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Abstract. The goal of this work is to build the basis for a smartphone
application that provides functionalities for recording human motion
data, train machine learning algorithms and recognize professional ges-
tures. First, we take advantage of the new mobile phone cameras, either
infrared or stereoscopic, to record RGB-D data. Then, a bottom-up pose
estimation algorithm based on Deep Learning extracts the 2D human
skeleton and exports the 3rd dimension using the depth. Finally, we use
a gesture recognition engine, which is based on K-means and Hidden
Markov Models (HMMs). The performance of the machine learning al-
gorithm has been tested with professional gestures using a silk-weaving
and a TV-assembly datasets.
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1 Introduction

The role of professional actions, activities and gestures is of high impor-
tance in most industries. Motion sensing and machine learning have actively con-
tributed to the capturing of gestures and the recognition of meaningful movement
patterns by machines. Therefore, very interesting applications have emerged ac-
cording to the industry. For example, in the factories of the future, the capabil-
ities of workers will be augmented by machines that can continuously recognize
their gestures and collaborate accordingly, whereas in the creative and cultural
industries it is still a challenge to recognize and identify the motor skills of a
given expert. Therefore, capturing the motion of workers or craftsmen using off-
the-shelf devices, such as smartphones, has a great value. New smartphones are
equipped with depth sensors and high power processors, which allow us to record
data even without very sophisticated devices.

In this work, we aim to create a smartphone application that allows for
recording gestures using RGB or RGB-D images, estimating human poses, train-
ing machine learning models by using only few shots and recognizing meaningful
patterns. The motivation of this work is to give the possibility to the users to eas-
ily record, annotate, train and recognize human, actions, activities and gestures
in professional environments.
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2 State of art

2.1 Qualitative comparison between pose estimation frameworks

Different benchmarks of 2D human pose estimation are evaluated through
annual challenges that aim to improve various key-parameters, such as the ac-
curacy, how the algorithm performs with partial occlusions or using different
keypoints, how to detect the pose of big number of individuals in the scene,
etc. Some examples are the COCO Keypoint Challenge, MPII HumanPose and
Posetrack.

The pose estimation in multi-person scenarios can be carried out by using
a top-down or a bottom-up approach. In the first approach, a human detector
is initiated and both the joints and the skeleton of each person are calculated
separately. AlphaPose [1] is a a top-down method based on regional multi-
person pose estimation. Moreover, DensePose [2], aims to map each person
and extract a 3D surface from it using Mask R-CNN[3].

On the other hand, bottom-up approaches firstly detect and label all the
joints candidates in the frame and secondly associate them to each individual
person without using any person detector. DeepCut [4] is an example of bottom-
up approach, it uses a convolutional neural network (CNN) to extract a set of
joint candidates, and then it labels and associates the joints with Non-Maximum
Suppression.

Finally, OpenPose [5] is a real-time bottom-up approach for detecting 2D
pose of multiple people on an image. First, it takes an RGB image and apply
a fine-tuned version of the CNN VGG-19 [6] to generate the input features
of the algorithm. Second, these features enter a multi-stage CNN to predict
the set of confidence maps, where each map represents a joint, and the set of
part affinities which represent the degree of association between joints. Lastly,
bipartite matching is used to associate body part candidates and obtain the full
2D skeletons.

In our work, we have chosen to use OpenPose. The main reason is that top-
down approaches suffer from an early commitment when the detector fails, and
the computational power increases exponentially with the number of people in
the scene. On the other hand, OpenPose includes a hand skeleton estimation,
which has been considered an important perspective in our system. Table 1
shows a list of popular open source methods for 2D pose estimation and the
classification obtained in their respective challenges.

Table 1: List of popular open-source frameworks for 2D pose estimation

Method Benchmark Precision (%) Rank

OpenPose COCO Keypoint challenge 2016 60.5 1

AlphaPose COCO Keypoint challenge 2018 70.2 11

DensePose Posetrack multi-person pose estimation 2017 61.2 7
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2.2 Machine and deep learning frameworks for mobile devices

A pose estimation embedded to a smartphone still represents a huge challenge
for the scientific community. Neither Apple Store nor Google Play propose any
application that provides pose estimation. The main reason is the computational
power needed for running deep learning algorithms, as well as the lack of powerful
graphical devices in smartphones. [7] shows different tests when running deep
neural networks on Android smartphones. The use of TensorFlow-Lite, Caffe-
Android or Torch-Android frameworks is currently possible for implementing
CNNs on smartphones.

Nevertheless, at the end of 2017, Apple made a transition in the world of
machine learning by launching the CoreML framework for iOS 11 that enable
the running of machine learning models on mobile devices. The performance
improved in the next version, CoreML2, at the end of 2018.

