

8th Conference on CO₂ as Feedstock for Fuels, Chemistry and Polymers

Heleen De Wever and project partners, 24 March 2020

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

General information

- Title
- Acronym

• Start date

- Biological routes for CO₂ conversion into chemical building blocks BioRECO₂VER
- Work program topic BIOTEC-5-2017: Microbial platforms for CO₂-reuse processes
- Type of action **Research and Innovation Action**
 - 1st January 2018
- 31th December 2021 • End date
- € 6,812,187.50 • EU budget
- Coordinator

VITO

www.bioreco2ver.eu

Overall project concept

Project Consortium

- 4 Industries
- 4 SMEs
- 2 universities
- 2 RTOs

BioRECOVER

CO₂ capture and pretreatment - An overview

Enzyme improvement by directed evolution

Library construction:

1000 epCA variants generated with error-prone PCR

Library screening:

- Primary screening to select active variants
- Secondary screening to select variants with resistance to inhibitors

Scaled-up production of most promising variants Sequencing for identification of mutations

• 3 mutants showed 50% increased resistance to flue gas inhibitors

Enzyme improvement by immobilization

Applied techniques for CA immobilization:

H. De Wever, VITO 8th Conference on CO₂

BioRECOVER

Development of a solvent with competitive absorption and desorption properties

Screening of different AAIL: tertiary amine blends in small scale resulted in selection of solvent with:

5-fold higher initial rate

 2-fold higher regeneration at 80°C 2-fold higher CO₂ load compared to MDEA

 >15% reduction in desorption T compared to MEA

MDEA: Methyl diethanolamine; MEA: Monoethanolamine

8

CO₂ capture in large-scale packed bed absorption equipment

Scaled-up trials revealed even higher benefit with use of the developed solvent:

Solvent	Relative K _G a (%)
25% MEA	100
25% MDEA	3.07
25% AAIL: amine blend	30.86

 10-fold increase in mass transfer coefficient (K_GA) compared to MDEA

1m (80mm ID) packed column (Raschig rings)

MDEA: Methyl diethanolamine; MEA: Monoethanolamine

BioRECOVER

Integration of CA with novel hybrid solvent for efficient CO₂ capture

- Reduced operation times by 25%
- 32% increase in captured CO₂ compared to the non-enzymatic reaction

CO₂ capture and pretreatment

Conclusions:

- An ultrastable CA was improved by protein engineering and immobilization for increasing stability towards harsh and high temperature environment
- An enzyme compatible novel hybrid solvent was developed with competitive absorption and desorption properties

Next steps:

 Integration of *immobilized improved epCA variants* with the developed *novel hybrid solvent* for *large scale absorption* using *flue gas* resulting in a concentrated gas stream of at *least 95% CO₂*

Microbial CO₂ conversion

• 3 microbial platforms

Microbial platforms		T range	O ₂ tolerance	Target product	Partner
Autotrophic	Clostridial strain	Mesophilic	Anaerobic	Isobutene	GLOBAL BIOENERGIES
	Cupriavidus necator	Mesophilic	Aerobic	Lactate	EnobraQ
Capnophilic	Thermotoga neapolitana	Hyper- thermophilic	Strictly anaerobic	Lactate + H ₂	Consiglio Nazionale delle Ricerche

Wood-Ljungdahl and Isobutene Pathway

- WLP is the most efficient carbon fixation pathway
- Isobutene is derived from central metabolic precursor acetyl-CoA
- Isobutene pathway is Redox-neutral and does not require directly ATP

Isobutene production under autotrophic conditions

- Successful implementation of Isobutene pathway proven on protein level
- Isobutene production from CO, CO_2 and H_2 mixture and from CO_2/H_2 mixture
- Large improvement of production during the BioRECO₂VER project

BioRECOVER

Aerobic lactate production

Metabolic engineering of Cupriavidus necator strain to improve lactate production from CO₂

