternatively, the user might
annotate the input string with the intended tone pattern, or, in some cases, the system might be able to
perform some syntactic analysis to determine the correct pattern automatically.

96

The following forall loop operates on a delta of the form shown in delta (50)
above, looking up in dictionary morphs, the phoneme names associated with each
morph in the delta:

(51) loop forall [%morph _“bm <> !“am];

find %phoneme “bm...”"am in morphs;
pool;

If the phoneme sequence is found, the dictionary automatically synchronizes the
appropriate tones with the morph, creating, for example, the following deltas for muso
Jaabi and mangoro don:

(52) morph: | root | | root |
phoneme: | m | u | s | o | Il Jlalalbli]
tone: | L | L | H |

(53) morph: | root ! | root |
phoneme: | m | an | g | o | r | o | | 4 | on |
tone: | H | L | L | L |

The next step would be to insert the floating high content tones after the content
morphs. This step could be accomplished by adding the appropriate insert statement to
the action of all content morphs in dictionary morphs. However, since there are so
many content morphs, a simpler strategy would be to “mark” the non-content morphs as
function morphs, and insert the content tone for all morphs that are not function morphs.
The simplest way to mark the appropriate morphs as function morphs is to place them in
a set.

A set contains search strings, but no actions. For example, one might define a set
called function _morphs as follows:

(54) set function morphs contains %phoneme: a, d on, ...;

(Since all of the morphs in set function_morphs are also in the action dictionary
morphs, an alternative to the above set statement could be used in which each function
morph in the action dictionary is followed by an expression that places the morph in set
function_morphs.) Given set function_morphs, a rule could be added to forall
loop (51) above to insert a H tone after any morph not found in the set:

(55) loop forall [%morph _“bm <> !“am];

~find %phoneme ~bm...%am in function_morphs
-> insert ([%tone H] “am... project:;
popl:

97

The option project at the end of the insert statement specifies that the new sync mark
after the inserted H tone should be projected into all streams in which ~am, the range
pointer, is defined. This rule would operate on deltas (52) and (53) to produce the
following underlying representations for muso jaabi and mangoro don:

(56) morph: roo

| t root
phoneme: | s | o j 1l ala
Cv: | c |V cl|l Vv]|V
tone: |

(e}

n u |

cC | Vv |

L H L

(57) morph: | r

phoneme: | m an | g

Ccv: | CcC | Vv | C
tone: | H

|
ol r| ol
vic]|vVv]
| L |

oot
|
I

H

A final step in creating the underlying representation would be to reduce
sequences of identical vocalic phonemes that are not separated by a morph boundary,
such as the a a of jaabi, into a single phoneme, as shown earlier in example (47).

4.4 A Model of Bambara Fundamental Frequency Patterns

On the basis of the CV and tone streams, the appropriate F,, pattern for the tones
can be determined. This section considers one possible strategy for F, determination,
based on the work of Mountford (1983). According to Mountford, high and low tones
descend along relatively straight and independent lines, as shown schematically in the
diagram of a sentence with the tone pattern HL L HL H L in Figure 9.

ke ke dfe ke sk ke ok e o sk ke sk ok sk ke ok e 2k ok sk sk ke ok e sk ke sk e skeofe sk sk ok sk sk ke ok ok

Insert Figure 9 here

33k sk ke ok e ke ok ok ke ok sk ok sk o ok ok ok ok ak ke ske ke ke sk sk ok sk sk sk sk ok sk sk ok sk ok ok

The starting and ending frequencies of the baseline are relatively independent of the
sentence duration. Thus the slope of the baseline varies with sentence duration. The
sample program below uses a starting frequency of 170 hertz and an ending frequency of
130 hertz for the baseline. The starting and ending frequencies of the topline are a
function of sentence duration. For the sake of simplicity, this detail is ignored in the

98

sample program, which assumes a starting frequency of 230 hertz and an ending
frequency of 150 hertz.?

My own very preliminary laboratory studies of Bambara tone patterns suggest that
the F, tone targets are generally realized halfway through each syllable nucleus—that is,
long vowels behave the same way as short vowels for the purpose of F, target placement.
Furthermore, the F, targets tend to have no durations of their own, serving only to shape
the overall F; contour.

4.5 Formulation of the Fundamental Frequency Model in Delta

The model of F, assignment just outlined can easily be implemented in Delta, as
shown by the program fragment in Figure 10, which generates a descending topline and a
descending baseline, and determines the appropriate F, values along those ramps. The
program assumes that each phoneme was given a duration by earlier statements.

ek e ke s e ke e e e ok 2fe s e ke e ke ke e s ke e sheske sk ke ek kel ke e sk kool e ke ke
Insert Figure 10 here

3 ke e e sk e e e o e e e e e e she e sk e s ok e she ke e ke ke e e ek ke ke ke ok ek sk

The forall loop in this program would generate the following values for our
sample delta for muso jaabi (assuming the segment durations shown and a sentence
duration of 1080 milliseconds):

(58) morph: | root | | root
phoneme: | m | u | s | o | I3 | a |
Ccv: | C | v | C | v | | Cc | v | V|
nucleus: | | nuc | | nuc | | | nuc | ..
syllable: | syl | syl |] syl |
tone: | L | H | L | H
FO: | 1165] | I 11951 | | 11721 |
duration: |70 [60] O |60]200]75| O |75] [140 95| 0 |95]

The program has been oversimplified for purposes of illustration. For example, it
does not handle single syllables that have two tones, such as don in utterance 1 in Figure
5 above, nor does it compute the starting and ending frequencies of the high tone line as

8. Current research on downtrend in other languages suggests that this model may be oversimplified. Since
Delta has fully general numeric capabilities, it should be equally well-suited for expressing other
algorithms for computing F values.