Today, there are available applications that do eye tracking based on gaze
estimation by using CNNs [8]. Nevertheless, pose estimation requires much more
computation power than eye tracking or face recognition. For this reason, the
use of an external framework has been considered as a better solution within the
context of this work.

2.3 Gesture recognition methods

The implementation of deep learning for gesture recognition has become the
common practice and can lead to very good results. The ChaLearn LAP Large-
scale Isolated Gesture Recognition Challenge from the ICCV 2017, crowned [9]
[10] [11] as the best deep learning algorithms for gesture recognition. However,
the need for large training databases is not compatible with the constraints
professional gestures where datasets are quite small.

Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs) are
machine learning methods that are widely used in pattern recognition. DTW is
a template-based approach that is based on a temporal re-scaling of a reference
motion signal and its comparison with the input motion signal, such as in [12].
DTW can be good for doing one-shot learning, while HMMs is a robust duration-
independent model-based approach.

Thus, in this research we chose to use our previous work, described in [13],
which makes use of K-means to model the time series of motion data and HMMs
for classifying and recognizing the gesture classes by using the Gesture Recog-
nition Toolkit (GRT)[14].

3 Objectives

The general scope of this work is to build the basis of an application for
a mobile device, which allows for data recording using its embedded sensors,
estimate the human pose, extract the skeleton and recognize (offline) professional
gestures. The pose estimation depends on the camera: RGB for 2D, and RGB-
D, either infrared or stereoscopic, for 3D skeletons. The whole process can be
controlled by the application. More precisely, the annotation, the joint selection,
the skeleton visualization and the projection of the recognition results run locally
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on the phone while the pose estimation and machine learning algorithms are
delegated to a GPU server.

4 Overall pipeline

The smartphone handles the input and output steps of the pipeline. It records
the RGB-D frames and shows the results (body skeleton and gesture recognition
accuracy). An external motion detection server receive the frames by using web-
sockets and, then, it estimates the skeleton and uses the information provided
by the body joints to train and test a gesture recognition engine. The overall
architecture is shown in Figure 1.

Fig. 1: Architecture of the overall pipeline

4.1 Video recording using the smartphone

A specific module for depth recording has been developed in order to use any
iOS device equipped with an RGB and/or RGB-D sensor to record data. More
precisely, the new iPhone XS has been used in this work.

On the one hand, iPhone XS uses a dual rear camera, composed by a wide-
angle lens and a telephoto lens, to capture the disparity. The normalized disparity
is defined as the inverse of the depth. In the Figure 2 on the left is shown how
the rear camera captures the disparity. First, the observed object is reflected
on the image plane of each camera. Then, the mathematical relation tying the
depth (Z), baseline distance (B), disparity (D) and focal length (F), showed
in equation 1, results in the normalized disparity. Finally, the iPhone needs to
filter and post-process the disparity to smooth the edges and fill the holes, which
requires a heavy computation.
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On the other hand, the front camera, named True Depth Camera by Apple,
is used to measure the depth in meters directly. It has a dot projector that
launches over 30,000 dots onto the scene, generally the user face, which are then
captured by an infrared camera. To ensure that the system works properly in
the dark, there is an ambient light sensor and a flood illuminator which adds
more infrared light when needed. The final result is more stable depth images
with a higher resolution. Figure 2 on the right shows the architecture of the True
Depth Camera.
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Fig. 2: IPhone XS back camera (Dual Rear Camera) capturing disparity (Left image)
and IPhone XS front camera (True Depth Camera) capturing depth (Right image).

Finally, in order to capture the frames with both cameras, it is necessary to
use the AVFoundation framework developed by Apple for working with temporal
audiovisual media. It is necessary to create a session with at least one capture
input (camera or microphone) and one capture output (photo, movie or audio).
Then the measured distances (depth or disparity) need to be converted to pixel
values in order to visualize depth maps.

4.2 Pose estimation

Once the data is recorded, it is sent to the GPU server. For compression
purposes, the RGB-D data is converted to jpeg format, then websockets (RFC
6455) are used to send it. We chose to use the client library Starscream.

The goal of pose estimation is to obtain a series of keypoints that can be used
by a gesture recognition engine as input, enabling to train a model that adapts to
different situations or environments. OpenPose, in our case, estimates 25 body
keypoints, 2x21 hand keypoints and 70 face keypoints. However, some of the
estimated keypoints are useless for the recognition, either they are occluded or
they do not carry any information about the gesture. Therefore, a joint selection
module has been added to the application to give the possibility to the user to
select the most appropriate keypoints depending on the use-case.

4.3 Gesture recognition

The joints obtained with the pose estimation and the data obtained from
the depth camera are the input to the gesture classification algorithm. To make
the recognition invariant to the position of each person in the frame, the neck
joint has been taken as a reference point, and any frame without neck has been
discarded.