- 1. Improve lactate dehydrogenase (LDH) activity
 - LDH activity increased by a factor 180
 - Specific lactate production rate increased by a factor 4
- 2. Increase pyruvate availability by deletion of competitive pathways
 - Different competitive pathways deletions evaluated
- **3.** Block lactate re-consumption
 - Unexpected pathway identified by transcriptomic study
 - Lactate re-consumption issue solved by deletion work
 - Patent application filed

Lithoautotrophic metabolism

Capnophilic lactate production

Capnophilic Lactic Fermentation (CLF) pathway: *Thermotoga neapolitana*-based platform to gain value from CO_2 and waste by production of L-lactate & H₂

- Newly discovered pathway (ChemSusChem, 2014, 7, 2678-2683)
- Dissection of anabolic branch of CLF
- Increase metabolic flow from CO₂ & acetate to lactate
- Proof of concept net CO₂ fixation in lactic acid
- Explore feeding of exogenous acetate as C2 unit

Capnophilic lactate production

- Selection of two model strains with increased CLF productivity
 - T. neapolitana subsp. capnolactica (DSM33003) is a mutant of DSMZ 4359^T strain and has been generated in our laboratory under saturating concentrations of CO₂
 - **RQ7** is a *Thermotog*a sp. strain isolated from hot sea-floor Ribeira Quente (the Azores)
 - Complete genome sequences are available

ACETATE	exogenous + CO ₂	 L-LACTATE*
228 mg L ⁻¹	167 mg L ⁻¹	(95% e.e.) 340 mg L ⁻¹

*100 % more than reference strain DSMZ 4359^T

H. De Wever, VITO	
8 th Conference on CC	2

Capnophilic lactate production

DSM33003

• heterologous expression AcCoA synthetase (acs) of Thermus thermophilus (mutant CL-11-AS)

CLF performances under standard medium + 20 mM acetate

BioRECOVER

Capnophilic lactate production

UPTAKE

Microbial CO₂ conversion

2 technologies

4

Bioelectrochemical systems

(High pressure) fermentors

Bioelectrochemical systems (BES)

Cell configurations

Clostridium platform: Double chamber

- Anaerobic conditions

Cupriavidus platform: Single chamber

- Membraneless system
- Coexistence of O₂ and H₂

H. De Wever, VITO 8th Conference on CO₂

21

X 30°C Maximize *in situ* H₂ production

www.bioreco2ver.eu

BioRECOVER

Thermophilic process

50°C

High T^o

- Higher reaction rates
- Less risk of contamination
- More product specificity

50ºC Thermophilic process

Set-up of mild thermophilic systems

Chronology

Reactors 1 and 2 (280 d operation)

After 70 d, inoculation of

Reactors 3 and 4 (210 d operation)

After 160 d, inoculation of

Reactors 5 and 6 (50 d operation)

- Max production rate: 28 g acetate m⁻² d⁻¹
- Coulombic efficiency: 80-90%

ISMET7 2019 Laura Rovira-Alsina

Aerobic process

- Cupriavidus lactate fermentation in a single chamber BES
 - 2-stage process
 - Expected stoichiometries

Biomass production Cupriavidus $4,09 \text{ CO}_2 + 6,21 \text{ O}_2 + 21,36 \text{ H}_2 + 0,76 \text{ NH}_4^+$ $\rightarrow \text{ C}_{4,09}\text{H}_{17}\text{O}_{1,89}\text{N}_{0,76} + 18,7 \text{ H}_2\text{O} + 0,76 \text{ H}^+$

Gas mix $CO_2/O_2/H_2 = 16/20/64$ (literature)

Lactate production $3 \text{ CO}_2 + 3.5 \text{ O}_2 + 13 \text{ H}_2 \rightarrow \text{ C}_3\text{H}_5\text{O}_3^- + 10 \text{ H}_2\text{O} + \text{H}^+$

Aerobic process

• Growth of wild type Cupriavidus strain

- Stainless steel electrodes result in OD increase while graphite ones do not (SS: higher H₂ evolution) (Graphite: sorption - peroxide)
- Too negative voltage results in slower growth (foam formation)