99

a function of sentence duration. Furthermore, it does not handle the tone raising and
lowering phenomena that occur in Bambara for tones in particular contexts. Rialland and
Sangare (1985) posit a rule that downsteps (lowers) a high tone and all subsequent high
tones after a floating low tone. See also Mountford (1983) for some posited raising and
lowering rules. Our sample program could easily be expanded to handle all of these
phenomena.

In addition to F, values, a program designed for synthesis would have to compute
or extract from a dictionary the values for other synthesizer parameters. Delta’s generate
statement can be used to create a file of parameter values and durations for the
synthesizer on the basis of the parameter streams and an associated time stream:

(59) generate (%duration, %F0, %F1, %F2, %F3, ...):

Also, users can tailor their program to their particular synthesizer setup by writing their
own C programs to generate values for the synthesizer, and their own synthesizer driver.
The ability to interface C programs at will also lets Delta be used in conjunction with
demisyllable and diphone libraries.

5 Modeling English Formant Patterns

The section just completed illustrated how Delta can be used to formalize and
integrate a phonological model of tone assignment and a phonetic model of tone
realization. This section further demonstrates Delta’s flexibility by drawing from my
own work on modeling English formant patterns to show how different hypotheses I have
come up with over the years can be formulated in Delta. The section focuses on my most
recent model, in which formant targets and intervening transitions are represented as
independent durational units that are related to higher-level phonological constituents in
well-defined ways. This model relies critically on the concept of synchronized units at
both the phonological and phonetic levels.

5.1 Model 1: Linear Utterance Representations, Implicit Transitions

The first work I did on modeling English formant patterns was in the context of
my students’ and my synthesis rule development. Our SRS synthesis rules for English,
developed between 1978 and 1982, are based on the hypothesis that every phoneme (i.e.,

100

phoneme-sized unit) has an intrinsic duration that is modified according to such factors as
segmental context and stress. Formant targets (usually two of them) are set in relation to
the segment’s duration—for example, 20% and 80% of the way through the segment.’
For the most part, all durational adjustments, such as stretching before voiced segments,
are made between the formant targets within given segments, so that the durations of the
formant transitions between targets in adjacent segments remain constant.

5.2 Model 2: Multi-level Utterance Representations, Implicit Transitions

In the course of implementing a set of SRS rules based on the model just outlined,
we realized that our formant target and duration rules might be simplified if we treated
certain sonorant sequences that act as a single syllable nucleus, such as [ei], [ai], and [ar],
as two units for the purpose of assigning formant targets, and as single units for other
purposes, such as assigning amplitude patterns. (A syllable nucleus in this model
consists of a vowel + a tautosyllabic sonorant, if such a sonorant exists.) Such a structure
was impossible to represent straightforwardly with SRS, which relies on linear utterance
representations, but is quite simple to represent with Delta, as shown below for the word
ice:

(60) syllable:

|
nucleus: | nuc |
phoneme: | a | 1 | s

I

|

[

By representing the [i] of syllable nuclei like [ai] as an independent phoneme token, the
rules can assign a single target value for each formant—say, an F, value of 2000
hertz—to all i’s, regardless of their context. Syllable nuclei can still be treated as single
units where appropriate.

While this model simplifies the prediction of formant values, however, it leads to
complicated rules for positioning the formant values with respect to the edges of
segments, since the formant target positions for a token in one context (e.g., 1 as the sole
component of the nucleus) are not necessarily the same as those in another (e.g., i at the
end of a diphthong).

9. In all our SRS rules, not just those for English, some segments only have a single target for a particular
formant, and others, like [h] in English and [r] in Japanese, have no targets for some formants. Non-
initial English [h] is modeled by linear transitions connecting the last formant targets in the preceding
segment and the first in the following segment.

101

5.3 Model 3: Multi-level Representations, Explicit Transitions

My recent durational studies support the view that formant transitions are
relatively stable in duration. To avoid the complicated target placement rules alluded to
above, however, I am exploring a new model, in which the transitions are represented as
independent durational units, as shown below for the word ice:

(61) syllable: | syl |
nucleus: | nuc | | |
phoneme: | a i | | s |
F2: | 1400 | 12000}] 1800 |
duration: | 45 | 90 | 30 | 40 | 90 |

Note that the formant transitions are represented by adjacent sync marks in the phoneme
and F2 streams, with intervening durations in the duration stream.

In this model, each formant target is synchronized with an entire phoneme token,
and the duration-modification rules modify entire phoneme durations. In diphthongs,
such as [ai], the duration rules modify only the first portion of the diphthong (e.g., the [a]
of [ai]), thereby keeping the duration of the transition portion of the diphthong (e.g., from
[a] to [i]) constant.

Below are some forall loops that might be used to insert formant values and
formant transitions, and to modify phoneme durations in the appropriate contexts,
building a delta like (61) above. These examples assume that earlier statements have
inserted the appropriate initial phoneme durations so that the de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>