The gesture recognition engine is based on supervised learning. Before making
the gesture recognition, a labelled database can be manually created by the user,
by manually selecting starting and ending time stamps of each gesture.

Once the database has been labelled, the gesture recognition engine uses k-
Means to obtain discrete-valued observations. Then, Hidden Markov Models is
used to train the discrete data and to determine a gesture recognition accuracy.
The platform GRT has been used for the entire process.

4.4 Smartphone application

The graphical user interface of the application consists on four main modules:
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– Recording module: allows to record the sequences and visualize depth maps.
An example of this module is shown on Figure 3 right.

– Skeleton Visualization module: allows to visualize the skeleton estimated.
Figure 3 left.

– Training module: allows to select the appropriate joints for the gesture recog-
nition.

– Labelling module: interface similar to a photo gallery where you must select
the gestures that you want to recognize.

Fig. 3: Example of the smartphone application using the skeleton visualization module
and the rear camera (left image) and the recording module of the application enabling
the depth visualization with the true depth camera (right image)

5 Datasets

The first dataset used, TV Assembly dataset (TVA), is made up of RGB-D
sequences recorded from a top mounted view at a conveyor surface factory. Two
different users have been recorded. Each sequence contains around 10.000 RGB
frames together with the depth. Table 2 shows the four gestures identified and
labeled during the sequences along with the skeleton of each of them.

Table 2: Example of frames from the conveyor surface dataset

Gesture 1 (G1) Gesture 2 (G2) Gesture 3 (G3) Gesture 4 (G4)

Take the card from
the left side box

Take the wire from
the right side box

Connect the wire
with the card

Place the card on
the TV chassis

The second dataset, Silk Weaving dataset (SW), contains sequences recorded
from a lateral view and three different positions in a silk weaver museum. Three
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clear gestures have been identified and showed in 3 with their corresponding
skeleton.

Table 3: Example of frames from the silk weaver museum dataset

Gesture 5 (G5) Gesture 6 (G6) Gesture 7 (G7)

Press the treadle
and push the batten

Move the shuttle
sideways

Leave the treadle
and pull the batten

6 Results

In order to evaluate the performance of our pipeline and the algorithms
we use the 80%-20% evaluation criteria. We randomly divide our dataset in
80% training set and 20% as testing set, repeating this procedure 10 times and
computing the average values to generate the confusion matrix. We also use the
Recall (Rc), Precision (Pc) and f-score metrics.

The TVA dataset contains 48 repetitions of each gesture and the SW dataset
contains 88 repetitions. Moreover, for the gesture recognition engine, we selected
30 clusters for the K-Means algorithm and 4 states for the HMMs, which follow
an ergodic topology. Finally, five different tests have been done in order to com-
pare the gesture recognition accuracy using the following criteria: 2D against 3D,
2 joints against 7 joints, different camera positions and mixing gestures from the
two datasets.

6.1 Pose estimation comparison using the TVA and SW datasets

A comparison of the pose estimation using the two datasets has been made.
We compared the number of frames per gestures with 1. the percentage of frames
without any estimated skeleton, thus without estimation at all; 2. the percent-
age of frames without any reference point, thus without the neck and 3. the
percentage of frames having the minimum useful estimation, thus at least the
neck.

The results are shown on Table 4 and we can affirm that the lateral views
provided by the SW dataset have a better potential, than the TVA dataset, since
a full skeleton has been estimated for all the frames. In the top mounted view of
the TVA dataset, the algorithm struggled to estimate any information in 43%
of frames for G2 and in 36% of frames for G4, because the user is not captured
in many frames. With regard to the TVA dataset, we would expect that these
results might have an impact in the gesture recognition accuracy. We would
also expect that the small duration of the G5 might also affect its recognition
accuracy.
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Table 4: OpenPose results on the TVA and SW datasets

Dataset TV Assembly Silk Weaving

Gesture G1 G2 G3 G4 G5 G6 G7

# Frames per sample 80.62 67.89 88.69 164.27 30.85 41.81 66.16

% Frames without any
skeleton estimated

0.88 12.27 1.31 14.39 0 0 0

% Frames without reference
point (without neck)

2.71 31.05 1.41 22.83 0 0 0

% Frames with at least the minimum
useful estimation (at least the neck)

96.41 56.67 97.28 62.78 100 100 100

6.2 Gesture recognition comparisons using the TVA dataset: 2D vs
3D and 2 vs 7 joints

The joints selected for training the gesture recognition engine with the TVA
dataset are the upper-body joints. Table 5 compares the recognition accuracy by
using 2 (wrists) or 7 (wrists, elbow, shoulders and head) joints in the 2D or 3D
space. The highest results are obtained by using 7 joints in 3D, while the worst
with 2 joints in 2D.