Aerobic process

• Tests with modified Cupriavidus strain

- Conditions
 - Stainless steel electrodes
 - Avoid O₂ inhibition enzymes
 - Apply different voltages
 - Test different electrode surface/liquid ratio
- Conclusions
 - Faster growth in reactors with higher electrode surface area
 - Fixed ratio O_2/H_2 from water electrolysis has risk O_2 inhibition or H_2 limitations
 - Headspace composition to be optimized

Bioelectrochemistry

- Next steps
 - Co-culture tests

• Benchmark with proprietary gas diffusion electrode

High pressure fermentation

• Features

- Operating pressure = 1 to 10 bara
- H₂ and CO₂ as process gas; also for gas mixtures with O₂, CH₄ and CO, real offgases
- Online GC to monitor headspace composition
- Separate electrical cabinet controlling battery of mass flow controllers for gas addition
- Design allows 100% gas consumption
- Integrated membrane filtration unit for cell retention
- In situ product recovery
- ATEX compliance
- Fully automated Labview
- Commissioned December 2019 January 2020

Online GC

-

Summer of

Fermentor skid

High pressure fermentation

- Open-access review paper (see project website)
 - Different types of reactors discussed
 - H₂ and CO sensors in liquid: troublesome
 - Titers and productivities need to be improved significantly to allow industrialization
 - Gas to ethanol most advanced
 - More optimization work required to produce non-native chemicals from C1 substrate gases

Contents lists available at ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Review

Effects of moderately elevated pressure on gas fermentation processes

Wouter Van Hecke^a, Richard Bockrath^b, Heleen De Wever^{a,*}

^a Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
 ^b Global Bioenergies, 5 rue Henri Desbruères, 91000 Evry, France

Microbial conversions

Conclusions

- Established manipulation and genetic toolbox for *C. ljungdahlii* and implemented the isobutene pathway
- Isobutene production under autotrophic conditions
- Lactate re-consumption issue solved within *Cupriavidus* and lactate production improved by lactate dehydrogenase overexpression
- Selection of two model strains of *Thermotoga neapolitana*, DSM33003 and RQ7
 - productivity (increase lactic acid molarity)
 - genetic tools (transformable strains and amelioration of target steps)
- Test work with bioelectrochemical and high pressure set-ups initiated
- Further optimizations to improve titers and productivity

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

Thank you for your attention!

Contact: heleen.dewever@vito.be

 BioRECOVER
 The Project < Background & Consortium < Publications</th>
 Media < Contact</th>
 Internal area

 PUBLICATIONS
 www.bioreco2ver.eu

Publications

-W. Van Hecke; R. Bockrath; H. De Wever (2019): Effects of moderately elevated pressure on gas fermentation processes, DOI: 10.1016/j.biortech.2019.122129

-V. Luongo; A. Palma; E. R. Rene; A. Fontana; F. Pirozzi; G. Espositio; P. N.L. Lens (2018): Lactic acid recovery from a model of Thermotoga neapolitana fermentation broth using ion exchange resins in batch and fixed-bed reactors, DOI:10.1080/01496395.2018.1520727

-G. Dreschke, G. d'Ippolito, A. Panico, P. N.L. Lens, G. Esposito, A. Fontana (2018): Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, DOI: 10.5281/zenodo.3247830

-G. Nuzzo; S. Landi; E. Nunzia; E. Manzo; A. Fontana; G. d'Ippolito (2019): Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid, DOI: 10.3390/fermentation5020034

-N. Pradhan; G. d'Ippolito; L. Dipasquale; G. Esposito; A. Panico; P.N.L. Lens; A. Fontana (2019): Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica, DOI: 10.5281/zenodo.3247821

Horizon 2020 European Union Funding for Research & Innovation

BioRECOVER

The sole responsibility for the content of this dissemination and communication activity lies with the authors. It does not necessarily reflect the opinion of the European Union (EU) Horizon 2020. The EU is not responsible for any use that may be made of the information contained therein.