Moreover, as we expected, the low number of frames with the minimal useful
pose estimation for G2 and G4 impacted the recognition accuracy for these
gestures, while G1 and G3, which have data that give good pose estimation,
achieved very high accuracy.

Additionally, on one hand, we notice that, while what we gain with the 3D
is not so important compared with the 2D, the potential error in the accuracy
(standard deviation) decreases for approximately 40% with the 3D. On the other
hand, if we use 7 joints instead of 2, we increase the accuracy for more than 10%,
meaning that not mostly the hands are involved into the effective gestures. In any
case, the way the 3rd dimension is extracted is biased by the fact that OpenPose
is already pre-trained using only the RGB, meaning that a complete re-training
of the OpenPose with the depth might give better results. Finally, the number
of joints that give better accuracy really depends on the nature of gestures.

6.3 Gesture recognition comparison using three different camera
positions from the SW dataset

The accuracy in the Table 6 is 100%, meaning that the recognizer works
perfectly for the gestures of the SW dataset. We think that the difference between
the accuracy of the two datasets is mostly due two main reasons: 1. the top
mounted view used in the TVA dataset and 2. the fact that in a number of
frames the user is not captured in the TVA dataset, thus there is no any pose
estimation. In addition, the three gestures made in the SW dataset have a greater
variance in space than in the TVA dataset.

6.4 Comparison mixing gestures and data from the TVA and the
SW datasets

The last experiment we tried is mixing gestures and data from the two
datasets. In Table 7, we calculate the precision, recall and f-score for each gesture
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Table 5: Comparison in the gesture recognition using different joints and dimension
and TV Assembly dataset

2J-2D G1 G2 G3 G4 Pr(%)

HMM1 81 1 3 6 89.0

HMM2 0 70 1 29 70.0

HMM3 17 12 53 5 60.9

HMM4 2 14 0 96 85.7

Rc(%) 81.0 72.2 92.3 70.6 76.9 ± 7.9

2J-3D G1 G2 G3 G4 Pr(%)

HMM1 80 1 8 3 87.0

HMM2 0 73 1 15 82.0

HMM3 1 28 0 85 66.3

HMM4 1 28 0 85 74.6

Rc(%) 84.2 65.0 87.5 77.3 77.2 ± 4.7

7J-2D G1 G2 G3 G4 Pr(%)

HMM1 85 1 4 0 94.4

HMM2 0 84 0 11 88.4

HMM3 4 16 71 8 71.7

HMM4 0 6 0 100 94.3

Rc(%) 95.5 78.5 94.7 84.0 87.2 ± 6.0

7J-3D G1 G2 G3 G4 Pr(%)

HMM1 98 1 1 0 98.0

HMM2 0 82 1 5 93.2

HMM3 4 7 68 7 79.1

HMM4 6 114 0 94 82.5

Rc(%) 90.7 78.8 97.1 88.7 88.1 ± 3.4

Table 6: Gesture recognition using all joints and 2 dimensions on Silk Weaving dataset

2J-2D G4 G5 G7 Pr(%)

HMM1 183 0 0 100

HMM2 0 166 0 100

HMM3 0 0 181 100

Rc(%) 100 100 100 100 ± 0

when we train the gesture recognition engine with samples from both datasets.
As a general conclusion, we notice that there is a decrease of accuracy for ev-
ery gesture. Nevertheless, this decrease is not important given the fact that we
have many users, thus a high variance in the way the gestures are executed, and
different camera positions.

Table 7: Gesture recognition mixing gestures from SW and TVA datasets and using 7
joints and 2D

G1 G2 G3 G4 G5 G6 G7

Pr(%) 81.9 56.7 80.9 62.8 98.3 98.8 99.5

Rc(%) 84.6 77.5 68.5 69.9 96.6 97.6 95.4

f-score(%) 83.2 65.5 74.2 66.2 97.4 98.2 97.4

7 Conclusions and Future work

In this work, we developed the first version of a smartphone application that
allows users to record human motion using the RGB or the RGB-D sensors,
annotate them, estimate the pose and recognize them. The use of a smartphone
in industrial or professional context is much easier then the use of highly intrusive
body tracking systems. The long term goal of this application is to permit to
industrial actors to record their own professional gestures, to annotate them and
to use a user-friendly system for their recognition. We developed a module that
extracts the 3rd dimension from a depth. We concluded that the 3rd dimension
improves the recognition stability, decreasing by 40% the standard deviation in
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the accuracy. In addition to this, we observed that while hand are involved in
most of cases, using 7 instead of 2 joints can give better recognition results,
especially when the camera is top-mounted.

Our future work will be focused not only on improving the application, thus
improving the interface, but also on the further development of professional
gestures dataset. With a large dataset, we will be able to consider also the use of
Deep Learning. Finally, we also plan to extend our pose estimation and gesture
recognition system towards the direction of using finger motion as well.
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